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Abstract— We address the minimal risk motion planning
problem in a two dimensional environment in the presence of
both moving and static obstacles. Our approach is inspired
by recent results due to Vladimirsky [20] in which path
planning on time-varying maps is addressed using a new
level-set approach, and for which computational costs are
remarkably low. Toward practical implementation of these
results for path planning in unstructured environments, we
develop a receding-horizon formulation in which path planning
for moving and static obstacles is addressed locally, while
path planning for static obstacles is addressed globally. This
formulation reduces the overall computational burden of path
planning and makes it suitable for very large domains. The
result is a suboptimal receding horizon planner and a matching
condition that connects local planning with global planning. We
present a rigorous analysis from which convergence to a desired
endpoint is guaranteed.

I. INTRODUCTION

We propose a sub-optimal controller for motion planning
in a two dimensional dynamic environment that possesses
both static and moving obstacles. In our initial work ([21]
and [22]), we have addressed path planning problems based
on level set methods in which an autonomous vehicle nav-
igates in a static environment for which the a priori map
is incomplete, and our work focused efficient computation
of the level set. In this work, we extend our results to the
case of moving obstacles. Our general approach is based
on the level set methods introduced in ([17] and [18]),
and we employ the recent path planning approach in [20]
to address the case of moving obstacles. Our contribution
in this paper is to rigorously justify a receding horizon
formulation, similar in spirit to the approach in ([21]), in
which planning with respect to static and moving obstacles
is computed locally at a fast rate, and planning with respect to
only static obstacles is computed globally only occasionally.
This approach reduces the overall computational burden, and
enables path planning in the presence of moving obstacles
to be accomplished in real-time and in potentially very large
domains.

In this paper, the proposed approach to path planning does
not account for vehicle dynamics or otherwise addresses
path-following limitations. Thus our approach is suited to
vehicles that can follow arbitrary paths at potentially slow
speeds. This includes certain classes of autonomous surface
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vehicles, which motivates our work, but also includes classes
of ground vehicles and ground hovercrafts. In addition, we
make no attempt to explain how the trajectory of moving ob-
stacles is estimated, although we assume that such estimates
are available to the planner.

The methods to plan motions in the presence of moving
obstacles has been addressed by a variety of approaches,
including a global search in state-time space ([5], [4] and
[11]), speed maneuvering along a predefined trajectory ([8]
and [14]), estimation of a obstacle trajectory cone, [3],
and perturbation approach that assumes a parameterized
polynomial trajectory ([7], [16] and [19]). Some approaches
assume either that both moving and static obstacles possess
a specific geometry, such as spheres, or that moving obsta-
cles travel along piecewise linear trajectories, for example
[3], [7], [14], [16], and [19]. The state-time space search
methods ([5] and [11]) do not require these assumptions,
but incorporate time as an extra dimension and model the
time-varying environment as a static environment with one
extra dimension. These methods can compute global optimal
paths, but impose additional computational requirements.

In this paper, we aim to find an optimal path for an
autonomous vehicle that minimizes the overall risk for
traversal in a dynamic environment. We first assume that the
positions of both moving and static obstacles are completely
known and thus our environment map is accurate. This
part of the work is inspired by Vladimirsky [20], who
proposes a partial differential equation (PDE) for the time
optimal control problem for non-autonomous systems. We
propose a very similar PDE whose domain is the original
two dimensional environment. The suboptimal controllers
that maneuver the vehicle to avoid both moving and static
obstacles is indeed along the gradient of the level sets of
this PDE’s solution. Note that since the PDE is defined over
the original two dimensional environment, the computational
expense is much smaller than some other methods such as
[5] and [11].

For the sake of the implementation in a more realistic
scenario, we consider the case in which the a priori map
is inaccurate, and moving and static obstacles are detected
during the mission by an on-board sensor with limited range.
Recall that we can express the minimal risk path by the
level sets of the solution to a Eikonal equation [17] over
the global domain which accounts for the static obstacles
only. In order to make provisions for the newly detected
moving and static obstacles within the sensor field of view,
we propose a receding horizon control formulation that
generates local path segments. Analysis of convergence to
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the desired goal location is often a challenge within the
receding horizon control framework (see e.g. [13]). In [9], it
is shown that the appropriate choice of the terminal cost is a
crucial factor which can guarantee convergence (or stability)
of the vehicle state with respect to the goal location. In
this paper, we select the globally computed solution of the
Eikonal equation as the terminal cost for the receding horizon
controller. We show that this choice allows us to choose end
points for local paths for which we can establish a sufficient
condition that guarantees vehicle convergence. In terms of
the computational expense, one needs only to compute the
solution of the PDE over a small, local domain due to
the limited length of the planning horizon. The Eikonal
equation would be computed over the entire domain only
occasionally. Therefore, the computational expense of the
proposed receding horizon control is further reduced.

