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Abstract— Many architectures have been proposed to solve
tightly-coupled multirobot tasks (MT) through coalitions of
heterogeneous robots. However, several issues remain unad-
dressed. As coalitions are formed, sensor constraints among
robots are also established. For example, in a leader-follower
task, follower robots must keep leader robots within their
sights, while in a box-pushing task, a supervisor robot needs
to track the moving direction of the box and monitor the
pushing path to the goal for obstacle avoidance. The question
of how to keep these constraints satisfied during the entire
execution, from initial configurations to completeness of the
task, remains an open issue. In addition, environmental factors,
both static and dynamic, can influence the maintenance of the
constraints. Moreover, problems arise when the constraints are
unsatisfiable given the current circumstances. For example, the
sight of the leader might be blocked or there might be obstacles
blocking the view of the box. This paper proposes a general
method to address these issues for various applications with
sensors having certain characteristics. Our approach combines
the use of sensor models, environment sampling, measures
of information quality, a motion model with sampling, and
a constraint model. We believe that this approach offers the
first generic formulation of robotic sensor constraints that can
be applied to a wide variety of applications. To illustrate this
method, we apply the approach to solve robot tracking and
navigation tasks both in simulation and with physical robots.
Experimental results illustrate the flexibility and robustness of
the approach.

I. INTRODUCTION

When the cooperation of multiple robots is required to
complete a tightly-coupled task, the task is often referred to
as a multirobot task (MT) [7]. Many architectures and algo-
rithms (e.g., [12], [6], [18], [9]) have been proposed to solve
these tightly-coupled tasks through coalitions. ASyMTRe
[12] is one of the most recent architectures proposed which
forms coalitions by reasoning about information required.
Both ASyMTRe and our work are inspired by information
invariants theory [5]. However, these architectures do not
specifically model sensor constraints that are introduced due
to the coalitions. As a result, controlling robot motions to
enable the coalitions to maintain their respective constraints
during task execution has not been addressed. In general,
previous works provide a robot coalition for each multirobot
task but do not give details on how the coalition is to fulfill
the task. For example, a coalition might be proposed for a
robot navigation task in which robots without a localization
capability should follow a leader robot, keeping it in their
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sights. However, how the followers should start following
from their initial positions to the goal is not answered.
Likewise, for a box pushing task, these coalition approaches
do not specify how the supervisor robot should track the box
and monitor the pushing path at all time.

Although approaches using control theory can be used to
address this issue, such approaches are application-specific,
and do not provide a general solution to broad classes of
problems. In other cases, it is often assumed that the robots
are in proper relative configurations for certain coalitions so
that sensor constraints are trivially maintained; for example,
robots might be placed in a line so that each is within
sight of the one immediately behind it, while the supervisor
robot is assumed to be at a certain distance to the box so
that it can keep track of the box and monitor the pushing
path at the same time. Unfortunately, such assumptions
are often not true, since robot initial configurations are
usually not known with certainty. Furthermore, maintenance
of sensor constraints can be influenced by static and dynamic
environmental factors. For example, an obstacle or another
moving robot may prevent robots from maintaining a line.
Thus, the method also has to be flexible and robust enough
for controlling robot motions to maintain sensor constraints
to accomplish the assigned tasks. We also need to handle the
extreme cases where certain constraints become unsatisfiable,
such as when the sight of the leader robot or the view of the
box is blocked. Our objective is to create a single, general
method for all of these situations, and for a broad class of
applications using sensors having certain characteristics.

In order to maneuver robots with sensor constraints
through the environment, a mechanism is needed to quantify
the utility of these constraints being satisfied, so that we
can flexibly control robots while maintaining reasonable
utilities. Inspired by information theory [13], we propose to
use measures of information quality for this purpose. While
the measure of uncertainty in information theory describes
the information content, measures of information quality
describe the reliability of the information. For example,
when the leader robot goes near an obstacle, the information
quality will decrease, since the sight of the leader robot can
potentially be blocked; the information quality when the box
is on the boundary of the field of view of the supervisor robot
is less than if it is in the center, since the sight of the box can
easily be lost. One of the most important advantages of this
approach is that the general notion of information quality
is not dependent on specific sensor types; this enables the
separation of the sensor model from the application.

