
An Online Algorithm for Constrained POMDPs

Aditya Undurti and Jonathan P. How

Abstract— This work seeks to address the problem of plan-
ning in the presence of uncertainty and constraints. Such
problems arise in many situations, including the basis of this
work, which involves planning for a team of first responders
(both humans and robots) operating in an urban environment.
The problem is framed as a Partially-Observable Markov
Decision Process (POMDP) with constraints, and it is shown
that even in a relatively simple planning problem, modeling
constraints as large penalties does not lead to good solutions.
The main contribution of the work is a new online algorithm
that explicitly ensures constraint feasibility while remaining
computationally tractable. Its performance is demonstrated
on an example problem and it is demonstrated that our
online algorithm generates policies comparable to an offline
constrained POMDP algorithm.

I. INTRODUCTION

Partially Observable Markov Decision Processes
(POMDPs) provide a broad and generalized framework
within which to formulate and solve planning problems
in uncertain environments. In these cases the planning
system must be capable of deciding when to take actions
that improve knowledge of the world and when to act
upon information that is already available. POMDPs are
particularly well-suited to making such trade-offs in a
way that maximizes the performance of the system [10].
However, the standard POMDP formulation does not allow
for the incorporation of hard constraints, such as fuel
constraints and path constraints.

This works enhances the standard POMDP by adding con-
straints, and proposes an online algorithm with finite look-
ahead for solving the constrained POMDP. This algorithm
consists of two parts - an offline approximate solution that
predicts whether a constraint-feasible solution exists from
each belief state, and an online branch-and-bound algorithm
that computes finite-horizon plans and uses the approximate
offline solution to guarantee that actions taken at the current
time will not make the constraints infeasible at some future
time beyond the planning horizon.

The rest of the paper is organized as follows. Section II
motivates the interest in constrained POMDPs as a technique
for planning for teams of first responders in the aftermath
of a Chemical, Biological, Radiological, Nuclear, Explosive
(CBRNE) incident. Section III provides a literature review of
the work done in POMDPs, online POMDPs and constrained
POMDPs. Section IV uses a simple example problem to
show that constraints cannot always be treated as large

This work was supported by the Office of Naval Research
Aditya Undurti is a PhD Candidate in Aeronautics and Astronautics,

Massachusetts Institute of Technology aundurti@mit.edu
Jonathan How is a professor in the Department of Aeronautics and

Astronautics, Massachusetts Institute of Technology jhow@mit.edu

penalties in a standard unconstrained POMDP. Sections V
and VI present the main contribution, the online algorithm
combined with an offline approximate solution to generate
constraint-feasible plans. Finally Section VII shows that
the algorithm presented generates constraint-feasible, high-
reward plans in the example problem that are comparable in
performace to the offline constrained POMDP algorithms.

II. MOTIVATION

One of the primary advantages of autonomous vehicles
is that they can be deployed in situations where there are
potential dangers for human agents. One such situation is
a Chemical, Biological, Radiological, Nuclear or Explosive
(CBRNE) incident in an urban area [1]. Such a situation
is challenging because it is dynamic and uncertain [2]. The
number of victims that need to be rescued and their locations
might not be known, or are known only approximately.
Spreading fires and contaminants could impact the numbers
of victims and their locations even as the search and rescue
mission is underway. Furthermore, the victims might be
mobile or secondary devices might go off - both being
unanticipated factors that must be accounted for in real-
time during the mission. Also, the humans on the team of
responders themselves have to stay safe. The team cannot
risk sending first responders to areas that are suspected
of having contaminants, thus imposing constraints on the
mobility of some of the agents. Therefore, responding to a
CBRNE incident requires planning and team coordination
in a dynamic, uncertain environment in the presence of
constraints.

Planning for a heterogeneous team of first responders in
a CBRNE search and rescue problem is challenging because
the environment is partially observable, stochastic, dynamic
and imposes constraints. A planning algorithm for the team
of first responders must therefore be able to plan in a partially
observable environment while also guaranteeing that hard
constraints will be satisfied at all times. Furthermore, the
tasks and missions to be performed are likely to change
as the incident response progresses. Therefore the algorithm
must be fast enough to recompute plans. In other words,
the planning algorithm must not only plan with partial
information and guarantee hard constraints, but also be fast
enough to compute plans online. This complex planning
problem serves as the motivation for fast online algorithms
for solving constrained POMDPs.

