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Abstract— Bilateral Control by States Convergence is a novel
and little exploited control strategy that has been successfully
applied to the teleoperation of robotic manipulators using
SISO control. Based on the state space representation, the
main philosophy of this control strategy consists in achieving
convergence of states between the master and the slave, by
setting the dynamical behavior of the master-slave error as
a states-independent autonomous system. This paper presents
a generalization of this strategy to MIMO systems, with
time delay in the master-slave communication channels. It is
demonstrated how the feedback gains required by the state
convergence control schema can be found by solving a set of
((m × n) + (m × m) + n ) nonlinear equations for a system with
m inputs, n states and m outputs. Unlike previous research,
which has been applied only to manipulators considering 1-
DOF for the states-convergence control loop, the extension to
the general MIMO case has allowed to apply the technique to
the teleoperation of a 2-DOF helicopter. A decoupling network
and states-feedback are used for local control, while the states-
convergence control manages the bilateral issues. Simulation
results are presented, showing a satisfactory performance of
the control strategy.

I. INTRODUCTION

A teleoperation system consists in the remote control of

a slave robot, which must follow the actions executed by a

master robot. Usually, the master robot is manipulated by a

human operator, this feat allows to exploit the best perfor-

mance of every part of the system, by fusing the intelligent

planning of the human operator with the advantages of a

robotics system, in terms of precision, security, and control.

One of the most studied problems in teleoperation has to do

with the effects of the time delay that takes place between

master and slave in the communications channels. Several

techniques have been developed aiming to overcome this

important problem, as well as extensive research has been

done in the aspect of control, where stability is one of the

key issues.

The content of this paper is organized as follows: section

II presents a wide review of the state of the art in bilateral

control by states convergence, which is useful to specify

the context of the problem and its motivation. In Section

III, the mathematical core of the proposed MIMO control

scheme with time delay is developed. An application of this
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control strategy for the teleoperation of a 2-DOF helicopter

is designed in section IV, whereas results are presented in

section V. Conclusions are stated in section VI.

II. CONTROL BY STATE CONVERGENCE: STATE

OF THE ART

Control by state convergence was firstly presented in

[1], considering teleoperation systems in which a small

time delay affects the master-slave communication channels.

Starting from the state space representation of both the

master and the slave systems, the method is based on the

idea of wanting to achieve convergence between the states

of both systems, through the use of feedback gains that must

satisfy certain state-convergence conditions. Fig.1 shows the

diagram of the system that was proposed in [1], where the

mathematical framework for the control by states conver-

gence was established, and a set of needed (3n+1) equations

were derived in order to establish the control parameters

{Km ∈ R
1×n, Ks ∈ R

1×n, Rs ∈ R
1×n, G2 ∈ R

1×1}
for the SISO case.

Fig. 1. Control scheme by states convergence for a teleoperation SISO
system with time delay

The aforementioned state-convergence conditions arise

from the (n + 1) constrains that must be specified in order

to design the error between states as an autonomous system,

whose dynamical response does not depend on Xs, nor on

Xm. Also, this method allows to set the dynamical behavior

of the error between states using n equations, and the slave

dynamics with other n equations. In Fig.1, both systems are

controlled by states feedback using {Km, Ks}, while the

other control parameter {Rs} is located in the feedback path
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from the master to the slave, and the gain G2 is responsible

for the treatment of the reference signal, which is usually

generated by the operator of the master robot. {Rm} is used

in this case to reflect the environment force sensed by the

slave to the master.

In [2] authors presented a first approach to the analysis

of stability of the controlled system with time delay, and an

analysis of its robustness through the simulation of a range

of values for the parameters of the system. Also, authors

presented experimental results using a teleoperation system

of 1-DOF, i.e. a SISO system with 2 states. This technique

was originally applicable to systems in which the master

and the slave can be modeled by differential equations of

the same order, restriction that was overcome in [3] using a

discrete approach and concluding that the order of the smaller

discrete transfer function (DTF) must be increased up to the

order of the other DTF. Simulation results using the discrete

approach are presented in [4] for a manipulator of 6-DOF,

however, the states-convergence control is applied only to

1-DOF, being the end effector bilaterally controlled.