Another important aspect regarding information quality is
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that while most of the previous research has concentrated on
identifying global measures using discretized methods [17],
[3], [14], our approach is based on local measures in local
sensor space. The reason for using local measures is based on
the observation that sensor constraints must usually only be
enforced locally instead of globally. For example, a follower
robot only needs to know where the leader is relative to itself.
The obvious tradeoff is that optimality is achieved locally
instead of globally. However, given the property of localness
of sensor constraints, this simplification should still yield
sufficient solutions. One important advantage of computing
local measures is that the approach can be completely
distributively implemented since only local information is
required. Another advantage is that measures of information
quality can be defined continuously in space.

To account for the environmental influence on measures
of information quality, we create an approximate geometric
representation of the world in the sensor field of view (FOV)
by sampling the environment into particles using range sen-
sors. We compute weights for sensor quality measurements
from the sensor quality model based on these particles.
The weighted sensor quality measurements are taken as the
information quality measurements. To use the measurements,
we sample the motion space into motion vectors using a
chosen motion model and compute the information quality
measurement resulting from each vector. We then choose the
motion vector that leads to the best information quality mea-
surement. For extreme cases where certain sensor constraints
are unsatisfiable, we define a constraint model that manages
constraint repositories. Based on the type of the constraint,
which depends on the kind of information the constraint
concerns, the constraint model enables indirect constraint
satisfaction for alternative solutions through constraint re-
laxation in an application-specific manner. The model is
then used in combination with other models to compute the
information quality measurements for alternative solutions.

After a brief review of related work (Section II), we
explain our approach in detail (Section III). Afterwards, we
apply the approach to solve robot tracking and navigation
tasks, presenting results from simulations and physical robot
experiments (Section IV). Finally, we conclude with some
discussion and plans for future work (Section V).

II. RELATED WORK

Maintenance of sensor constraints is important in many
applications. The approach of [8] handles the issue in a
robot deployment task by preplanning a path that ensures the
satisfaction of sensor constraints. However, such a solution
is application-specific. Moreover, uncertainty and dynamic
factors can render the solution infeasible for practical ap-
plications. Some other research works do not assume prior
knowledge of the environment, resulting in applications
that usually allow more flexibility and are adaptable to
different environments. In [1], a greedy strategy for target
tracking is introduced that uses local sensor data for geo-
metric reasoning. Simulation results demonstrate significant
improvement in tracking performance compared to previous

works. The approach of [17] uses visual information to guide
robots to cooperatively complete an insertion task based
on information quality. During execution of the task, one
robot provides visual guidance to another robot that is to
finish the insertion job. The optimal observation position is
found by first constructing a geometric world map and then
searching the space for the position with the best information
quality. In [15], robots in a target mapping task cooperate to
maximize information gain. At each step, robots take the
step to maximize the utility considering the observational
contributions of teammates. However, these prior works solve
only specific tasks; they do not provide general solutions to
related tasks. In contrast, our work is aimed at providing a
general method to multirobot sensor constraint satisfaction
problems, which can be applied to a variety of applications.

The approach of [10] makes use of fuzzy logic to control
the motions of cooperative robot teams using visual obser-
vation. However, fuzzy logic is beneficial primarily when
mathematical models are not available. The information
quality based approach that we propose defines explicit
models and provides flexible methods to implement the
models differently for various applications, hence offering
more control over behaviors of robots.

In the case of unsatisfiable sensor constraints, while most
of the works mentioned do not consider this issue, the
approach of [17] deals with it by defining a secondary target.
No general method has been provided to solve the problem.
The approach that we propose defines a constraint model
that models sensor constraints explicitly and further enables
indirect constraint satisfaction for alternative solutions, based
on the type of the constraint. The constraint model is also
used to compute information quality measurements for these
alternative solutions when original constraints are difficult or
impossible to be satisfied.

