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Abstract— Allowing robots to communicate naturally with
humans is an important goal for social robotics. Most ap-
proaches have focused on building high-level probabilistic
cognitive models. However, research in cognitive science shows
that people often build common ground for communication with
each other by seeking and providing evidence of understanding
through behaviors like mimicry. Predictive State Representa-
tions (PSRs) allow one to build explicit, low-level models of
the expected outcomes of actions, and are therefore well-suited
for tasks that require providing such evidence of understanding.
Using human-robot shadow puppetry as a prototype interaction
study, we show that PSRs can be used successfully to both model
human interactions, and to allow a robot to learn on-line how
to engage a human in an interesting interaction.

I. INTRODUCTION

Just as computers started out as academic and industrial

tools before becoming part of daily life, robots cut their

teeth in factories but have now begun to enter the domestic

domain. Robots that vacuum floors and mow lawns are

commercially available, and in the coming years, robots will

likely become increasingly common in homes. Robots have

the potential to provide cognitive and physical assistance to

an increasing elderly population which could alleviate the

strain on the health care system and improve their quality of

life by letting them remain independent for longer. However,

in order for robots to be maximally helpful, they must not

make their user’s lives more difficult by being dangerous or

unpleasant to deal with. One particularly challenging project

is to make systems that communicate naturally with humans.

How can artificial agents, in particular embodied robots,

participate meaningfully in interaction with humans? A so-

cial interaction with a human can be thought of as operating

in a highly uncertain stochastic dynamic system. Tradition-

ally, in AI, robotics, and control theory, an agent starts with

a model of the world and that model dictates the way it

behaves and learns. This approach has produced impressive

results for certain types of difficult robotics problems, such

as helicopter flight [1] and autonomous vehicle control [2].

However, adapting this approach to social robots leads to an

array of problems. At the very least, a model of embodied

interaction with humans would need to be orders of mag-

nitude more complex than the kinds used to successfully

perform typical probabilistic reasoning tasks [3]. A different

approach to enabling human-robot interaction is suggested

by ‘emergent’ theories of cognition and social cognition,

which say that the understanding, meaning, and rules of

social interaction are not a property of the world, but rather

something that is agreed upon. Taking this view, the goal of

a social robot is to create shared meaning with another agent.

The nature of the problem is fundamentally different from

navigation or manipulation. Existing frameworks for learning

to control dynamical systems may, therefore, not be suitable

for learning to participate in embodied discourse. However,

it is still important to understand the stochastic dynamics

underlying social interactions.

In this paper we focus on low level probabilistic models

for understanding how others react to one’s actions in dis-

course. Specifically, we propose the use of predictive state

representations (PSRs [4], [5]) in order to learn expected

responses to particular behaviors. This replicates the social

process of signal grounding, in which participants in a

dialog look for patterns in the exchange of social behaviors

and learn to predict responses to their actions [6], [7].

Signal grounding is an essential component of a higher-

level procedure called symbol grounding, which uses these

learned responses to establish common meaning. If a robot

is to learn to communicate with humans from the ground

up, a first step would be to predict responses to particular

actions or behaviors. We demonstrate the feasibility of this

in an experimental human-robot interaction domain, shadow

puppetry [8]. The limited range of actions combined with

the ability to map sensory inputs to particular observations

in the observation space with high fidelity make this an ideal

domain for exploring reinforcement learning and control

algorithms. At the same time, the limitation on the number

of actions does not preclude participants from exhibiting

complex low-level behaviors like imitation, anticipation, and

coordination.

A. Contributions

We describe how to use PSRs to model interactions be-

tween humans and between humans and robots in the shadow

puppetry domain. We show that we can model interaction as
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a stochastic dynamical system by learning accurate PSRs

with good predictive power on data from human-human

shadow puppetry interactions (Section III). We propose a

robot control algorithm based on the PSR representation

that allows a robotic hand to learn on-line how to behave

when interacting with a human controlled shadow puppet,

and demonstrate in a small pilot user study the feasibility

of (i) learning the intent of the human, and (ii) engaging

humans in interesting social discourse (Section IV). Overall

this work serves as both a demonstration that PSRs can be

useful for real-world tasks, and as a proof-of-concept that al-

lowing agents to build and manage their own representations

can succeed in tasks where specifying a model of desired

behavior is difficult.