III. LITERATURE REVIEW

A solution to a POMDP consists of a policy π which is
defined as a mapping from the belief space to actions, and

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 3966

a value function Vπ associated with that policy and defined
over the belief space. The value function gives the expected
reward of executing the policy π from each point in the belief
space. However, a major disadvantage of POMDPs is their
computational complexity [10]. Several point-based value
iteration methods exist for finding approximate solutions, for
example Perseus [8] and SARSOP [9]. Other approximate
methods include Q-MDP [4] which accounts for uncertainty
in the current state but not in future states, and therefore
provides an upper bound on the true value function. Braatz
et al. have worked on incorporating constraints into POMDP
value iteration [3]. The incorporation of constraints increases
the computational complexity and involves solving a Mixed
Integer Linear Program (MILP) on every iteration. These
algorithms are all offline algorithms, i.e. they compute a
policy based on a model before execution time, and at
execution time simply use the previously-computed policy
[10]. Thus most computation is done offline.

Several online algorithms for fast computation of approx-
imate policies have been developed, for example Real-Time
Belief Space Search (RTBSS) [7] and rollout [6]. Several
other algorithms are summarized in a review paper by Ross et
al. [5]. Online algorithms compute the approximate expected
value of executing an action in the current belief space by
searching through a finite depth AND-OR tree with actions
and observations as the branches and belief states as the
nodes. The estimated value-to-go from each of the leaves
at the end of the tree is estimated with the approximate
offline solution obtained previously. Online algorithms are
well-suited to the problem being considered because they
can quickly recompute plans in real time. However, when
applying online algorithms to a problem with constraints,
care needs to be taken to ensure that actions being executed
currently will not lead to constraint infeasibility at some time
beyond the planning horizon. This paper presents an online
algorithm to solve constrained POMDPs while providing
guarantees that the constraints will remain feasible.

IV. PROBLEM STATEMENT

As stated above, this work seeks to address the problem
of using online algorithms to solve a constrained POMDP. A
constrained POMDP is defined as the tuple <S, A, Z, R, T ,
O, C>, where S is the state space, A is the set of actions, Z
is the set of observations, R(s, a)∀s ∈ S, a ∈ A is the reward
function, T (s′|s, a)∀s′, s ∈ S, a ∈ A is the state transition
model, and O(z|s)∀z ∈ Z, s ∈ S is the observation model.
C(s)∀s ∈ S is the constraint model, and the value it returns
is defined as the constraint penalty. The constraint penalty
is defined as follows. If state s is disallowed for the system,
i.e. violates a constraint, C(s) = 1, and 0 otherwise.

With these definitions, we can state that the objective is to
compute a policy π∗ to maximize the cumulative expected
reward while keeping the expected constraint penalty below
α, i.e.

π∗ = arg max
π

E

[
T∑
t=0

γtR(st, at)

]
(1)

s.t. E

[
T∑
t=0

C(st)

]
≤ α (2)

Since the constraint penalty is always greater than 0,
E
[∑T

t=0 C(st)
]
≤ 0 if and only if C(st) = 0 ∀t. Thus by

setting α = 0, we can impose hard constraints. By setting α
to a value between 0 and 1, we can specify the probability
with which we want constraints to be enforced.

Two distinct approaches to solving the above constrained
POMDP exist in the literature. Each of these methods are
briefly discussed below.

A. Constraints as Penalties

The first is to convert the constraint penalty into a large
negative reward. Thus a new reward function is defined as

R̂(st, at) = R(st, at)−MC(st) (3)

where M is a large positive number. This new reward
function R̂(st, at) is used to solve the standard unconstrained
POMDP < S,A,Z, R̂, T,O >. Varying the value of M can
make the policy more risky or more conservative. However,
a counter example presented below and shown in Figure 1
illustrates that an M value does not always exist for all risk
levels.