III. THE APPROACH

For each constraint in a given application, we need to
compute information quality measurements to characterize
how the constraint is satisfied in a variety of configurations.
Since the measurements are affected by only two inde-
pendent factors, we break the computation into two parts.
First, the sensor quality measurement is used to describe
how reliable the information is that is being retrieved by
the sensor; second, environmental influence is modeled as a
weight to the sensor quality measurement to capture how the
environment affects the reliability of the information. As a
consequence, we can build sensor models that do not depend
on task domains as long as the same type of constraint is
concerned. To handle the application-specific environmental
influence, we further notice that by breaking the influence
onto environment samples, some extent of generality can
be achieved at the cost of assuming independent samples.
After obtaining the information quality measurements, we
simply need to choose the motion vector that leads to the
best information quality.

We next describe the different components of our approach
and roles they play. For the following discussions, we use the
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term constrainer to represent the entity that imposes sensor
restrictions and constrainee to represent the entity that is
being restricted. The two terms could refer to the same entity,
where the constraint is imposed on the constrainer itself.

A. Sensor Model

The separation of sensor model from the application
ensures the generality of this approach. Once the model is
defined for a particular type of sensor, it can be applied
with little or no change to other applications in which that
sensor type is used, as long as the same type of constraint
is concerned. In our approach, we explicitly identify two
essential submodels – the sensor quality model and the sensor
uncertainty model.

1) Sensor Quality Model: The sensor quality model
computes a sensor quality measurement, which is a score
assigned to the constrainer’s configurations in the con-
strainee’s local space, given the current configuration of
the constrainer1. The scores are assigned according to how
reliable the corresponding configurations are for constraint
satisfaction without considering environmental factors. For
a particular sensor, and given different configurations for
the constrainer from the viewpoint of the constrainee, the
model computes normalized scores for the configurations
based on their reliability in terms of constraint satisfaction.
Note that configuration spaces can differ from constraint to
constraint, from application to application. For example, in
the navigation task, we consider only the relative coordi-
nates of the constrainer while in the box pushing task, the
configurations should include both the relative coordinates
of the box and distance to the box. The model is defined as
a function2, Is : X → [0, 1], in which X is the local space
of the constrainee. A value of 1 indicates the most reliable
configurations.

For the robot tracking and navigation tasks, the sensor
quality model is defined for laser and camera sensors in a
2D Euclidean space,

Is(x(l, θ)) = a ∗ lmax − l
lmax

+ (1.0− a) ∗ θmax − |θ|
θmax

(1)

in which the (l, θ) pair is the relative position of the
constrainer in a polar coordinate system and lmax, θmax are
the sensor distance and angle ranges, respectively. Here, a is
the weighting factor. Informally, this model prefers locations
that are nearer to the sensor, and those that are nearer to the
midline of sight of the sensor.

2) Sensor Uncertainty Model: The sensor uncertainty
model captures the noise characteristics for a sensor, defined
as a density function of sensor readings, Us : (X |X)→ <.

For the robot tracking and navigation tasks, we define the
model as linear normal distributions for laser and camera,

Us(x(l′, θ′) |x(l, θ)) ∼ N((l, θ), MΣsMT ) (2)

1In the following discussions, we concentrate on the model for a single
constrainer. The model can be easily extended for multiple constrainers.

2In the following discussions, the subscript of ‘s’ refers to a particular
sensor.

in which M is the scaling matrix and Σs is the covariance
matrix for laser or camera,

M =
[
|l − l′| 0

0 |θ − θ′|

]
(3)

Although the sensor quality and sensor uncertainty models
can be dependent on each other, for simplification, we as-
sume independence between them. In most cases, the sensor
uncertainty model is intrinsic to a particular sensor while the
sensor quality model is primarily dependent on properties of
the current task. When the two models are dependent, such as
the robot tracking task, we have found that our approach still
performs well. In ongoing work, we are exploring the use of
other, perhaps more accurate, sensor uncertainty models.