II. PROBLEM FORMULATION

Consider an autonomous vehicle navigating in Ω ⊂ R
2,

where Ω is a connected and bounded open set in R
2 and Ω

is the closure of Ω. The vehicle can be regarded as a point
mass since it is small relative to Ω. The task for the vehicle
is to travel along an obstacle free path such that the vehicle
can reach a predefined goal z ∈ Ω.

Letting the vehicle position be x ∈ R
2, we model the

motion of an autonomous vehicle as a point mass whose
velocity is directly controlled

ẋ(t) = u(t), x(t0) = x0 ∈ Ω (1)

where x(t) is the state of the vehicle and u(t) is the input.
We assume that the vehicle moves on a relatively low
speed, such that it can turn without forward motion and
can make a sudden stop as soon as the vehicle arrives at z.
The assumption is reasonable since we are concerned with
altering the heading and the speed of the vehicle such that
it does not move toward obstacles. Then, we can model the
admissible input as u(t) ∈ U, where

U =
{

u ∈ R
2 : ‖u‖ ≤ vmax

}
(2)

and vmax is a constant scaler indicates the maximum speed
of the vehicle.

To model both static and moving obstacles in Ω, we
associate a risk for the vehicle to traverse a point at any
time by a cost function g ∈C1(Ω× [t0,∞);R1). For a point
ξξξ ∈ Ω, g(ξξξ , t) remains constant when there are no moving
obstacles close to ξξξ at time t. It increases when ξξξ is occupied
by or very close to a moving obstacle and decreases to the
constant value after the moving obstacle leaves. In addition,
we assume that there exist two positive scalers G1 and G2
such that

0 < G1 ≤ g(ξξξ , t) ≤ G2 < ∞, ∀ξξξ ∈ Ω, ∀t ∈ [t0,∞). (3)

To ensure that the minimal risk problem is well-posed, we
only search for optimal controllers in a given time interval
[t0, t1] where t0 ≤ t1 < ∞. Our goal is to find u(·) that

minimizes the cumulative minimal cost from x0 to ξξξ ∈ Ω
satisfying,

J(ξξξ ) = min
u(·)∈U

∫ T

t0

g(x(τ),τ)‖ẋ(τ)‖dτ (4)

subject to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = u(t),

x(t) ∈ Ω,

x(t0) = x0,

x(T ) = ξξξ ,

u(t) ∈ U,

T ∈ [t0, t1].

(5)

Specially, when z = ξξξ , we obtain the optimal controller u(·)
that maneuvers the vehicle from the initial location x0 to the
goal z.

III. SUBOPTIMAL SOLUTION

In this section we show the necessary condition that
minimizes the cost function (4). Without loss of generality,
we let t0 = 0 in Proposition 1.

Proposition 1: Consider the optimization problem (4) that
is subject to the dynamics (5). Consider a function Q ∈
C2(Ω;R1) satisfying

‖∇Q(ξξξ )‖ = g

(
ξξξ ,

Q(ξξξ )
γG1vmax

)
,

Q(x(0)) = 0.

(6)

where γ ∈ (0,1] is a constant scaler. If t1 ≥ maxξξξ∈Ω
Q(ξξξ )

γG1vmax
,

the optimal controller that necessarily minimizes (4) is
characterized by

u(t) = γ
G1vmax

g
(

x(t), Q(x(t))
γG1vmax

) ∇Q(x(t))
‖∇Q(x(t))‖ . (7)

Along the trajectory generated by the controller (7), the
following equation holds

g

(
x(t),

Q(x(t))
γG1vmax

)
= g(x(t), t). (8)

In addition,
J(z) = Q(z) (9)

is the suboptimal cost that is evaluated by (7).
The partial differential equation (6) is the same as that

derived in [20]. In [20], the author employs the Hamilton-
Jacobi-Bellman equation and finds sufficient conditions for
the global minimal-time problem. The author also establishes
existence and uniqueness of the viscosity solution of the
partial differential equation (6).