An agent starts in state s1 at time 0, and the goal is to
reach state s3 at time 2 with a probability of at least 0.9.
The agent can take two actions in states s1 and s2 - a walk
action that reaches the goal state with probability 1, and a
hop action that reaches the goal state with probability 0.9
and the absorbing state s4 with probability 0.1. The hop
action is therefore rewarding but risky, while the walk action
is safe but unrewarding.

Since s4 is an absorbing state, safisfying the goal is
impossible once the agent falls into state s4. Therefore
we would like to prevent the agent from entering state s4
by imposing the constraint penalty M on that state. By
inspection, the optimal policy π∗ corresponding to a risk
level α = 0.1 is to hop in state s1 but walk in state s2. It
can be shown that hop is chosen as the best action from
state s2 for M < 900, but walk is chosen as the best
action in state s1 for M ≥ 990. There is no value of M for
which the optimal policy is obtained - the planner switches
between being too conservative (only walks) to too risky
(only hops). The intent of this simple example is to illustrate
that incorporating constraints as negative penalities does not
always yield good policies.

B. Constrained POMDP Value Iteration

A second approach is to explicitly account for the con-
straint and compute a policy offline [3]. This approach main-
tains two value functions - VR(s) associated with the reward
function, and VC(s) associated with the constraint penalty.
Isom, Meyn and Braatz present a modification to POMDP
Value Iteration to obtain a policy for the constrained POMDP.
However, this algorithm is computationally demanding -
value iteration for unconstrained POMDPs becomes com-
putationally expensive as the size of the problem grows, and

3967

s1 s2

Hop Hop

Walk

100 0.9

s3
Walk

0.99

s4

0.1 0.01

Fig. 1: A counter example to show that a penalty value
corresponding to the optimal policy does not always exist

the incorporation of constraints adds to the complexity by
requiring that a Mixed-Integer Linear Program (MILP) be
solved in every iteration.

The shortcomings of the two approaches to solving con-
strained POMDPs motivates the development of a fast, online
algorithm for solving constrained POMDPs while explicitly
accounting for the constraints. The proposed solution tech-
nique is presented in the next section.

V. PROPOSED SOLUTION

The proposed solution to the constrained POMDP defined
in Equations 1 and 2 is to use an online forward search to
optimize the reward and check for constraint feasibility upto
a horizon of length D. Constraint feasibility for times beyond
D is ensured by using a constraint-penalty-to-go estimate
that is computed offline. The solution requires two quantities
to be tracked - the reward R and the constraint value C. For
this reason, we maintain two separate value functions - one
associated with the reward R(s, a) which we call VR(s) and
another associated with the constraint value C(s, a) which
we call VC(s). The algorithm presented has two components
- an offline component where an approximate solution for
VC is obtained, and an online component where the offline
estimate for VC is refined and VR is computed over the finite
horizon to select the best action.

A. Offline Constraint Penalty Estimate

The overall goal of the planner is to maximize the expected
reward obtained while keeping the constraint penalty below
a threshold, in this case 0. In the offline component of the
algorithm, we solve for a policy π∗c that will minimize the
constraint penalty. If the minimum constraint penalty from a
certain state is below the threshold, in this case ≤ 0, we can
guarantee that there exists at least one action in that state
(the action associated with the policy π∗c) that will satisfy
the constraint. During the online portion of the algorithm
(described in detail the next section) we use this guarantee
to ensure constraint feasibility for times beyond the online
planning horizon.

Therefore, we first obtain the best constraint penalty
possible, UC(sv), by solving the following unconstrained
optimization problem:

UC(sv) = min
π
E

[
T∑
t=0

C(st)

]
(4)

If, for any state s, UC(s) = 0, then there exists at least one
policy (the optimal policy π∗c that solves problem 4) that
guarantees that starting from s, the constraints will never
be violated. In solving the optimization problem shown in
Equation 4, we use a Point-Based Value Iteration (PBVI)
algorithm. Since PBVI provides an upper bound when mini-
mizing [5], we know that if the value for UC(s) returned by
PBVI remains ≤ 0, we can guarantee that the problem will
remain feasible if we start executing the computed policy π∗c
in state s.