B. Environment & Uncertainty Sampling

We introduce a sampling method to incorporate envi-
ronmental influence on measures of information quality.
First we represent different objects in the environment by
considering them as composed of samples. Then, we com-
pute the influence of these samples on the measures of
information quality as dictated by the application. Generality
is achieved by varying the influence of samples for different
applications. One of the advantages of using a sampling
method is that geometric reasoning is implicitly taken into
account by an approximate geometric representation created
by the samples. Another advantage is that sensor uncertainty
can be easily incorporated by sampling again on these
environment samples based on the uncertainty model of
the range sensor using the Metropolis-Hastings algorithm
[4], which can sample from any density function using a
candidate generation function.

For sampling the environment, we apply a k-means clus-
tering algorithm to range sensor readings, such that readings
corresponding to different objects fall into different clusters.
Based on the environment’s complexity with respect to the
robots, we then choose a granularity (i.e., density of particles)
for sample creation. The created samples naturally form
a geometric representation of the environment. For sensor
uncertainty, we sample again on these samples based on the
uncertainty model of the range sensor.

For each range sensor reading, environment sampling
yields n samples, S : {s1, s2, ..., sn}. For each environment
sample si, after uncertainty sampling, we have a new set of
samples, Si : {s1i , s2i , ..., sMi }, for constant M . Figure 1(a)
shows a scenario with M = 3.

C. Measures of Information Quality

Since samples from the constrainer itself usually have
no impact on measures of information quality, we need
to separately consider these samples. For each environ-
ment sample si, we compute the likelihood of the sample
being the constrainer using the sensor uncertainty model
for detecting the constrainer. The likelihood is computed
as ηi = Us(xsi |xcr)/Z, where xcr represents the con-
strainer’s configuration in the constrainee’s local space and
Z is a normalization constant. For the robot tracking and
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navigation tasks, we simply assume that samples within a
short distance (e.g., 0.2m) from the detected configuration
of the constrainer are samples from the constrainer. Thus,
we have Z = Us(xcr ± c |xcr), where c is a constant
vector. Elsewhere, the probability is determined by a normal
distribution based on the sensor uncertainty model.

The influence of the environment is accounted for in
the form of weights for sensor quality measurements. The
weights are computed in an application-specific manner to
ensure that its complement captures the probability of risk
imposed by the environment for constraint satisfaction given
a configuration for the constrainer in the constrainee’s local
space. We maintain a probability measure for the weights so
that the information quality measurements are also restricted
to [0, 1], thus describing the probabilities of reliability of the
information. The uniformity separates the information quality
measurements from the implementation details of the sensor
model and environmental influence.

One important note is that we assume that samples exert
influence on sensor quality measurements independently.
The assumption is generally true unless geometric struc-
tures have to be specifically modeled (e.g., finding triangle
shaped objects in the environment). For each sji ∈ Si,
we compute hji = Hs(xsj

i
|xcr), where Hs : (X |X) →

[0, 1] is a function that captures the probability of risk
considering uncertainty samples. The probability of risk
considering an environment sample si is then computed
as ri = Capp(h1

i , h
2
i , ... h

M
i ), where Capp is dependent

on the application. A scenario is shown in Figure 1(b)
where probability of risk is computed as the ratio of the
uncertainty samples falling in risk range. Obstacle avoidance
would be implicitly accomplished by computing environment
influence in similar manners, since samples of the obstacle
would increase the probability of risk towards the obstacle’s
direction.

Since samples from the constrainer are generally assumed
to have no influence, the probability of risk for each sample
si should be weighted by 1.0−ηi, where ηi is the probability
of the sample being the constrainer. The weight for the sensor
quality measurement is simply the joint probability of no
risk considering all environment samples. As we assume
independent samples, the final weight for the sensor quality
measurement is w =

∏
i (1.0− ri ∗ (1.0− ηi)).

The final information quality measurement is simply
computed as ı = ıs ∗ w, where ıs is the sensor quality
measurement.

D. Motion Model & Motion Sampling

The motion model is used to predict the resulting config-
uration given the current configuration and motion vector,
Fm : (P, V ) → P . We use the common differential drive
motion model, which has the form r = v/ω, where r is the
radius of movement.