Other improvements that have been developed have to do

with the transparency of the system, which, in the context of

bilateral control systems, means that the impedance reflected

upon the operator of the master is equal to the impedance

of the environment of the slave. In [5], the set of equations

required to include the transparency condition in the schema

of control by state convergence, is theoretically derived,

whereas in [6] authors presented a suitable modification of

the schema and showed results of simulations of a 1-DOF

system.

A problem arises when having a master and slave with

different kinematics because the states-convergence method-

ology is designed for equal master-slave robots. A solution

is figured out in [7] by including a virtual master, who works

as a fictitious master simulating the existence of a real one

which has the same model and kinematics of the real slave,

and interconnecting them as needed by states-convergence

control. Once the classical schema has been set between

the virtual master and the real slave, a transformation is

performed from the kinematics of the real master to the

kinematics of the virtual master, thus having an increased

schema, were the virtual master is transparent to the operator.

In case of having a multiple DOF robot, [7] proposes to

set a state space model for each joint, and apply states

convergence control to each DOF independently.

A study of the effects of the zeros of the system is

presented in [8], where authors showed satisfactory results

of the experimentation with a test bench of 1-DOF, and

pointed out that in the case of an industrial manipulator, a

control system must be designed for each DOF, i.e. solving

the MIMO control problem through the implementation of

a SISO controller for each input-output pair. This is known

as decentralized MIMO control, however, it is well known

from the classical control theory that this approach has a

good performance only when the system does not present

coupling. In those more complex cases as in coupled MIMO
systems, it becomes necessary to extend the theory in order

to be able to apply control by states convergence.

III. CONTROL BY STATE CONVERGENCE FOR

MIMO SYSTEMS WITH TIME DELAY

The proposed control strategy for MIMO systems is com-

pounded into two levels of control: (1) local control for both

master and slave sides, which takes care of the coupling prob-

lems through a decoupling network and uses states feedback

to stabilize and control the robot; and (2), a bilateral control

based on the states convergence approach. The complete

diagram of the proposed control is shown in Fig.2, where

the local control, consisting of the decoupling network and

the states feedback are framed as master and slave, while

the bilateral control is represented by the interconnection

between both systems.

Fig. 2. Proposed control scheme for MIMO systems

The local control must be designed as the first step.

The decoupling network is based on the integral decoupling

technique presented in [9]. In order to make this paper self

contained, the methodology for the design of the decoupling

network is briefly presented:

• The plant must be stable. Otherwise, it will be necessary

to replace the poles of the plant through the use of states

feedback. This is the purpose of Km1 and Ks1 in Fig.2.

• Denoting Ci as the i-th row of the state space matrix

C, the derivative of every output of the system can be

written as (1)

ẏi = CiẊ = CiAX + CiBU (1)

If CiB is zero, the method developed in [9] indicates

to derive (1) until obtain a non null relation between yi

and U . It becomes necessary to perform this procedure
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for each output yi, being the decoupling index di the

number of derivatives performed for the output yi.
• Finally, it is obtained a equation of the form,⎡

⎢⎢⎣
y1

d1

.

.

.

ym
dm

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

C1Ad1

.

.

.

CmAdm

⎤
⎥⎥⎦ x +

⎡
⎢⎢⎣

C1Ad1−1B

.

.

.

CmAdm−1B

⎤
⎥⎥⎦ u (2)

or in its compact form,

ỹ = Mx + Nu (3)

where M and Ni = N−1 are the parameters of the

decoupling network.

• Notice that the design procedure requires the existence

of N−1, however, there is no such way of assuring its

existence before performing the complete calculation.