Remark 1: Equations (6) and (7) indicate that the subop-
timal controller can be found by going along the gradient
of value Q(ξξξ ) whose domain is the original two dimen-
sional environment Ω. Therefore, to search the suboptimal
controller, we need only to compute Q(ξξξ ) over the original
environmental domain Ω.
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Remark 2: For the case in which there are no moving
obstacles, the cost function g(ξξξ , t) depends only on its first
argument. Thus, the partial differential equation (6) reduces
to the well-known Eikonal equation [17]. Then, the resulting
optimal controller by (7) coincides with that proposed in
[12].

Remark 3: Equations (7) and (8) show that the speed of
the vehicle is γ G1vmax

g(x(t),t) . This indicates that the higher the risk
for traverse is, the slower is the speed of the vehicle. This
property captures the desirable characteristic of the vehicle
motion. That is, the vehicle moves slower at the place that
has higher risk to traverse.

Proof: [Proof of Proposition 1] In this proof, we will
use the fact that (8) holds along the trajectory generated
by the controller (7). Therefore, the first step is to show
the connection between Q(x(t)) and t. Since Q(ξξξ ) is a
conservative vector field, we have

Q(x(t))

=
∫ x(t)

x(0)

∂Q

∂x
dx

=
∫ t

0

∂Q(x(τ))
∂x(τ)

ẋ(τ)dτ

=
∫ t

0

∂Q(x(τ))
∂x(τ)

γG1vmax

g
(

x(τ), Q(x(τ))
γG1vmax

) ∇Q(x(τ))

g
(

x(τ), Q(x(τ))
γG1vmax

)dτ

=
∫ t

0
γG1vmaxdτ

=γG1vmaxt

(10)

Thus, we infer that

t =
Q(x(t))
γG1vmax

, (11)

which indicates (8).
We use Euler-Lagrange method to find the necessary

condition for the minimal risk for traversing. We adjoin
the system differential equation (5) to J(ξξξ ) with multiplier
λλλ (τ) ∈ R

2 (see e.g. [2], pp. 72):

J =
∫ T

t0

g(x(τ),τ)‖ẋ(τ)‖+λλλ T (τ)(u− ẋ(τ))dτ (12)

Since ‖u‖ �= 0, we perturb J with variations to δx, δ̇x, δu
and δT . The variations in J satisfy

δJ =
∫ T

t0

[
∂g

∂x
δx‖u‖+g

uT

‖u‖δu+λλλ T δu−λλλ T δ ẋ
]

dτ

+g(x(T ),T )‖u(T )‖δT

=
∫ T

t0

[
∂g

∂x
δx‖u‖+g

uT

‖u‖δu+λλλ T δu+ λ̇λλ
T

δx
]

dτ

−λλλ T δx|Tt0 +g(x(T ),T )‖u(T )‖δT

=
∫ T

t0

[
(

∂g

∂x
‖u‖+ λ̇λλ

T
)δx+(g

uT

‖u‖ +λλλ T )δu
]

dτ

−λλλ T δx︸︷︷︸
δx=dx−ẋdt

|T +g(x(T ),T )‖u(T )‖δT

=
∫ T

t0

[
(

∂g

∂x
‖u‖+ λ̇λλ

T
)δx+(g

uT

‖u‖ +λλλ T )δu
]

dτ

−λλλ T (dx− ẋδT )|T +g(x(T ),T )‖u(T )‖δT

(13)

To let δJ = 0, we require that each term associated with the
variation terms in (13) vanishes. Thus, we have

δJ =
∫ T

t0

⎡
⎢⎢⎢⎣(

∂g

∂x
‖u‖+ λ̇λλ

T

︸ ︷︷ ︸
=0T

)δx+(g
uT

‖u‖ +λλλ T

︸ ︷︷ ︸
=0T

)δu

⎤
⎥⎥⎥⎦dτ

−λλλ T
dx|T︸ ︷︷ ︸
=0

+(g(x(T ),T )‖u(T )‖+λλλ T (T )ẋ(T )︸ ︷︷ ︸
=0

)δT

(14)

Note that the terminal constraint is x(T ) = ξξξ . Thus, we infer
that

dx|T = [0,0]T . (15)

Therefore, from (14) we obtain a set of Euler-Lagrange
equations:

∂g(x(t, t)
∂x(t)