B. Online Reward Optimization

During the online part of the algorithm, we compute the re-
ward and the constraint penalty for belief nodes encountered
within the planning horizon. The previously-obtained PBVI
upper bound on the constraint penalty is then evaluated at
the leaves of the tree to ensure constraint feasibility beyond
the planning horizon.

Algorithm 1 is the main online planning algorithm. The
inputs to this algorithm are the current belief state bc,
the planning horizon length D, and the upper bound UC
on the constraint value function VC . The current belief
state is initialized to the initial belief b0 (line 2) and the
forward search tree contains only the current belief node.
The planning algorithm then begins the cycle of planning
and executing (lines 4 and 5). First, the function Expand
is called on the current belief node. This function, shown in
Algorithm 2, builds a tree of depth D and computes the best
action to execute. It is discussed in more detail in the next
paragraph. Once the action is executed and a new observation
is received, the current belief is updated [5] (line 8) as

bt(s′) = τ(bt−1, at−1, zt)(s′)

=
O(zt|s′)

∑
s∈S T (s′|s, a)bt−1(s)

P (zt|bt−1, at−1)
(5)

P (z|b, a) =
∑
s′∈S

O(z|s)
∑
s∈S

T (s′|s, a)b(s) (6)

Once the belief is updated, the Expand routine is again
called on the most current belief. This cycle (lines 5-8) is
repeated until execution is terminated.

When the Expand subroutine is called with a depth of
0, i.e. if the belief node on which the function has been
called is a leaf node, the function simply returns the offline
constraint penalty approximation UC (lines 3-4). For nodes
that are not leaf nodes, the algorithm generates all possible
successor nodes τ(b, a, z) by looping through all possible
actions (line 10) and observations. Any successor node that
1) has a VR value that is lower than the best VR found so far
in the tree, or 2) that does not satisfy the constraints, is not
considered (line 10). For those nodes that do satisfy these
criteria, the Expand routine is called recursively to get the
expected reward value and the upper bound on the constraint
penalty for the successor nodes. The reward is propagated
from the successor nodes to the current node according to

LT (b, ai) = RB(b, ai) + γ
∑
z∈Z

P (z|b, ai)LT (τ(b, a, z))

3968

Algorithm 1 Pseudocode for an online algorithm to solve
constrained POMDPs

1: Function ConstrainedOnlinePOMDPSolver()
Static:
bc : The current belief state of the agent
T : An AND-OR tree representing the current search
tree
D : Expansion Depth
UC : An upper bound on VC

2: bc ← b0
3: Initialize T to contain only bc at the root
4: while ExecutionTerminated() do
5: Expand(bc, D)
6: Execute best action a for bc
7: Receive observation z
8: bc ← τ(bc, a, z)
9: Update tree T so that bc is the new root

10: end while

The upper bound on the constraint is propagated according
to the equation

C(b, ai) = CB(b, ai) + γ

[
max
z∈Z

UC(τ(b, a, z))
]

Notice that the upper bound on the constraint value is prop-
agated differently than the reward. CB(b, ai) shown above is
the immediate constraint value gathered by performing action
ai in belief b. This is then added to the maximum constraint
value over all possible observations. The max operator over
the observations ensures that the highest possible constraint
value is returned, thus ensuring that the C(b, ai) remains an
upper bound.

The action that provides the best reward VR is returned
as the best action to execute in the current node (lines 15
and 21). The constraint and reward values associated with
taking that action in the current node are also returned (line
14, 17 and 21), since these values have to be propagated to
the parent node.

The algorithm presented here is applied to a robot nav-
igation problem with constraints. First, it will be shown
that incorporating constraints as large penalties does leads
to policies that are either too conservative or too risky. We
will then show that the online algorithm proposed arrives
at the same solution as the constrained POMDP algorithm
presented in [3] but is less computationally expensive.