A decoupling network has been inserted in both the

master and in the slave using {Mm, Nim} and {Ms, Nis},

respectively, as seen in Fig.2. The other part of the local

control is states feedback, which has been included using

Km2 and Ks2. These gains can be used to replace the poles

of the decoupled system. In order to include the local control

(decoupling network and states-feedback) in the state space

model, the corresponding matrixes are defined as:

Am = A − BKm1 − BNimMm − BNimKm2

Bm = BNim

Cm = C

As = A − BKs1 − BNisMs − BNisKs2

Bs = BNis

Cs = C (4)

Considering the master and the slave as MIMO systems,
with n states, m inputs and m outputs, the state space models
are specified in (5):

Ẋm = AmXm + BmUm

Ym = CmXm

Ẋs = AsXs + BsUs

Ys = CsXs (5)

Using this schema and taking into account the number of
states and inputs-outputs of the systems, which must be equal
for both master and slave, the dimensions of the variables
involved in the problem are:

Am, As ∈ R
n×n

Bm, Bs ∈ R
n×m

Cm, Cs ∈ R
m×n

Rm, Rs ∈ R
m×n

G2 ∈ R
m×m

Km1, Km2, Ks1, Ks2 ∈ R
m×n

(Decoupling parameter) Mm, Ms ∈ R
m×n

(Decoupling parameter) Nim, Nis ∈ R
m×m

Um and Us are the external control signals of the master

and the slave, respectively. These control signals are deter-

mined by the proposed feedback interconnection between

both systems for control by states convergence, which is

shown in Fig.2. Using a first order Taylor expansion for the

delayed signals, with time delay T , Um and Us are:

Um = RmXs − TRmẊs + Ref

Us = RsXm − TRsẊm + G2Ref − TG2
˙Ref (6)

Considering the reference in steady state, i.e. ˙Ref = 0,
and substituting (6) in (5), we could obtain a new system
with states Xs and Xm, as shown in (7)[

Ẋs

Ẋm

]
=

[
SAs SBsRs

MBmRm MAm

] [
Xs

Xm

]

+

[
SBsG2
MBm

]
Ref (7)

or more compact:[
Ẋs

Ẋm

]
= Â

[
Xs

Xm

]
+ B̂ Ref (8)

where M = (In×n+TBmRm)−1, S = (In×n+TBsRs)−1.

Applying the following linear transformation to (8),

[
Ẋs

Ẋe

]
=

[
I 0
I −I

]
Â

[
I 0
I −I

] [
Xs

Xm

]

+

[
I 0
I −I

]
B̂ Ref (9)

it is possible to obtain another state space representation of
a system whose states are Xs and Xe = Xs−Xm, as shown
in (10). This last state Xe is the error between the states of
the master and the slave.[

Ẋs

Ẋe

]
=

[
Â11 + Â12 −Â12

Â11 − Â21 + Â12 − Â22 −Â12 + Â22

] [
Xs

Xe

]

+

[
B̂1

B̂1 − B̂2

]
Ref

[
Ẋs

Ẋe

]
= Ã

[
Xs

Xe

]
+ B̃ Ref (10)

The system that has been obtained in (10) contains the

key information for control by states convergence that will

be used in the following sections for deriving the design

conditions.

A. Master-Slave Error

From (10) it is determined that:

Ẋe = (Â11 − Â21 + Â12 − Â22)Xs

+(−Â12 + Â22)Xe

+(B̂1 − B̂2)Ref (11)

where it is observed that if,

Ã21 = 0 = Â11 − Â21 + Â12 − Â22 (12)

B̃2 = 0 = B̂1 − B̂2 (13)

the error will evolve as an autonomous system, independently

of Xm and Xs.