‖u(t)‖+ λ̇λλ
T
(t) = 0T , (16)

g(x(t), t)
uT (t)
‖u(t)‖ +λλλ T (t) = 0T , (17)

for all t ∈ [0,T ] and boundary conditions

g(x(T ),T )‖u(T )‖+λλλ T (T )ẋ(T ) = 0. (18)

To show that the solution of λλλ (t) satisfies

λλλ (t) = −∇Q(x(t)), (19)

we show the equations (16), (17), and (18) hold assuming
(7). Substituting (7), (6), (8), and (19) into the left-hand side
of (17), we obtain

g(x(t), t)
u(t)

‖u(t)‖ +λλλ (t)

=g(x(t), t)
∇Q(x)

‖∇Q(x)‖ −∇Q(x(t))

=[0,0]T ,

(20)

which verifies that (17) holds. Substituting (7), (6), (8), and
(19) into the left-hand side of (18), we derive

g(x(T ),T )‖u(T )‖+λλλ T (T )ẋ(T )

=g(x(T ),T )
γG1vmax

g
(

x(T ), Q(x(T ))
γG1vmax

)
−∇Q(x(T ))T γG1vmax

g
(

x(T ), Q(x(T ))
γG1vmax

) ∇Q(x(T ))
‖∇Q(x(T ))‖

=γG1vmax − γG1vmax

=0

(21)
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which indicates that (18) holds. Equation (16) remains to be
proven. Given (6) and (8), we have

∂g(x(t), t)T

∂x
=

∂‖∇Q(x(t))‖T

∂x
=

1
g

∂ 2Q

∂x2
∂QT

∂x
(22)

From (7) and (19), λ̇λλ satisfies

λ̇λλ = −∂ 2Q

∂x2 ẋ = −∂ 2Q

∂x2
γG1vmax

g
(

x, Q(x)
γG1vmax

) ∇Q(x)
‖∇Q(x)‖ (23)

Substituting (7), (6), (22), and (23) into the left-hand side of
(16), we obtain

∂g(x(t), t)T

∂x(t)
‖u(t)‖+ λ̇λλ (t)

=
1

g
(

x(t), Q(x(t))
γG1vmax

) ∂ 2Q

∂x2
∂QT

∂x
γG1vmax

g
(

x(t), Q(x(t))
γG1vmax

)
− ∂ 2Q

∂x2
γG1vmax

g
(

x, Q(x)
γG1vmax

) ∇Q(x)
‖∇Q(x)‖

=[0,0]T

(24)

which shows that (16) holds. Since all of the three Euler-
Lagrange equations (16), (17), and (18) hold, we prove
that λλλ (t) satisfies (19) and that (7) satisfies the necessary
condition to minimize (4).

In the end, to show (9), we substitute (7) and (8) into (4)
and obtain

J(z) =
∫ T

0
g(x(τ),τ)‖ẋ(τ)‖dτ

=
∫ T

0
g(x(τ),τ)

γG1vmax

g
(

x(τ), Q(x(τ))
γG1vmax

)dτ

=γG1vmaxT

(25)

From (11), we conclude

J(z) = γG1vmax
Q(z)

γG1vmax
= Q(z) (26)

which completes our proof.

IV. RECEDING HORIZON CONTROL FORMULATION
WHEN THE STATE OF THE MOVING OBSTACLES

DETECTED IN MISSION

In a more realistic scenario, the vehicle often detects the
moving obstacles in real-time using an on-board sensor with
limited range. In this section we introduce a receding horizon
control formulation (see, e.g. [6]) that addresses the case
that moving and static obstacles are detected in real-time
only within the vehicle’s limited sensor range. We first give
a necessary condition to optimize the cost of the proposed
receding horizon controller. We show that by computing a
PDE over a local domain centered at the vehicle’s current
position, we can find a suboptimal controller minimizing the
proposed cost functional over the planning horizon. Thus, we
can forgo the computation of the new PDE defined in (6) at
each iteration over the entire domain even if we detect new

moving obstacles. Then, we propose a sufficient condition
that guarantees that the vehicle converges to the goal using
a sequence of local plans. We show that we can apply the
methodology proposed in [15] and [9] to justify this sufficient
condition.