Since measures of information quality can vary from
application to application, methods for computing optimal
solutions are generally impossible. To overcome the diffi-
culty, we sample the motion space into motion vectors, V :

O rx

ry

s1

s37

(a)

O rx

ry

h1
1 = 0.0

r2 = 1/3

Risk Range

h1
2 = 1.0

(b)

Fig. 1. (a) Environment sampling using laser sensor with uncertainty
sampling. Dark red particles are environment samples and bright red parti-
cles at the very bottom are uncertainty samples for one of the environment
samples. (b) The probability of risk considering each environment sample is
determined by the proportion of uncertainty samples falling in the risk range.
The information quality measurements are shown graphically for several
sampled motion vectors. The higher the resulting information quality, the
whiter the resulting configuration is drawn. Notice that though the sensor
quality model would prefer the motion vector facing the target, the combined
information quality model would choose to curve a little to reduce the
blocking risk from the nearest uncertainty sample.

{v1, v2, ... vD}, and choose the one with the best resulting
information quality measurement. Figure 1(b) explains the
sampling and selection process in a simple scenario.

E. Constraint Model

The constraint model enables indirect constraint satis-
faction for alternative solutions based on the type of the
constraint. The model is then combined with other models
to compute the information quality measurements for these
solutions in case of unsatisfiable constraints. For example,
in the robot navigation task, for successful maneuvering
through a narrow hallway, constraints must be relaxed such
that some follower robots switch from direct tracking of the
leader to indirect tracking through other follower robots. For
the box pushing task, the constraint for tracking the box
should be relaxed by tracking the pusher robots to infer the
box pushing direction when view of the box is blocked.

A graph representation is used for the constraint model
in which nodes represent entities while arrows represent
constraints among entities. The entities with incoming arrows
are constrainers while entities with outgoing arrows are
constrainees. For example, in the robot navigation task,
robots with incoming arrows are leader robots and robots
with outgoing arrows are follower robots. In the box pushing
task, an arrow goes from the supervisor robot to the box.

In order to compute the information quality measurements
for alternative solutions, we correlate it with the path of indi-
rect satisfaction. Let’s consider a robot navigation task with
four robots. Ri is initially configured to follow Rj . However,
due to occlusion, Ri is allowed to track Rj indirectly through
Rb1 and Rb2, indicated as follows: Ri → Rb1 → Rb2 ←
Rj . Note that the sensors along the constraint path can be
different as long as different sensor models are used. The
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information quality measurement for this alternative solution
is computed as a function of local constraints along the
path: ıRi→Rj = Lapp(ıRi→Rb1 , ıRb1→Rb2 , ıRb2←Rj ) in an
application-specific way. The information quality measure-
ments for local constraints are sent from robots in correlation
with the constraints. In such a way, the constraint model
remains transparent to various applications having constraints
of the same type. Thus, generality is achieved. For the robot
navigation task, we simply define Lapp to be a function that
multiplies all terms. For the box pushing task, the alternative
solution is to track the pusher robots instead, otherwise the
computation remains the same as tracking the box.

F. The Algorithm

The general algorithm for our information quality (IQ)
based approach is given in Algorithm 1. The algorithm starts
with environment sampling. Then, for every motion vector,
the algorithm computes the resulting information quality
measurement using the procedures described previously. For
alternative solutions, we incorporate the path information
provided by the constraint model and compute the final
information quality measurement. If the measurement is less
than a threshold, the algorithm searches for an alternative
solution and repeats the calculation. The threshold can be
dynamically adjusted to increase motion stability. The al-
gorithm either returns a motion vector or failure when no
alternative solution is found.

IV. EXPERIMENTS & RESULTS

We demonstrate our approach by applying it to two
applications in simulation using Stage and with physical
robots. In the robot tracking task, a tracking robot uses either
a camera or a laser sensor to detect the target and tries to
keep the target in its sight. While it is usually assumed that
the maximum speed of the tracking robot is higher than the
target, we set the maximum speed to be the same for the
tracking robot and target as in [1]; in the robot navigation
task, a teams of robots are to go to the same goal position. We
often assume that only one of these robots has a localization
capability (e.g., using GPS) and others can detect teammates
using either a camera or laser sensor. The goal is for all the
robots to reach the goal position. To enhance robustness, we
implement a simple error recovery method for going to the
last seen target or leader robot position when the target or
leader is lost.