B. System Dynamics
The system dynamics can be studied using the transfer

function

G(s)2n×m = C2n×2n{sI2n×2n − Ã2n×2n}−1
B̃2n×m (14)

G(s)2n×m =
1

det[sI2n×2n − Ã2n×2n]
× C2n×2n (15)

×
[

sIn×n − Ã22n×n
Â12n×n

[0]n×n sI − Ã11n×n

]

×
[

Bmn×m

[0]n×m

]
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where the presence of the null matrixes is due to the

conditions in (12) and (13). Therefore the characteristic

equation of G(s) is det[sI2n×2n − Ã2n×2n], and using the

Leibnitz formula for the determinant of a square matrix, it

can be rewritten as:

det[sIn×n − Ã11n×n ] det[sIn×n − Ã22n×n ] = 0 (16)

where each determinant is a polynomial of n-th order with

respect to s. The first determinant fixes the slave dynamics,

while the second one determines the error dynamics.

C. Design conditions for MIMO case

Conditions (17) and (18), previously derived, must be

obligatory satisfied in order to achieve state convergence,

while (19) and (20) can be used to manipulate the slave and

error dynamics depending of the design criteria, by selecting

the coefficients {an−1, . . . , a1, a0} and {bn−1, . . . , b1, b0}
that provides the desired poles.

Ã21 = 0 = Â11 − Â21 + Â12 − Â22 (17)

B̃2 = 0 = B̂1 − B̂2 (18)

det[sIn×n − Ã11n×n
] = s

n
+ an−1s

n−1
+ . . . + a1s + a0 (19)

det[sIn×n − Ã22n×n
] = s

n
+ bn−1s

n−1
+ . . . + b1s + b0 (20)

When including the local control ((4) and (7)) in the set of

conditions (17), (18), (19) and (20), we obtain the following

set of equations,

(In×n + TBsRs)
−1

(As + BsRs) (21)

−(In×n + TBmRm)
−1

(BmRm + Am) = [0]n×n

(In×n + TBsRs)
−1

BsG2 − (In×n + TBmRm)
−1

Bm = [0]n×n (22)

det[sIn×n − (In×n + TBmRm)
−1

Am + (In×n + TBsRs)
−1

BsRs] (23)

= s
n

+ an−1s
n−1

+ . . . + a1s + a0

det[sIn×n − (In×n + TBsRs)
−1

(As + BsRs)] (24)

= s
n

+ bn−1s
n−1

+ . . . + b1s + b0

Up to this point, all the required equations have been de-

rived for the design of the control by states convergence pro-

posed in Fig.2. Due to the nature of the conditions, (21), (22),

(23) and (24) constitutes a set of ((m × n) + (m × m) + 2n ),
where the state-convergence conditions (21) and (22) con-

tribute with (m × n) and (m × m) equations, respec-

tively, while (23) and (24) contribute with n equations

each one. Notice that when m = 1, which is the SISO
case, the number of equations is reduced to (3n + 1),
fact that coincides with the results obtained in [1]. On the

other hand, the set of control parameters is compounded

by {Km2 ∈ R
m×n, Ks2 ∈ R

m×n, Rm ∈ R
m×n,

Rs ∈ R
m×n, G2 ∈ R

m×m}. This paper proposes the next

solution to the problem that has been formulated:

• Fix Km2 and Ks2 when designing the local con-

trol, and then solving (21), (22) and (23) for

Rm ∈ R
m×n, Rs ∈ R

m×n, G2 ∈ R
m×m}, which

supposes an excess of ((m − 1) × n) parameters to

be fixed, this issue can be solved, without losing gen-

erality in the solution, by arbitrarily setting to zero

( ( m − 1 ) ×n) elements into the variables’ matrixes.

Notice that this is valid for m ≥ 1, which is always

satisfied by a MIMO system. The final location of the

master and slave poles must be reviewed in order to

assure the stability of the system.