II. BACKGROUND AND RELATED WORK

Control is essential to interaction [9]. Learning to evoke

and predict responses from others is an important part

of social learning. The natural approach to this problem

therefore seems to be a decision-theoretic one that models a

dynamical system that is not completely observable, such as

a partially observable Markov decision process (POMDPs).

The descriptive power of these frameworks is attractive for

real-world robot tasks because it enables agents to reason

about the result of future actions by interacting with the

world and receiving feedback using imperfect perception.

Typically, real-world successes of POMDPs have been in

cases where the state and observation spaces of a system

can be described in very few terms [10]. Several recent

successful approaches that utilize POMDPs for assistive

human-robot interaction have applied them in a top down

fashion [11], [12], [13]. They use a representation with few

states, providing a coarse description of the world. The

actions for these POMDPs are complex tasks, such as getting

on an elevator and escorting a human to a location using

sensor feedback motions.

The POMDP formulation is suitable for certain situations,

especially if the structure of the model fits the particular

application domain. For problems where a robot or agent

must learn to interact socially with a human, it is tempting

to model the human as a system that generates behaviors

using one of these frameworks. The agent is left with the

task of learning about the parameters of the system through

its actions and observations. POMDPs closely resemble the

“sense-think-act” model of cognitive architectures. States

encode different “modes,” and when an agent determines

that a particular mode is active (with some probability),

it is assumed to be responsible for the behavior of the

system. This structure forces the designer to make many

assumptions about the set of possible modes, the process

of switching between modes and when a mode results in a

particular behavior. This is problematic on many levels; for

example, when the mode to which we attribute a behavior is

incorrect or invalid. It is easier to get around these problems

in physical domains like navigation than in domains like

social interaction.

The theory described by Semin [7] suggests that language

and other high level aspects of communication are based on

synchronization or parity of behaviors. This idea proposes

that mimicry, parity and correspondence allow humans to

seek and provide evidence of understanding. The processes

that generate these behaviors are non-cognitive and more

strongly connected to physical experience than to high-level

reasoning. This is incompatible with sense-think-act learning

models, and suggests that we need to use models that more

immediately couple actions and observations. Interestingly,

one of the major thrusts in reinforcement learning in the

last few years has been the development of predictive state

representations, which seem to fit the need for such models

perfectly.

A. Predictive State Representations

PSRs are a relatively new technique for modeling in-

teractions between an agent and a system [14]. The gen-

eral assumption is that this interaction is an nth-order

Markov process, meaning that any future sequence of action-

observation pairs is a function of some fixed part of the most

recent history. The PSR learns a function from histories of

actions and observations to future predictions. Predictions

are sequences of actions and observations and are referred

to as tests. The mapping function describes the probability

that a given test will succeed, meaning that executing the

sequence of actions in the test will cause its observation

sequence to occur. In general, there is a minimal set of tests

for any system that are sufficient to predict the outcome of

all other tests. These are the core tests. The minimal state

representation for the PSR is the set of predictions for each

core test.

PSRs focus specifically on inputs and outputs without us-

ing coarse descriptors of state to model their cause. The PSR

maintains a distribution over the set of possible future action-

observation sequences. This distribution, and the parameters

for updating the distribution, are learned from experience.

PSRs may thus be able to accurately predict the results of

future actions without making strong assumptions about, or

partitioning, the unobservable system. They are also capable

of effective off-policy learning. Our brief description of PSRs

here is based on the more general treatments of Singh et

al. [15] and McCracken et al. [5].

Formally, say an agent chooses actions a from a set A, and

the system responds and generates an observation o from a

set O. A PSR models the probability of seeing a particular

sequence of action-observation pairs q = at+1ot+1 . . . amom

given some previous sequence of actions and observations

h = a1o1 . . . atot. The sequence q is referred to as a test

and h is referred to as a history. The goal of a PSR is then,

given a set of tests Q = {q1 . . . qn}, maintain a prediction

vector containing the probability of each test conditioned

on the current history, Pr(Q|h). The entries are Pr(Q|h) =
[Pr(q1|h),Pr(q2|h) . . .Pr(qn|h)]

Each entry gives the probability of a particular test suc-

ceeding, given a particular previous history. The set of tests

in Q are the core tests. In order for the system to be a
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PSR, the set of tests Q must have the property that, for

any test q /∈ Q, and history h, there exists a function fq(·),
s.t. Pr(q|h) = fq(Pr(Q|h)). In the case of a linear PSR, the

function is Pr(q|h) = fq(Pr(Q|h)) ≡ Pr(Q|h)T
mq, where

the mq are internal parameters. After observing a history h
followed by an action observation pair ao, the entry for test

qi is (using a simple application of Bayes rule) updated as,

Pr(qi|htao) = Pr(aoqi|ht)
Pr(ao|ht)

=
Pr(Q|ht)

T
maoqi

Pr(Q|ht)T mao
.