A. Simulations

We first compare our model for the tracking task with
the specific approach of [1]. The approach of [1] uses
range sensor readings for reasoning about the geometry
of the environment. The information is then used to find
the motion vector that minimizes the probability of los-
ing the target. Their approach is, in some sense, optimal
given only local information, and demonstrates intelligent
behaviors for target tracking. Although we do not model
the geometry of the environment explicitly as they do, our
robots show certain behaviors similar to the ones in their

Algorithm 1 The General Algorithm for IQ Based Approach
sample the environment, S : {s1, s2, ..., sn}
sample the motion vector, V : {v1, v2, ... vD}
while true do

find candidate constrainer configuration xcr
for all si in S do

compute the likelihood ηi = Us(xsi
|xcr)/Z

sample using the sensor uncertainty model of the
range sensor, Si : {s1i , ... sMi }

end for
for all vk in V do

predict new configuration xkcr = Fm(xcr, vk)
compute ıks = Is(xcr)
for all si in S do

for all sji in Si do
compute (hji )

k = Hs(xsj
i
|xcr)

end for
compute rki = Capp((h1

i )
k, (h2

i )
k, ...(hMi )k)

end for
compute the weight for the sensor quality measure
wk =

∏
i (1.0− rki ∗ (1.0− ηi))

compute ık = ıks ∗ wk
end for
find ı∗ = maxDi=1(ıi)
if indirectly satisfied then

compute ı∗ = Lapp(Pathalt)
end if
if ı∗ >= a threshold then

return v∗ (corresponding to ı∗)
end if
search for alternative solution using constraint model
if no alternative solution found then

return failure
end if

end while

work, e.g., swinging aside to decrease the future risk. Figure
2 shows the tracking trajectories for both approaches in
two complex environments. In both environments, the robot
starting from the bottom is the tracking robot. Compared
with trajectories of simulations in [1], our simulations have
smoother trajectories, which is due to the motion model
we use. The tracking performance comparison is shown in
Table I, in which the two approaches are clearly comparable.
Statistical analysis for our IQ based approach is done using
data collected over ten runs for each environment3. One
advantage of our approach is that adapting our model to
track multiple targets is straightforward simply by averaging
the information quality measurements for multiple targets;
while their approach can provide optimal solutions for each
target, it is unclear how to combine the solutions for multiple
targets. The most significant limitation of [1] is that it is
application-specific while our approach can be extended to

3Statistical analysis is not possible for the approach of [1] due to
unavailability of the software platform on which it was run.
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(a) (b)

(c) (d)

Fig. 2. (a) Tracking trajectory in Maze for our approach. (b) Tracking
trajectory in City Block for our approach. (c) Tracking trajectory in Maze for
the approach of [1]. (d) Tracking trajectory in City Block for the approach
of [1].

various applications.
This experiment shows that an approximate geometric

representation is sufficient for capturing important charac-
teristics of the environment. A robot utilizing this informa-
tion can take proper actions to maintain sensor constraints.
Applying our approach to the tracking task also shows that
the approach works well for applications in which the sensor
quality and sensor uncertainty models are highly correlated.
The power of the information quality based approach lies in
the fact that measures of information quality can be defined
differently so that the resulting applications demonstrate
different behaviors. To show these effects, we implement
a multiple target tracking task with different sensor qual-
ity models. In Figure 3(a), we consider only distance in
the model, in Figure 3(b) we consider only angle, and in
Figure 3(c) we consider both. Notice the different behaviors
demonstrated by the tracking robot (blue). For the model
that considers only distance, the tracking robot clearly moves
more in order to decrease the distances to the targets; for the
model that considers only angle, the tracking robot moves
little while turning more to minimize angle errors to the
targets; for the model that considers both, the behavior is a
combined solution and is more effective in terms of multiple
target tracking, since targets are less likely to be out of sight
at the next moment. Another interesting application would be
dynamic robot formation, in which the sensor quality model
is implemented to favor certain positions relative to other
robot teammates.