Before we introduce the receding horizon control formu-
lation, we construct a Eikonal equation ([17]) satisfying

‖∇Q∗(ξξξ )‖ = g∗(ξξξ ), Q∗(z) = 0. (27)

where g∗ ∈C1(Ω;R+) corresponding to the risk for traversal
when there are only static obstacles in the environment. In
our approach, the solution Q∗ is computed over the entire
domain Ω. Note that g(·, ·) and the level set Q defined in
Section II account for static and moving obstacles locally
around the current position of the vehicle. Since for the
same location, the risk to traverse will increase if a moving
obstacle is passing through, we can assume

0 < G1 ≤ g∗(ξξξ ) ≤ g(ξξξ , t) ≤ G2, ∀ (ξξξ , t) ∈ Ω× [t0,∞).

It is well known (e.g. [12] and [17]) that the solution Q∗(ξξξ ),
in contrast to Q(·) defined in (6), encodes the minimal risk
path from ξξξ to the goal z in a static environment.

In the receding horizon control formulation that is pro-
posed herein, the values of Q∗ serve as the terminal cost
in the local cost functional. Indeed, in Proposition 2, we
compute a path in a local region around the vehicle using
the results in Section III. This local path will account for
moving obstacles. We also compute a global path as in (27)
that accounts for only static obstacles. When computing local
paths, it is not immediately obvious how to choose the end-
point of the path since a local region may not include the
desired goal location. It is also important to show that a
sequence of local paths does eventually lead to the desired
goal location. The level set Q∗ that is computed for the global
path is used to address both of these challenges.

If the perception sensor’s sampling period is h, we often
let the implementation horizon to be h as well. We choose
H as the planning horizon where H ≥ h. Note that the
receding horizon control formulation shall make provisions
for the newly detected moving obstacles. Thus, we employ
g(x(τ),τ) for the process cost during the horizon H and aim
to minimize the risk for traversal over the horizon as well as
the expected minimal risk for traversal from the terminal state
x(tk +H) toward the goal. The receding horizon formulation
is then to find the local optimal control and state pair on
[tk, tk +H] that solves the minimization problem

J(x(·), tk) = min
u(·)∈U

∫ tk+H

tk

g(x(τ),τ)‖ẋ(τ)‖dτ +Q∗(x(tk +H))

(28)

subject to ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ(t) = u(t),
x(t0) = x0,

x(tk) = x(tk−1 +h),

x(t) ∈ Ω.

(29)
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for k = 0,1,2, . . . ,∞. The overall planned trajectory and con-
trol on [t0,∞) are spliced together from the locally optimal
trajectory in the usual way (see, e.g. [6]). The following
proposition shows the necessary condition to minimize (28).

Proposition 2: Consider the optimization problem (28)
that is subject to the dynamics (29), and a function Qk ∈
C2(Ω;R1) satisfying

‖∇Qk(ξξξ )‖ = g

(
ξξξ ,

Qk(ξξξ )
γG1vmax

+ tk

)
,

Qk(x(tk)) = 0.

(30)

where γ ∈ (0,1] is a constant scaler. If the matching condition

∇Qk(x(tk +H)) = −∇Q∗(x(tk +H)), if x(tk +H) �= z,
(31)

is satisfied, then optimal controller that necessarily mini-
mizes (28) is characterized by

u(t) =

⎧⎨
⎩ γ G1vmax

g
(

x(t), Qk(x(t))
γG1vmax +tk

) ∇Qk(x(t))
‖∇Qk(x(t))‖ , if x(t) �= z,

0, otherwise.
(32)

Remark 4: The condition (31) indeed shows how to chose
the end-point of the path over each planning horizon H.

Remark 5: Note that from (11), the value of the Qk indeed
corresponds to the relative time that ASV travels from its
current position to any point in the environment. Since the
planning horizon is H, using the ordered upwind method
([18]), we can terminate the computation of Qk as soon as
the solution is larger than the constant γG1vmaxH. Thus, Qk

will be computed over a small, local domain.
Proof: [Proof of Proposition 2] The proof is very much

similar to that of Proposition 1, given the fact that the
matching condition (31) holds. For reasons of limited space,
we thus omit it herein.

We now present the sufficient condition such that the
vehicle will converge to the goal under the receding horizon
control formulation (28).

Proposition 3: Assume that the viscosity solution of Q∗ ∈
C1(Ω;R). Define the value function

V (x(tk), tk) = J(x(·), tk). (33)

We assume that V (x, t) is a continuously differentiable func-
tion such that

W1(x− z) ≤V (x, t) ≤W2(x− z),

where W1(·) and W2(·) are continuous positive definite func-
tions on Ω. If the matching condition (31) holds for any
time tk, V (x(tk), tk) is a Lyapunov function. The vehicle state
x(t) → z as t → ∞.