Note the implicit assumption that vectors maoqi
and mao

are available. These vectors are the parameters of the PSR

and for each test q ∈ Q, it is necessary to maintain a vector of

all such “one step” extensions to q. This means that for every

action-observation pair ao, a ∈ A, o ∈ O and every test q ∈
Q , a projection vector maoq is maintained. This includes

the zero length test ε, so that all mao are also maintained.

The need for mao and maoqi
parameters means that even

a linear PSR suffers from the curse of dimensionality. The

mao are the parameters of the PSR and can be learned

using temporal difference methods and the gradient of the

prediction error [15]. McCracken and Bowling [5] highlight

the problem of enforcing that the state vector Pr(Q|ht)
contains valid probabilities.

B. Discovery

In addition to the parameters mao and maoqi
, the PSR

maintains a representation of observed history in the form

of a system dynamics matrix D = Pr(Q|H). Each row i
of D represents the state of the system at time i so that

for each test qj , Dij = Pr(qj |hi). Computing the linearly

independent columns in D provides a means of automatically

determining a minimal representation for a system by finding

a small set of core tests that yields accurate predictions.

There are several ways to accomplish this. McCracken and

Bowling [5] suggest incrementally adding a test t to the

set of core tests Q by computing the condition number of

the matrix Pr({Q, t}|H). If the condition number is less

than 1, the matrix is well conditioned and t is added as a

core test. Another method is to compute an SVD or QR

decomposition and keep tests corresponding to columns in

D that are approximately linearly independent. For the QR-

decomposition D = QR so that Q is an orthogonal matrix,

QT Q = I , and R is upper triangular. If D has non-pivot

columns, then R contains columns which express these non-

pivot columns in terms of those columns in Q. The first

nonzero (pivot) elements in each row of R determine the

location of the linearly independent columns in D. In prac-

tice, we can determine columns in D that are approximately

linearly independent according to the diagonal elements of

R which are above a threshold. The linearly independent

columns of D are kept as core tests. The orthogonality of Q

can provide a measure of numerical error (for example, by

comparing the Frobenius norm of QT Q to that of I).

III. HUMAN-HUMAN INTERACTION MODELS

As mentioned above, in keeping with theories of cog-

nition and social learning, we would like to minimize the

imposition of unnecessary structure in modeling social robot

learning. We use PSRs to study discourse by observing actual

behavior without explicitly modeling purpose or intervening

changes in modes. The discovery algorithms of PSRs are

particularly interesting because they allow us to determine

which sequences are most important in modeling the system,

and this can be directly related back to the notion of signal

grounding.

A. Shadow Puppetry

Shadow puppetry is a human-robot interaction domain

that provides a means of observing an embodied discourse

between two people or between a person and a robotic

hand. The domain is expressive enough to support basic

components of interaction and allows participants to convey

and infer the meaning of emotive gestures [8]. At the same

time, it limits the channels of communication sufficiently

that we do not need to solve difficult perception or action-

generation problems. It is feasible to capture and model

signals in real-time using available computational and per-

ception tools. Subjects are asked to participate in open-ended

interactions. The behavior of each player is converted to a

one dimensional signal using a behavior recognition system.

Let Σ = {Nod, Talk,None} denote the set of possible

signals and X, Y ∈ Σ∗ denote the behavior sequence of

players 1, and 2 respectively.

We use a perception system that recognizes the basic

motions used in the shadow puppet game. Participants wear

simple colored wrist markers that allow us to automatically

infer wrist position, and from that to infer the locations of the

hand center and fingertips. The hand contour is determined

by searching the image for the skin colored blob nearest to

the wrist marker. The wrist w(t), hand center h(t), and finger

tip locations f1(t), f2(t) as shown in figure 1(a) provide a

rough kinematic model of the hand.

w(t)

h(t)

f1(t)

f2(t)

(a) Hand model parameters

(b) Gesture Labeling

Fig. 1. Automated gesture recognition system.