To show robustness of the approach, we ran the robot
navigation task with different initial configurations. We gen-
erate ten random configurations for follower robots with
x ∈ [−16.0,−12.0], y ∈ [2.0, 3.8] and angle ∈ [−60◦, 60◦].

(a) (b) (c)

Fig. 3. (a) Multiple target tracking with respect to distance only. (b)
Multiple target tracking with respect to angle only. (c) Multiple target
tracking with respect to both distance and angle.

The robots are to maneuver through the environment shown
in Figure 4 with these configurations; all three follower
robots are initially configured to follow the leader (red). An
obstacle is manually added for a clearer demonstration. For
all configurations, the robots reconfigure using the constraint
model at different times due to occlusions and reach the goal
position successfully. Figure 4 gives snapshots for one of
the initial configurations. Figures 4(e) and 4(f) are enlarged
configurations from Figures 4(c) and 4(d), edited to show the
sensor constraint satisfaction paths. We use the color of the
constrainer as the color of the current satisfied constraints
such that initial sensor constraints should all be colored red.
Notice the changes in constraint satisfactions as the robots
navigate through the environment. This result not only shows
the robustness of our approach for different initial config-
urations, but it also shows that the constraint model adds
an autonomous reconfiguration capability to robot teams by
considering both static and dynamic environmental factors.

B. Physical Experiments

For the tracking and navigation tasks in physical experi-
ments, we use the technique presented in [11] for constrainer
detection using cameras. This technique uses specially de-
signed markers for identifying robots carrying the marker
and computing the relative positions using a camera sensor.
Only the sensor model needs to be changed for this purpose.
For robot tracking task, to determine if prediction of the
information quality measurements is helpful, we construct
a baseline approach for comparison which simply uses the
vector field histogram method (VFH) [2], provided in Player
and Stage, to drive the robot to the target while perform-
ing fast obstacle avoidance using laser sensor readings to
greedily find the largest opening that the robot can go
through. We allow some tolerance for angle error to the
target, since otherwise the tracking robot would often be
turning and unable to keep up with the target. For a fair
comparison, the error recovery method is also added into
the baseline approach. During execution of the task, the
leader robot moves through waypoints forming a zigzag
path with obstacles in the environment. We ran the robot
tracking task using both approaches in five different initial
configurations and compare the results. Table II shows the
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TABLE I
PERFORMANCE COMPARISON FOR TRACKING TASK IN SIMULATION

Env. IQ Based Approach Approach of [1]
Total No. Steps No. Steps Visible No. Times Lost (Steps) Total No. Steps No. Steps Visible No. Times Lost (Steps)

Maze 114±3.8 108±4.0 (87±2.1%) 1 (14±2.5) 82 74 (90%) 1 (8)
City Blocks 177±4.3 165±5.5 (91±1.5%) 1 (16±2.5) 156 131 (84%) 2 (13, 12)

TABLE II
PERFORMANCE COMPARISON OF IQ BASED APPROACH AND VFH APPROACH

Initial Information Quality (IQ) Based Approach VFH Approach
Configurations Total Tracking Time Time in Track Track to Goal Total Tracking Time Time in Track Track to Goal

Config. 1 30.1 20.2 (67%) YES 29.7 5.3 (18%) NO
Config. 2 30.4 19.2 (63%) YES 26.5 9.9 (37%) YES
Config. 3 30.0 17.9 (60%) YES 26.6 2.4 (9%) NO
Config. 4 26.9 13.4 (50%) YES 18.7 4.1 (22%) NO
Config. 5 27.5 18.8 (68%) YES 27.2 7.1 (26%) YES

(a) (b)

(c) (d)

(e) (f)

Fig. 4. (a) A typical initial configuration. The red box shows the boundaries
for random configurations. All three follower robots are initially configured
to follow the leader robot (red). (b) The yellow robot switches to follow
the purple robot due to occlusion from the purple robot and the wall. (c)
The purple robot starts switching due to occlusion from the blue robot and
obstacle (black). (d) Robots follow one by one through the environment and
the reconfiguration is complete. (e) Sensor constraint satisfaction paths for
robot configurations in (c). (f) Sensor constraint satisfaction paths for robot
configurations in (d).