VI. EXAMPLE PROBLEM

0.9

0.05

0.05

Fig. 2: Vehicle dy-
namic model

The example problem considered is
a robot navigation problem with some
constraints. The dynamic model for the
agent is shown in Figure 2. When the
agent is given a command to move in a
certain direction, there is a probability
of 0.9 that it will move in the intended
direction, and a probability of 0.05 that
it will move in one of the two perpen-

Algorithm 2 The expand routine for solving a constrained
POMDP

1: Function Expand(b, d)
Static:
L(b), U(b), UC(b)

2: if d = 0 then
3: LT (b)← 0
4: C(b)← UC(b)
5: else
6: i← 1
7: LT (b)← −∞
8: C(b)← −∞
9: while i ≤ |A| and LT (b, ai) > LT (b) and C(b) ≤ 0

do
10:

LT (b, ai)← RB(b, ai) +
γ
∑
z∈Z P (z|b, ai)Expand(τ(b, ai, z), d− 1)

11:
C(b, ai)← CB(b, ai) +
γmaxz∈Z P (z|b, ai)Expand(τ(b, ai, z), d− 1)

12: if LT (b, ai) = max (LT (b), LT (b, ai)) then
13: C(b) = C(b, ai)
14: a∗ ← ai
15: end if
16: LT (b)← max (LT (b), LT (b, ai))
17: i← i+ 1
18: end while
19: end if
20: return a∗, LT (b), C(b)

dicular directions. In the case shown in Figure 2, when the
agent is commanded to move right, there is a probability of
0.9 that it will move right, probability of 0.05 that it will
move up and a probability of 0.05 that it will move down.

The environment used in the example is shown in Figure
3. The vehicle starts in location (1, 3), shown with S. There
are three locations where a reward can be acquired - locations
(5, 3) and (4, 4) give a high reward of 100, whereas location
(4, 2) gives a lower reward of 50. Furthermore, locations
(3, 3), (4, 3) and (4, 5) are constrained locations - the vehicle
is not allowed to enter these states with a probability of more
than 0.05, i.e. the constraint violation probability α ≤ 0.05.

It can be easily verified that a path through all the
reward locations violates the constraints with α > 0.05.
Two constraint-feasible paths, by inspection, are shown in
Figure 4. Both paths incur a constraint violation probability
of 0.05, since there is a probability of veering into location
(4, 3) during the transition out of location (4, 2). However,
the vehicle cannot proceed any farther, because any action
taken in location (5, 3) will lead to a greater probability of
constraint violation. We now show that even in this relatively
simple problem, modeling the constraints as negative rewards
will lead to either very conservative or very risky behavior.
We will also show that the proposed online algorithm with an
offline constraint-feasible approximate solution acheives high
performance in problems such as this example that require
operating close to constraint boundaries.

In a standard MDP formulation, constraints may be mod-

3969

S

100

50

100

(1, 1)

(5, 5)(1, 5)

(5, 1)

Fig. 3: The MDP problem set up

S

100

50

100

(1, 1)

(5, 5)(1, 5)

(5, 1)

Fig. 4: Constraint-feasible paths Fig. 5: The policy computed by MDP
value iteration when the constraint is
modeled as a high negative reward
leads to a very conservative policy
that fails to acheive high reward

Fig. 6: The policy computed by MDP
value iteration when the constraint
penalty is lowered

Fig. 7: The policy computed by MDP
value iteration when the constraint
is modeled as a low negative reward
leads to a policy that violates the
safety constraint

Fig. 8: The policy computed by the
online constrained solver. The solver
correctly recognizes that going right
from location (4, 2) is constraint-
feasible and yields high reward

eled as large negative rewards. For instance, in this case, we
give a reward of−5000 for entering any of the constrained
states. The resulting policy is shown in Figure 5. The vehicle
moves along the bottom, away from the constrained states,
until reaching (4, 1). At that point, the vehicle moves up into
(4, 2) to reach the reward of 50. However, after reaching
this state, the vehicle moves back into (4, 1). This action
is chosen because it is the only action that guarantees that
the vehicle will not enter one of the constrained states and
acquire the associated penalty. The vehicle decides that the
reward of 100 that awaits two steps away is not worth
the large negative reward that could be incurred if the
vehicle veers into the constrained location (4, 3). Due to this
conservative behavior, the planner fails to acheive the higher
reward in location (5, 3). It might seem that lowering the

constraint violation penalty is one potential solution to this
conservatism, but we show that lowering the penalty causes
the planner to switch from being too conservative to too
risky.