To automate gesture recognition, we record the parameters

of the kinematic model in each frame. In order to identify
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behaviors, we measure the statistical dispersion of these

parameters over the most recent history of length n = 7. We

calibrate our gesture recognition system for each user. During

the training phase, the user performs each of the gestures

several times. The vector of behavior parameters is computed

and recorded for each example. We then fit a Gaussian

distribution to each gesture class and use this mixture of

Gaussians to classify gestures performed by the human. This

system allows us to convert the behavior of each player to

a one dimensional signal which codes his or her behavior

(from the set of behaviors Σ = {Nod, Talk,None}) at each

instant of time, in real-time.

B. Modeling

In order to make the problem of on-line learning of PSR

parameters tractable, we have to reduce the space of possible

actions. We focus on a property of interaction considered

essential to social learning: imitation. We determine the

actual behaviors Xt and Yt of of players 1 and 2 at time

t, and then code our data so that the behavior of a player is

a 0 whenever it matches the previous behavior of his or her

partner and a 1 otherwise. More formally we describe the

imitation behavior at time t of players 1 and 2 respectively

with variables At and Ot. At = 0 if Xt = Yt−1, and 1

otherwise, and Ot = 0 if Yt = Xt and 1 otherwise. Then the

PSR has two actions and two observations. The behaviors of

the first player are the agent actions, and the behaviors of

the second player are observations.

C. Human-Human Experiment

In this experiment, the data is formatted so that there is

a 0 if a player matches the behavior of their partner and 1

otherwise. So, if at a given time step the action observation

pair is [0,0], and player 2 changes behaviors in the next step,

the next pair will be [0,1], and [1,1] will follow in the next

step, unless player 1 changes to match player 2.

The data is primarily composed of repeating sequences of

the action-observation pairs [0,0] or [1,1]. These sequences

result from participants repeating their behaviors for short pe-

riods of time. When the behaviors match, we see a sequence

of [0,0]. When they do not, we see [1,1]. The repeating

sequences are terminated by a particular action-observation

pair. For example, if a long sequence of [1,1] is followed by

a [0,0], or [1,0], it marks the start of a repeating sequence

of [0,0]. Rarely is a sequence of repeating [1,1] followed

by a [0,1]. Similarly, a repeating sequence of [0,0] is often

terminated by [1,1] or [0,1], but almost never followed by

[1,0]. This pattern can be described using the first-order,

2-state POMDP in figure 2. The two states represent the

repeating sequences [1,1] and [0,0]. The edges are marked

with an action, an observation and a probability that the

observation and transition will occur, given the action. The

parameters of the POMDP are α, β, δ, and ǫ, which are ≪ 1
and > 0.

We use a PSR representation to try and model actual

sequences of behavior between several different pairs of

human participants. There were 4 test subjects and each

a=1,o=0,

a=0,o=0,

a=1,o=1,

a=0,o=1, a=0,o=0,

a=1,o=0,
a=0,o=1,

a=1,o=1, 1− 

1− 

1− 

1− 

α

α

β

β

δδ

ε

ε

[0 0][1 1]

Fig. 2. A 2-state POMDP describing the pattern of interaction with
parameters 0 < α, β, δ, ǫ ≪ 1. The agent can remain in either of the two
states [1,1] and [0,0], with high probability, by selecting 1 or 0 respectively.
It can cause a transition out of [1,1] or [0,0], with high probability, by
selecting 0 or 1 respectively.

sequence represents an interaction between a unique pair.

Interactions took place for approximately 2 minutes. All

sequences contain approximately 1000 action-observation

pairs.

The performance of a PSR on modeling a particular

human-human interaction can be measured by prediction

error. Prediction error is 1 if Pr(ot) ≤ 0.5, 0 otherwise. We

simulate the on-line learning problem by processing actions

and observations sequentially, without allowing the model

access to future histories. For the PSR, all projection vectors

and distributions are initialized to be uniform, meaning that

each test contributes equally to the prediction of any other

test. The gradient algorithm adjusts the weights of projection

vectors depending on the frequency of correct guesses [14].

The model uses a decreasing learning rate α = 10
100+t

, where

t is the iteration of the learning algorithm. The α parameter

dictates the step size used to adjust the projection vectors.

In general, using a learning rate that is always less than the

per-time-step prediction error prevents over correction. All

probabilities are restricted to be in the interval [1×10−4, 1].