statistics for the five runs4. While a robot using our approach
successfully tracks to the goal for all five runs, a robot
using the baseline approach has a success rate of only 40%.
Furthermore, the average percentage of time in track for
successful runs is also much higher compared to the baseline

4Notice from the table that the running times for the baseline approach
are shorter since we stopped the robots when the baseline approach failed
to track and the target was unrecoverable.

approach. Figure 5 provides a graphical explanation of how
the approaches affect the behaviors of the tracking robot
differently. Specifically, we explain and compare choices
of motion vectors in two different scenarios for the two
approaches. Clearly, when provided with exactly the same in-
formation (i.e., laser readings and marker’s relative position),
a robot using our approach utilizes the information more
intelligently and decides the proper actions to take at each
step. We believe that by reducing the computational load
and incorporating motion prediction, the performance of our
approach can be further improved. For the navigation task,
we create two scenarios where two follower robots are to
follow the leader robot. Experiments show distinct behaviors
of the follower robots. Figures 6 and 7 show snapshots
from the runs and compare the behaviors. The distinct
behaviors show that robots using our approach can reason
properly about differences in environments for sensor con-
straint satisfaction. Coupled with a constraint model which
defines relaxation procedures appropriately, adapting robot
teams to more complex environments for real applications is
possible. An example application would be for robot teams to
autonomously reconfigure to move through human populated
environments of complex geometries with humans walking
around.

V. CONCLUSIONS AND FUTURE WORK

The paper presents our approach to a general method for
sensor constraint satisfaction for various applications using
sensors having certain characteristics. For the sensor model,
we explicitly identify two essential submodels – the sensor
quality model and the sensor uncertainty model. In order
to account for environmental factors, we use a sampling
method for an approximate geometric representation of the
environment and formalize measures of information quality.
For a specific application, we choose a motion model and
sample motion space into motion vectors. The motion vector
resulting in the best information quality measurement for the
application is then executed. A constraint model is imple-
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Fig. 5. (a) When the obstacle is far, VFH drives tracking robot (yellow)
directly to the target (red) and future tracking risk is increased. (b) When
the obstacle in within the Safe Range of VFH, motion vector for avoiding
obstacle dominates, potentially making target out of sight. (c) When the
obstacle is far, based on environmental factors, IQ based approach chooses
the motion vector resulting the maximum IQ measurement. The vector turns
the tracking robot to decrease future tracking risk. (d) When the obstacle is
near, IQ based approach makes the tracking robot turn more while lowering
the speed to maintain certain angle error to the target. In this way, the
possibility of losing the target is reduced.

(a) (b) (c)

Fig. 6. (a) An initial configuration for a navigation task where the nearer
box immediately degrades the information quality for the last follower robot.
(b) The last follower robot immediately switches to track the other follower
robot due to the low measure of information quality for directly following
the leader. (c) Robots keep in a line through the environment.

(a) (b) (c)

Fig. 7. (a) An initial configuration for a navigation task where the nearer
box is moved aside so that its influence is much less. (b) The last robot
keeps following the leader robot. (c) The last robot switches to track the
other follower robot only when occlusion from the other follower robot
reduces the information quality for following the leader.

mented to provide alternative solutions when certain sensor
constraints are unsatisfiable. Experimental results show that
our approach provides a general method for sensor constraint
satisfaction by combining the use of sensor models, environ-
ment sampling, measures of information quality, a motion
model with sampling, and a constraint model. As far as we
know, the approach also presents the first generic formula-
tion of robotic sensor constraints for various applications.
However, limitations on the sensors and a few assumptions
we make could restrict application of the approach in certain

domains.
To further illustrate the generality of our approach, we

plan to apply the approach to other tasks such as the box
pushing task. We also plan to conduct an analysis of different
sensor quality models for other interesting behaviors (e.g.,
dynamic robot formation). Another issue we plan to pursue
is to incorporate sensor sharing and fusion [16] for sensor
constraint satisfaction, which requires an extension of our
current model to enable information sharing. The approach
of [12] provides inspiration for this work.
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