Figure 6 shows the outcome of lowering the constraint
penalty. Since the constraint violation penalty is lower, the
planner decides to follow a path adjecent to the two con-
strained states with the probability of a constraint violation
of 0.095. Lowering the penalty even farther leads to the
outcome shown in Figure 7. The planner assumes that the
reward at location (4, 4) (which is higher than the reward at
location (4, 2)) is now feasible, and thus switches to the top
path which is also constraint-infeasible.

This abrupt switch from conservative to risky is because
an MDP planner has only a single reward function that

3970

must capture both performance and constraint feasibility, and
therefore lacks the fidelity to accurately specify an acceptable
level of risk. This lack of fidelity becomes an important factor
in problems where high performance requires operating close
to constraint boundaries, as is the case in this example
problem. The online constrained MDP algorithm presented
in this work provides a general way to constrain risk while
optimizing performance.

The online algorithm presented in this work generates the
policy shown in Figure 8. The algorithm first generates a
conservative offline solution that minimizes the risk. The
conservative solution is a policy that minimizes the total
constraint penalty. This policy is the same as the conservative
policy shown in Figure 5. The online forward search algo-
rithm with a finite search horizon (which for computational
reasons was set to 3 in the current problem) uses this approx-
imate solution to identify that location (4, 4) is constraint-
infeasible. The forward search sees that a constraint-feasible,
high-reward path to (4, 2) exists and therefore begins execut-
ing this path. As the search horizon reaches state (5, 3) (for
a horizon of 3, this happens when the vehicle is in location
(4, 1)), the forward search recognizes that a path to the high-
reward location (5, 3) exists, and that path is also constraint-
feasible (since the risk of constraint violation is only 0.05).
The online planner therefore chooses to move right and claim
the reward at (5, 3). Thus the offline approximate solution
provides a conservative, constraint-feasible policy while the
online algorithm adjusts this policy for better performance.

VII. CBRNE URBAN RESCUE EXAMPLE

In this section, we apply the methods developed in the
previous sections to a more complex problem that captures
some features of a CBRNE search and rescue scenario. The
environment is shown in Figure 9. There are two agents, both
of which start in location (5, 8), shown as A and B. The
dynamics of these agents are the same as shown in Figure 2.
There are several locations where a reward can be acquired,
marked with RA (reward acquired if the location is visited by
Agent A) and RB (reward acquired if the location is visited
by Agent B) in Figure 9. The locations shown in red indicate
danger zones for Agent A, i.e. once Agent A enters one of
these zones, it can execute no further actions. In terms of
the motivating CBRNE scenario, Agent A can be viewed
as a human first responder and Agent B an autonomous
vehicle. The danger zones represent contaminated areas that
are dangerous for a human responder to enter, but can be
accessed by a robotic vehicle. The rewards correspond to
victims that need to be treated.

Agent A is not allowed to enter the danger zone with
a probability of more than 0.1, i.e. the constraint violation
probability α ≤ 0.1. However, the rewards acquired in the
danger zones are greater when visited by Agent A than
when visited by Agent B (RA > RB). Also, the rewards
RA and RB become 0 with a probability of 0.9 at time
T = 10. In other words, there is a strong incentive for
the agents to acquire all rewards before time T = 10. The
uncertainty in the vehicle dynamics is of the same order

A B

RA

RB

RA

RB

RA

RB

RA

RB

RA

RB

RA

RB

A B

RA

RB

RA

RB

RA

RB

RA

RB

RA

RB

RA

RB

Courtyard

1, 1 10, 1

1, 10 10, 10

Fig. 9: The MDP problem set up

of magnitude as the constraint violation probability, thus
making the interaction between the uncertain dynamics and
the constraints an important factor in computing policies.
Furthermore, the layout of the problem is such that acquiring
high rewards entails taking some risk, as would be expected
in a realistic CBRNE situation.