In each example, the PSR learns using all of the core

tests on the first half of the data. At the halfway point, the

discovery algorithm is used to reduce the set of core tests,

and the learning algorithm is continued using the reduced

set. The results are compared to a simple predictor that

ignores the actions of the agent, and always predicts that

the next observation will be the same as the previous (this is

the most predictive naive algorithm). The initial set of core

tests contains all possible tests of length 2 or less. The plots

in Figure 3 show the mis-prediction per time-step on each

of 6 human-human interactions. The solid line represents

the prediction error per time-step of the PSR predictor and

the dashed line represents the prediction error per time-step

of the simple predictor. The vertical line indicates the point

in the sequence where the dimension reduction algorithm is

executed. In all cases, the simple predictor has higher error

per time-step than the PSR predictor. The PSR improves until

eventually it predicts better than the one-step predictor.

Determining a reduced set of core tests reduces the dimen-

sion of the PSR, and allows subsequent learning to converge

with fewer trials. Each trial starts with 20 core tests (4 tests

of length 1 and 42 tests of length 2). After the discovery
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Fig. 3. Prediction rate of PSR on human-human interaction data. Prediction error is 1 if Pr(ot) ≤ 0.5, 0 otherwise. The left and right sides of the vertical
bar, respectively, represent the phase before and after the Discovery algorithm.

algorithm, the number of retained core tests for the 6 trials

are 8, 11, 13, 14, 13, and 10 respectively. There are two tests

that are present in all of the examples: [0 0] [1 0] and [0

0] [0 1]. The tests [1 0][0 0], [1 1][1 0] and [1 1][0 0] are

present in all but one of the core sets. Of note is the fact that

there is not a significant change in prediction error after the

dimension reduction algorithm.

One concern might be that selecting the initial set of core

tests to be all length 2 tests, ignores all effects that are greater

than second order. It is possible that there are higher order

effects contributing to when and why transitions happens.

We have some evidence that this is not the case in the

shadow puppetry domain. We have analyzed the cumulative

distribution of the length of repeating sequences for the 6

simulation trials. These patterns all seem similar to Poisson

distributions, which would imply that the probability of

transition out of a state does not depend on the length of time

spent in the state, consistent with a low-order Markov model

(and in fact, with the POMDP model in Figure 2). In practice,

adding the set of all length 3 tests did not significantly change

the prediction error. When using the set of all length 4 tests,

the discovery algorithm becomes intractable, due to the size

of the system dynamics matrix (340 × 340).

IV. BUILDING INTERACTIVE ROBOT-PUPPETS

We have demonstrated that PSRs are capable of capturing

patterns in human-human interaction. However, it is also pos-

sible to achieve good prediction errors in the task described

in the previous section using models like POMDPs. The

real reason to use PSRs is to avoid having to pre-program

state representations and models, and instead allow robots to

build interaction capabilities from basic competencies like

action and perception. How can we use PSRs to achieve this

goal? In particular, we need to address the problem of action

selection.

Recall the theory that social learning occurs as a result

of the desire to seek and provide evidence of understanding.

This suggests that it may make sense for a robot learning very

basic communication to take actions that are very likely to

yield predicted responses. Given that there is a human-being

in the loop who is trying to make herself understood to the

robot, and will therefore change her pattern of behavior if

she does not receive the responses she expects, this action

selection strategy could lead to a successful attempt at

establishing shared communication.

A. Controller Learning Algorithm

Algorithm 1 Exploration Schedule PSR Learning Algo-

rithm(set <core tests> CT)

1: Initialize exploration schedule α = 1.0
2: while Change in One-step Prediction error is large do

3: If( RAND(0:1) ≤ α ) EXPLORATION move

4: Else EXPLOITATION move

5: decay(α)

6: end while

1: DISCOVERY

2: Re-select core tests

1: loop

2: If( RAND(0:1) ≤ α ) EXPLORATION move

3: Else EXPLOITATION move

4: decay(α)

5: end loop

We implement this idea in the following algorithm. First,

the agent selects and executes the test sequences according

to exploration utility 1. The purpose of this stage is to

sample the space of action-observation sequences to correctly

estimate the system dynamics matrix, D. Once the change

1The exploration utility of a test is defined by the number of tests it
contains as a sub-sequence. By executing a test, all sub-sequences are also
executed, which allows off-policy learning of sub-sequence probabilites.
The described measure of utility therefore accounts for the total experience
gained by the agent from a executing particular test.
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Subject Extension Prefix Phase 1 test Phase 2 test