Remark 6: In the general case, Q∗(ξξξ ) is not differentiable
everywhere. Interested readers are referred to [1] for the
stability analysis when a Lyapunov function is not in C1.

Remark 7: The proof of Proposition 3 follows very sim-
ilar procedure of the asymptotical stability proof of the
receding horizon controller proposed in [15] and [9]. The
difference is that since the risk for traversal g(x(t), t) depends
on time, the optimal cost J(x(·), tk) depends on time as

well. Thus, the corresponding Lyapunov function V (x, t) that
appears in the proof of Proposition 3 is also time-varying.

Proof: [Proof of Proposition 3] Following the procedure
in [15] and [9], we denote by u f (t) the admissible feedback
controller that ensures the vehicle converge to the goal z.
Given the level set values Q∗, let the controller u f satisfy

u f (t) = −αvmax
∇Q∗(x(t))

‖∇Q∗(x(t))‖ , if x(t) �= z, (34)

for all t ∈ [t0,∞), where

0 < α ≤ γ
G1

G2
≤ 1. (35)

Thus, from (27) we infer that

Q̇∗(x(t)) = ∇Q∗(x(t)) ·u f (t) = −g∗(x(t))αvmax. (36)

Therefore, Q∗(x(t)) is a control Lyapunov function. Denote
the optimal controller that minimizes J(x(·), tk) by u∗(t) for
t ∈ [tk, tk + H]. Since tk+1 = tk + h and since h ≤ H, we can
define the admissible controller u+(t) satisfying

u+(t) =

{
u∗(t), ∀t ∈ [tk+1, tk+1 +H −h]
u f (t), ∀t ∈ [tk+1 +H −h, tk+1 +H]

(37)

Given the initial state x(tk+1) at tk+1, we define
J (x(tk+1),u+(·)) the cost function that is evaluated by
u+(·) satisfying

J (x(tk+1),u+(·))
:=

∫ tk+1+H

tk+1

g(x(τ),τ)‖u+(τ)‖dτ +Q∗(x(tk+1 +H))
(38)

Since J(x(·), tk+1) is the minimal cost, we obtain the follow-
ing inequality

J(x(·), tk+1)
≤J (x(tk+1),u+(·))
=

∫ tk+1+H−h

tk+1

g(x(τ),τ)‖u+(τ)‖dτ

+
∫ tk+1+H

tk+1+H−h
g(x(τ),τ)‖u+(τ)‖dτ +Q∗(x(tk+1 +H))

=
∫ tk+H

tk+h
g(x(τ),τ)‖u∗(τ)‖dτ

+
∫ tk+h+H

tk+H
g(x(τ),τ)‖u f (τ)‖dτ +Q∗(x(tk+1 +H))

978



=
∫ tk+H

tk

g(x(τ),τ)‖u∗(τ)‖dτ +Q∗(x(tk +H))︸ ︷︷ ︸
J(x(·),tk)

−
∫ tk+h

tk

g(x(τ),τ)‖u∗(τ)‖dτ −Q∗(x(tk +H))

+
∫ tk+h+H

tk+H
g(x(τ),τ)‖u f (τ)‖dτ +Q∗(x(tk+1 +H))

=J(x(·), tk)−
∫ tk+h

tk

g(x(τ),τ)‖u∗(τ)‖dτ −Q∗(x(tk +H))

+
∫ tk+h+H

tk+H
g(x(τ),τ)‖u f (τ)‖dτ +Q∗(x(tk +H +h))

(39)

From (34), (36) and (37), together with the inequality (39),
we infer that

J(x(·), tk+1)− J(x(·), tk)
≤−

∫ tk+h

tk

g(x(τ),τ)‖u∗(τ)‖dτ

+
∫ tk+h+H

tk+H
g(x(τ),τ)‖u f (τ)‖dτ +

∫ tk+h+H

tk+H

∂Q∗

∂x
(τ)u f (τ)dτ

=−
∫ tk+h

tk

g(x(τ),τ)‖u∗(τ)‖dτ +
∫ tk+h+H

tk+H
g(x(τ),τ)αvmaxdτ

−
∫ tk+h+H

tk+H
g∗(x(τ))αvmaxdτ

(40)

From the fact that the matching condition (31) holds, we
infer that u∗ satisfies (32). Thus (40) further becomes