The two highest-reward paths are shown in Figure 10.
The highest reward is obtained by having Agent A enter
the danger zone and acquire a high reward, and using Agent
B to acquire all other rewards. However, it can be easily
seen that this policy violates the constraints with α > 0.1.
Therefore the highest-reward policy is constraint infeasible.
In the next section, we show that an MDP with relatively
small negative rewards for constraint violations leads to one
of these paths. Two constraint-feasible paths, by inspection,
are shown in Figure 11.

The optimal, constraint feasible paths for the agents are for
Agent B to gather the rewards located inside the danger zone,
and for Agent A to travel through the inner courtyard area
(which involves taking some risk) to reach the rewards on the
other side of the courtyard. The path around the courtyard
is suboptimal because it is longer. In the next section, we
will show that modeling the constraints as negative rewards
will lead to either very conservative or very risky behavior,
but fails to acheive an optimal balance, i.e. fails to maximize
the reward while meeting all constraints. Finally, in the last
section, we will show that the proposed online algorithm with
an offline constraint-feasible approximate solution acheives
high performance in problems such as this example that
require operating close to constraint boundaries.

A. Unconstrained Solution

We first attempt to treat the problem as an unconstrained
MDP and impose a high penalty C � R for entering any
of the constrained states. The resulting policy is shown in
Figure 12. First thing to note is that the planner does not send

3971

A B

RA

RB

RA

RB

RA

RB

RA

RB

RA

RB

RA

RB

1, 1 10, 1

1, 10 10, 10

Fig. 10: The highest-reward paths through the rewards are
constraint-infeasible

AB

RA

RB

RA

RB

RA

RB

RA

RB

RA

RB

RA

RB

1, 1 10, 1

1, 10 10, 10

Fig. 11: Constraint-feasible paths

A B

RA

RB

RA

RB

RA

RB

RA

RB

RA

RB

RA

RB

1, 1 10, 1

1, 10 10, 10

Fig. 12: Policy computed by value iteration when the con-
straint is a high negative reward

A B

RA

RB

RA

RB

RA

RB

RA

RB

RA

RB

RA

RB

1, 1 10, 1

1, 10 10, 10

Fig. 13: Policy computed by MDP value iteration when the
constraint penalty is lowered

B A

RA

RB

RA

RB

RA

RB

RA

RB

RA

RB

RA

RB

1, 1 10, 1

1, 10 10, 10

Fig. 14: Policy computed by value iteration when the con-
straint is a low negative reward

B A

RA

RB

RA

RB

RA

RB

RA

RB

RA

RB

RA

RB

1, 1 10, 1

1, 10 10, 10

Fig. 15: Policy computed by the online constrained solver

3972

Agent A into the courtyard because of the large penalties that
are incurred by following that path. Therefore the vehicle
moves around the courtyard, away from the danger zones,
and reaches the rewards outside the courtyard. This policy
is chosen because it is the only policy that guarantees that
Agent A will not enter the heavily-penalized danger zone.
The path through the courtyard is regarded as not worth the
large negative reward that could be incurred if the Agent
were to veer into the danger zone. In other words, the MDP
planner fails to see that the risk associated with moving
through the courtyard is an acceptable amount of risk, and
acts too conservatively.

Figure 13 shows the outcome of lowering the constraint
penalty. Since the constraint violation penalty is lower, the
planner decides to follow a path through the courtyard.
However, after reaching location (6, 6), the planner decides
to move to the right since this action offers no risk of entering
the danger zone, while still giving a probability of 0.05
of moving downwards and therefore closer to the rewards
outside the courtyard. Therefore lowering the penalty makes
the planner less conservative in one aspect (entering the
courtyard), but the resulting policy is still inefficient. Low-
ering the penalty even farther leads to the outcome shown
in Figure 14. A low penalty leads the planner to generate a
policy that travels adjacent to the danger zone. Clearly, this
policy is too risky and gives a constraint violation probability
α > 0.1. Thus in this problem as well, treating constraints as
penalties generates policies that are either too conservative
or too risky. The results of applying the proposed algorithm
to the current problem are presented in the next section.