1 [0 0] [0 0] [0 0]

1 [0 1] [0 0] [1 1]

1 [1 0] [0 0] [0 0]

1 [1 1] [1 1] [1 1]

2 [0 0] [0 0][0 0] [0 0]

2 [0 1] [0 0] [1 1]

2 [1 0] [1 0] [0 0]

2 [1 1] [1 1] [1 1]

3 [0 0] [0 0] [0 0]

3 [0 1] [0 0] [0 0]

3 [1 0] [0 0][0 0] [0 0][0 0]

3 [1 1] [1 1] [1 1]

4 [0 0] [0 0] [1 1]

4 [0 1] [0 0] [1 1]

4 [1 0] [0 0][0 0] [1 0]

4 [1 1] [1 1] [1 1]

5 [0 0] [0 0] [1 1]

5 [0 1] [0 0] [0 1][0 0]

5 [1 0] [0 0] [1 1]

5 [1 1] [1 1] [1 1]

6 [0 0] [0 0] [1 0][1 1]

6 [0 1] [0 0] [1 0]

6 [1 0] [0 0] [1 1]

6 [1 1] [0 0] [1 1]

7 [0 0] [1 1] [0 0]

7 [0 1] [0 0] [0 0]

7 [1 0] [0 0] [0 0]

7 [1 1] [1 1] [1 1]

TABLE II

MAXIMUM PROBABILITY CONDITIONAL TEST SEQUENCES. THIS TABLE

SHOWS THE MOST LIKELY SEQUENCE FOLLOWING EACH EXTENSION

PREFIX FOR EACH SUBJECT. THE BOLD ENTRIES (WITH CORRESPONDING

PREFIX) REPRESENT THE MOST LIKELY SEQUENCE FOR EACH PHASE.

we should expect to see differences in the frequency of

[0,0] and [1,1] during the first and non-imitation phase of

the experiment. Table II shows the sequence with highest

conditional probability for each possible prefix and each

subject in each phase. In accordance with the interaction

model (Figure 2), no transitional sequence ever has highest

probability. Results for subject 1,2,4 and 5 are ideal in

both phases. For these cases, the most likely sequences in

phases 1 and 2 are sequences of [0,0] and [1,1] respectively.

For subjects 3 and 6, the most likely sequence in phase

1 is [0,0][0,0], which means that the control algorithm

will frequently choose (correctly) to imitate the human. In

phase 2, the highest probability sequence for subject 6 is

[0,0][1,0][1,1], which indicates a transition to non-imitative

behavior if the robot ever observes itself performing the

same action as the human. For subject 3 in phase 2 and

subject 7 in phases 1 and 2, the maximum probability test is

the opposite of what was expected and desired. In order to

understand the reason for this abnormality, it is appropriate

to examine the responses to third survey question. Subject 7

provided the following response to question 3 in phase 2 of

the experiment:

“I tried to do the opposite motion than the robot at the

start, but find myself being in consistent [sic] after trying to

mimic it correctly in phase 1. overall I feel as though I had

more control over it’s actions this time, meaning that when

I nodded it nodded but I wanted it to not do my action, so

for this phase the robot did not understand my intent.”

This response from subject 7 indicates a breakdown in the

performance of the human in the signal grounding process.

This may be due in part to habituation from the behavior

pattern in the imitation phase, or to an innate tendency to

mimic behavior.

It is also worth noting that while some of the most likely

tests for a given history are the same for some subjects across

the two phases, the most likely overall tests (bolded) are more

important for the interaction, because some of the histories

may be unlikely to occur given the intent of the human. For

example, in the non-imitation condition [0, 0] is unlikely to

occur, because the human is not likely to respond to imitation

with further imitation. In this case, [1, 1] or [0, 1] would be

more likely prefixes, upon which the the robot would have

to select future tests.

D. Discussion

The human-robot interactions show some interesting re-

sults. First it is clear that the imitation cases were very

successful in creating a rewarding experience for humans

interacting with the robot (people like it when they are

successful at their task, which was to make the robot un-

derstand them). The outcome of the non-imitation case is

not as clear, but in both cases the robot learned significantly

different representations, and generated significantly different

behavior, and for the most part this appears to have been

successful at engaging human partners. Of course this is a

small, proof-of-concept study with few participants, but the

results are encouraging for the development of social robotics

algorithms that attempt to ground communication in basic

learning of the expected outcomes of actions.