There are other ways of finding a solution to this

set of equations, however it is out of the scope of

this paper due to the complexity of the nonlinear equa-

tions that arise when solving the four conditions si-

multaneously for {Ks2 ∈ R
m×n, Rm ∈ R

m×n,
Rs ∈ R

m×n, G2 ∈ R
m×m}, in which case, an excess

of (2(m− 1)×n). The methodology proposed presents less

complicated nonlinear equations, that allows to establish the

desired dynamics of the error between master-slave states.

IV. TELEOPERATION OF A 2-DOF HELICOPTER

The MIMO control strategy was assessed by applying it to

the 2-DOF helicopter commercial platform of QUANSER, as

the one showed in Fig.3. This platform counts with two DC

motors mounted at the two ends of a rectangular frame and

drive two propellers. The controlled variables are the pitch

angle θ, and the yaw angle ψ, while the control signals are

the voltages of the two DC motors.

Fig. 3. 2-DOF Helicopter

The state space model provided by QUANSER is in (25),
with four states (n = 4): pitch angle θ, yaw angle ψ, pitch
angular velocity θ̇, and yaw angular velocity ψ̇.

ẋ =

⎡
⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 1

0 0 − Bp

Jeq,p+mhelil2cm
0

0 0 0 − By

Jeq,y+mhelil2cm

⎤
⎥⎥⎥⎥⎦ x

+

⎡
⎢⎢⎢⎢⎣

0 0
0 0

Kpp

Jeq,p+mhelil2cm

Kpy

Jeq,p+mhelil2cm
Kyp

Jeq,y+mhelil2cm

Kyy

Jeq,y+mhelil2cm

⎤
⎥⎥⎥⎥⎦ u

y =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦ x

(25)

where mheli is the mass of the helicopter, l is the distance

from the yaw axis to center of mass of the helicopter,

Jeq,p and Jeq,y are the equivalent moments of inertia with

respect of the pitch and yaw axis, respectively; and Kab
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denotes the thrust torque constant acting on a axis from b
motor/propeller, being a and b the pitch and yaw depending

on the case.

The system presents coupling between θ and ψ, as it can be

concluded from the step responses when the system is only

stabilized through states feedback. The step response in this

situation is presented in Fig.4, from which it can be noticed

that the step for the pitch angle at t = 10sec affects the

yaw angle, and viceversa in the case of the step for the yaw

angle at t = 20sec. Notice that the cross effect of θ over ψ is

bigger than the contrary effect. This problem is solved using

the decoupling network designed for this system, which has

decoupling index d = 2, for both outputs.
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Yaw Ref.

Fig. 4. Coupling tests of the stabilized system

Due to its MIMO nature and the coupling that is usually

present in aerial vehicles, this test bench has been considered

a good platform for testing the control strategy, moreover, it

has been considered a contribution to the state of the art in

control by states convergence, because it has been applied in

the past only to manipulators and using 1-DOF.

Several tests were performed in simulation using

Matlab�/Simulink�, where the master is the simulation of

the state space model of the 2-DOF helicopter, while the

slave is a simulation of its nonlinear model. This structure

for the simulation was designed in order to make the sim-

ulation closer to the real teleoperation, in which the human

operator could use a joystick, and then perform a kinematics

transformation to a virtual master (simulation of the 2-DOF

helicopter) which is similar and is coupled to the real slave

through the schema of state convergence control, as proposed

in [7] and illustrated in Fig.5. The following section shows

the results that correspond to the framed section marked

as Bilateral Control by State Convergence in Fig.5, with a

simulation of the slave; this section of the diagram represents

the main theory presented in this paper.