VIII. CONSTRAINED ONLINE ALGORITHM SOLUTION

The online algorithm presented in this work generates
the policy shown in Figure 15. The online forward search
algorithm with a finite search horizon (which for was set to
10 in this case) identifies that the path through the courtyard
- moving right in state (5, 7) - is in fact constraint-feasible
since the constraint violation probability of moving right in
state (5, 7) is 0.05, and therefore lower than the threshold
of 0.1. The forward search also uses the offline solution to
see that at least one constraint-feasible action exists once
state (5, 7) is reached, and therefore continues to explore
this path. As the forward search reaches state (5, 3), it is
recognized that a path to the reward at this location exists,
and that path is also constraint-feasible (since the risk of
constraint violation along this path from its starting location
is 0.095). The online planner therefore switches its action at
location (6, 5) to move down (out of the courtyard) to claim
the reward at (5, 3). Thus the offline approximate solution
provides a conservative, constraint-feasible policy while the
online algorithm adjusts this policy for better performance.
The offline exact value iteration algorithm presented in [3]
also generates the same policy, but requires much more
computational time (approximately 10 minutes, compared to
approximately 5 seconds for the online algorithm) since it
involves solving a Mixed Integer Linear Program (MILP) at
every iteration.

IX. CONCLUSIONS

This work seeks to address the problem of planning in
the presence of uncertainty and constraints. Such problems
arise in many situations, including planning for a team of
first responders (both humans and robots) operating in the
aftermath of a CBRNE incident. The problem was framed
as a POMDP with constraints, and it was shown that even
in a relatively simple planning problem, constraints cannot
be modeled simply as large penalties. The main contribution
was an online algorithm that uses an approximate offline
solution to ensure constraint feasibility while optimizing
reward over a finite horizon. It was shown that our on-
line algorithm generates policies comparable to an offline
constrained POMDP algorithm, but is computationally more
efficient.

X. ACKNOWLEDGEMENTS

This research was supported by the Office of Naval
Research under grant number N00014-07-1-0749.

REFERENCES

[1] Applying Robotics to HAZMAT, Richard V. Welch, Gary O. Edmonds,
The Fourth National Technology Transfer Conference and Exposition,
Volume 2 p 279-287

[2] Protecting Emergency Responders: Safety Management in Disaster
and Terrorism Response. Brian A. Jackson, John C. Baker, M. Susan
Ridgely, James T. Bartis, Herbert I. Linn. Department of Health and
Human Services, Centers for Disease Control and Prevention, National
Institute for Occupational Safety and Health.

[3] Piecewise Linear Dynamic Programming for Constrained POMDPs,
Joshua D. Isom, Sean P. Meyn, Richard D. Braatz. Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence (2008).

[4] Learning Policies for Partially Observable Environments: Scaling Up,
Michael L. Littman, Anthony R. Cassandra, Leslie Pack Kaelbling. In
Proceedings of the 12th International Conference on Machine Learning
(ICML-95), pp 362-370.

[5] Online Planning Algorithms for POMDPs, Stephane Ross, Joelle
Pineau, Sebastian Paquet, Brahim Chaib-draa. Journal of Artificial
Intelligence Research 32 (2008) 663-704.

[6] Rollout Algorithms for Stochastic Scheduling Problems. D. P. Bertsekas
and D. A. Castanon. Journal of Heuristics, 5(1) 89-108 (1999).

[7] Real-Time Decision Making for Large POMDPs, Sebastian Paquet,
Ludovic Tobin, Brahim Chaib-draa. Advances in Artificial Intelligence,
Volume 3501 (2005) pp 450-455.

[8] Perseus: Randomized Point-Based Value Iteration for POMDPs,
Matthijs T. J. Spaan, Nikos Vlassis. Journal of Artificial Intelligence
Research 24 (2005) 195-220.

[9] SARSOP: Efficient Point-Based POMDP Planning by Approximating
Optimally Reachable Belief Spaces, H. Kurniawati, D. Hsu, W. Sun
Lee. In Proceedings of Robotics: Science and Systems, 2008.

[10] Probabilistic Robotics, S. Thrun, W. Burgard, D. Fox. MIT Press 2006.
[11] Time Constrained Markov Decision Processes, A. Geramifard. Unpub-

lished.

3973