One of the reasons for the success of the “exploitation” ac-

tion selection policy of selecting actions for which the robot

has high certainty of the response is undoubtedly because a

human is attempting to have an interesting interaction with

the robot. Consider the imitation and non-imitation cases in

a little more detail. In the imitation case, if the robot learns

that imitating will lead to further imitation, this reinforces

the behavior, leading to a “good” equilibrium where the

robot has understood the human’s intent and can act in

accordance with that intent. In the non-imitation case, if the

robot starts to imitate the human’s actions, the human will

learn to change her actions because they are not eliciting the

desired behavior. This will prevent the imitation equilibrium

from emerging. This is confirmed by the evidence in Table

II – while the most likely tests for some histories are

the same across the two phases for many of the subjects,

the probability of that history actually occurring (which is

dependent on the human’s actions) will be different in the

two cases, which is why (1) the robot manages in general to

perform in accord with the human’s intent, and (2) the single

most likely test to succeed is very different in the two phases.

In some ways the algorithm is taking advantage of the fact

that the human takes initiative in the interaction in order to

184



learn appropriate behavior. This is an interesting example of

parent-child or master-apprentice learning.

V. CONCLUSIONS

This paper marries ideas from emergent theories of cogni-

tion with the recently developed predictive state representa-

tion (PSR) framework for reinforcement learning in design-

ing an effective algorithm for social human-robot interaction

in a prototype shadow puppetry domain. We demonstrate

that PSRs can accurately capture the dynamics of human-

human shadow puppet interaction, and then combine the

PSR representation with an action selection strategy based

on the idea that social interactions develop when participants

are able to seek and convey understanding. The resulting

algorithm is successful in two ways: (1) when we give a

human a particular task (“get the robot to imitate / not imitate

you”), the PSR representation learns an appropriate encoding

of the human’s intent in an on-line fashion, and (2) the robot

in general generates behaviors that the human thinks are

appropriate responses in the social interaction.

An important aspect of this work is that the algorithm

learns on-line. The ability to examine data beforehand and

learn about a human is a convenience that a situated agent

might not have. For practitioners looking to use PSRs for

different tasks, the scope of the initial representation (i.e.

the initial set of core tests) is particularly important. The

trade-off between the robustness of a large set of core tests

and the efficiency of a small set is apparent. Another issue

is the problem of enabling the agent to deal more directly

with raw signals, rather than providing it with a predefined

set of gestural primitives.

In generalizing this approach, these problems are not

insurmountable. First, there are many possible granularities

between this and a completely out-of-the-box PSR model.

The level of expert design used in the system can be though

of as a sliding scale. Second, the off-policy nature of PSRs

means that they can be run multiply and in parallel. A PSR

need not select an action to learn from its outcome. Third,

actions must be recognized and selected in real-time, but

reasoning about history can be done in background. This

means that it may be possible for an agent to start with

simple, decoupled models and incrementally combine or

extend them. For example, the agent may start with a small

set of short tests, and extend the important ones.

In retrospect, for the particular task we focus on in

this paper, interaction with humans based on patterns of

imitative / non-imitative behavior, an internal model based

on Markovian assumptions (like a POMDP or HMM) could

have performed well in terms of prediction accuracy on

the human-human tests, and provided a basis for a control

algorithm for the robot. However, the goal of this project was

to provide an algorithm that did not require pre-specifying

a type of model and a state space. The Markov model

of Figure 2 is based on an after-the-fact human analysis

of data from the human-human experiments. Whether an

automated learning process could have learned that these

were the relevant states and extracted appropriate transition

probabilities from the data is an interesting question, but it

is not our focus in this work. Instead, we demonstrate that

it is possible to learn how to interact successfully without

the need to rely on the existence and learnability of state

space models (although we reiterate that the possible “true”

model of interaction ends up being simple in this case, and

much more research is needed to determine if PSRs will be

successful when the underlying model is more complex).

Another important aspect of this work is that the PSRs

can be learned online. The research reported here is one of

the first real-world successes of a PSR algorithm that we

are aware of. We believe PSRs are a promising approach

to several problems for which specifying a useful model

of the world is hard. While the deployment described here

did involve significant engineering in choosing exploration

schedules, deciding when to perform discovery, and so on,

it is clear that these algorithms can be made to work on real

robots who have to act and learn in an uncertain world.
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