V. RESULTS

The goal of the tests was to observe the response

of the teleoperation system in different situations. The

first result presented in Fig.6 correspond to a master-

slave following case, in which the operator changes

the reference of the system for both pitch and yaw

angles. Notice that the initial condition of the platform

is always {θ = −0.75rad, ψ = 0rad}, due to the

localization of the center of mass of the helicopter

with respect to the yaw axis. In Fig.6(a) is presented

Fig. 5. Teleoperation schema when having master-slave with different
kinematics

the response of the yaw and pitch angle, when the

reference is a steps sequence for pitch of the form:

{−0.3rad for [0sec ≤ t ≤ 15sec], 0rad for [15sec <
t ≤ 25sec], 0.5rad for [25sec < t ≤ 70sec]},

while the yaw angle reference is of the form:

{0.6rad for [0sec ≤ t ≤ 25sec], −0.5rad for [25sec <
t ≤ 35sec], 0.3rad for [35sec < t ≤ 70sec]}. The time

delay is 1msec. This experiment is useful to show that the

decoupling network has eliminated the cross effect that the

helicopter presented in Fig.4.
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Fig. 6. Master-slave following case

On the other hand, the master-slave tracking task was

performed satisfactorily. Fig.6(b) presents the response of

the master-slave states error, which has shown convergence

to zero in steady state, as expected from conditions (17)

and (18), that were satisfied by the numerical method-based

solution up to a error tolerance of 10−18.

In order to give a better illustration of the time delay effect,

the system was excited with a pulse train for pitch angle, in

presence of a 10msec time delay. The response is showed

in Fig.7, with a zoom that allows to observe the delayed

tracking.

Besides the tracking tests, it is important to analyze
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Fig. 7. Test

the effects of disturbances caused by the environment of

the slave. For this reason, a simulation was performed in

which the reference for pitch angle is {0rad for [0sec ≤
t ≤ 15sec], 0.5rad for [15sec < t ≤ 40sec]},

while the yaw angle reference is {0rad for [0sec ≤
t ≤ 5sec], 0.3rad for [5sec < t ≤ 40sec]}.

Time-limited disturbances in the slave were added as

follows:{0.1rad for [5sec < t ≤ 6sec]} for yaw angle, and

{0.1rad for [25sec ≤ t ≤ 26sec]} for pitch angle. Results

are shown in Fig.8.
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Fig. 8. Response of the system under disturbances in the environment of
the slave

Based on Fig.8(a), notice how the disturbances in the

environment of the slave directly affects the slave output,

as well as its states (Fig.8(b)), and are reflected to the

states of the master. The result obtained shows major impact

in the slave device than in the master, having the same

waveform and duration, but less amplitude in the master side.

The transparency of the bilateral control system could be

improved by developing its conditions for the MIMO case.

VI. CONCLUSIONS

The generalization of the theory of bilateral control by

states convergence to MIMO systems has been presented,

considering the coupling problem and the time delay in the

master-slave communication channels. The proposed strategy

includes a local control compounded by a decoupling net-

work and control by states feedback, and a bilateral control
compounded by a set of feedback connections between the

master and the slave that allow to achieve states convergence,

so that the slave can follow the master, in spite of time delay

and disturbances that could affect the control system. In this

paper, the local control is based on a decoupling technique,

but it can be designed using another control strategy.
A set of four conditions was presented, two of them must

be obligatory satisfied since they guarantee that the error

between master-slave states will evolve as an autonomous

system, while the other two conditions are related to the dy-

namics of the slave and the error, and can be used any which

way the designer selects. These four conditions are similar

to those in the SISO case because they are derived directly

from the state convergence core, however, when including

the information about the control signals and the dimensions

of the systems, a set of ((m × n) + (m × m) + 2n ) nonlinear

equations are obtained, which comes from the proposed m-

inputs, m-outputs, n-states MIMO schema. An application to

the teleoperation of a 2-DOF helicopter is developed through

simulation. The decoupling network and the states feedback

local control were designed from the state space model

of the 2-DOF helicopter, whereas the control parameters

for states convergence were obtained by solving a set of

equations for the autonomous evolution of the error and

the error dynamics, using numerical methods. Simulations

exhibit satisfactory performance. This work has potential

for future applications in the teleoperation of unmanned

aerial vehicles (UAV), and future work will be focused on

experimentation with a real slave helicopter.
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