J(x(·), tk+1)− J(x(·), tk)
≤−

∫ tk+h

tk

γvmaxG1dτ +
∫ tk+h+H

tk+H
g(x(τ),τ)αvmaxdτ

−
∫ tk+h+H

tk+H
g∗(x(τ))αvmaxdτ

=
∫ tk+h+H

tk+H
(g(x(τ),τ)α − γG1)vmaxdτ

−
∫ tk+h+H

tk+H
g∗(x(τ))αvmaxdτ

(41)

From (35), the inequality (41) becomes

J(x(·), tk+1)− J(x(·), tk)
≤

∫ tk+h+H

tk+H

(
g(x(τ),τ)γ

G1

G2
− γG1

)
︸ ︷︷ ︸

≤0

vmaxdτ

−
∫ tk+h+H

tk+H
g∗(x(τ))αvmaxdτ

≤−
∫ tk+h+H

tk+H
g∗(x(τ))αvmaxdτ

(42)

According to (33), we have for all x(tk) �= z,

V̇ (x(tk), tk)

= lim
h→0

V (x(tk+1), tk+1)−V (x(tk), tk)
h

≤−g∗(x(tk +H))αvmax

≤−G1αvmax.

(43)

Since the environmental geometry Ω is a closed and bounded
set, there exists a continuous positive definite function W3 :
Ω → R such that

W3(x− z) ≤ G1αvmax.

Thus, the inequality (43) becomes

V̇ (x(tk), tk) ≤−W3(x(tk)− z).

By the hypothesis, V (x, t) is a Lyapunov function for a
non-autonomous system. Thus, we conclude that the vehicle
converge to the goal z (see e.g. Theorem 4.9 of [10]).

V. SIMULATION RESULTS

To validate the proposed receding horizon controller, we
show an example of an autonomous surface vehicle (ASV)
navigating in a riverine environment. We employ the ordered
upwind method proposed in [18] and [20] for computing the
solutions of Eikonal equation and the PDE (30). This method
has a computational complexity of O(N lnN) where N is the
total number of the cells in the domain Ω. Figure 1 represents
the river map which spans an area of 800m× 600m. There
are three moving obstacles traveling in the river environment
as seen in Figure 1. The trajectories of these obstacles are
chosen so that a collision will occur if the vehicle does not
account for the trajectory of the obstacles. The on-board
sensor can detect them within 60 meters range. We assume
that as soon as the moving obstacles enter the detection
range, the ASV immediately knows their trajectories. At
any time t, if a cell is within 9 meters around the moving
obstacles, the cost function g(ξξξ , t) = 7. Otherwise, g(ξξξ , t) =
0.2. Thus, we set the lower bound G1 = 0.2. We choose
the planning horizon H = 50 secs, the maximum speed
vmax = 5 m/s and γ = 1. Since the condition (31) is satisfied
at each horizon, as shown in Figure 2, the ASV eventually
reaches the target.

In order to illustrate how to choose the end point at each
horizon as well as how the ASV manages to avoid the
moving obstacles, we discuss the receding horizon planning
process corresponding to the ASV’s motion shown in Rect-
angle 1 in Figure 2. Note that the solution of the Eikonal
equation (27) over the global domain serves as the terminal
cost in the receding horizon control formulation (28). When
we replan the path over each horizon, we compute the
solution of the PDE (30) over a small, local domain as shown
in Figure 3. Due to the discussion in Remark 5, we terminate
the computation of the local PDE as soon as its solution
is higher than γG1vmaxH. Thus, as shown in Figure 3, the
PDE’s solutions to the areas corresponding to the moving
obstacles have not been computed before the termination of
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MO 3

MO: Moving Obstacle

Fig. 1. The riverine map and moving obstacles.

Rectangle 1

Rectangle 2

Fig. 2. The planned trajectory of the ASV plotted onto the map.

computing the local PDE because they will be higher than
γG1vmaxH. When the ASV searches for the new path, it
automatically avoids going through these areas. To choose
the end point for the planning horizon, we check whether
the condition (31) holds at the end of the planning horizon
as shown in Figure 3. To accommodate numerical errors,
we relax the condition (31) so that if the difference between
the two hand sides of (31) is smaller than a given threshold
we say that the condition (31) holds. In this example, the
global level set Q∗ is only computed once at the beginning
the mission. In practice, it would be computed as needed
to ensure that the global level-set adequately represents the
environment. This idea is clarified and discussed in detail in
[22].
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