
Instantaneous Centre of Rotation Estimation

of an Omnidirectional Mobile Robot

Lionel Clavien

Génie électrique et génie informatique

Université de Sherbrooke

Sherbrooke QC – Canada

Email: lionel.clavien@usherbrooke.ca

Michel Lauria

University of Applied Sciences

Western Switzerland (HES-SO)

Geneva – Switzerland

Email: michel.lauria@hesge.ch

François Michaud

Génie électrique et génie informatique

Université de Sherbrooke

Sherbrooke QC – Canada

Email: francois.michaud@usherbrooke.ca

Abstract—Redundantly actuated mobile robots using conven-
tional wheels need a precise coordination of their actuators in
order to guarantee a safe and precise motion without generating
high internal forces and slippage. Using the instantaneous centre
of rotation (ICR) of the chassis to describe this motion is
a well established method. But the ICR is a mathematical
concept which is hardly achieved on a real robot. This paper
addresses the problem of ICR estimation of a non-holonomic
omnidirectional mobile robot using conventional wheels. Instead
of estimating the ICR in the working space, our approach
estimates it in the actuators’ space. The algorithm is presented
in its general form and then adapted for a particular robot.
The use of the algorithm with other omnidirectional robots is
also discussed. Results from extensive testing done in simulation
as well as with a real robot are presented, demonstrating the
effectiveness of the proposed method.

I. INTRODUCTION

Omnidirectional wheeled mobile robots have become quite

popular due to their high degree of manoeuvrability. They

can be holonomic or non-holonomic [1], [2]. Non-holonomic

omnidirectional robots have a reduced velocity state space

compared to holonomic ones. Using the concepts introduced

by Campion et al. [3], they are characterized by having a

degree of steerability of two (δs = 2) and a degree of

mobility of one (δm = 1). Using the rotation around the

instantaneous centre of rotation (ICR) of their motion is then

a very appropriate way of describing their velocity state.

This ICR is defined as being the point in the robot frame

that instantaneously does not move in relation to the robot.

For a non-holonomic robot using conventional wheels, this

corresponds to the point where the propulsion axis of each

wheel intersect. As the motion in the space of instantaneously

accessible velocities is constrained, a trajectory between two

velocity states has to be calculated for the robot to move.

On real robots, the intersection of the propulsion axes is

not always well defined (see Fig. 1(b)) and therefore the

best estimation of the current ICR must be found given the

combination of all those axes. However, most non-holonomic

robots that explicitly use the ICR to control their motion do

not estimate it. They assume an always well defined ICR

by relating it to each wheel independently. This allows them

to simply use the inverse kinematics model to estimate their

state [4]. With very stiff actuators and a short experimen-

tation time, this assumption is valid. However, if compliant

actuators are used to make the robot more responsive and

secure to physical contacts, or if the robot is used for a very

long period of time, this assumption is no longer valid.

The position of the ICR in the robot frame is defined

(non redundantly) by two coordinates. However, most omni-

directional robots have more than two active wheels. As the

number of controllable degrees of freedom (DOF) is higher

than the DOF of the platform, the system of equations needed

to calculate the ICR becomes over-determined. A simple way

to solve this problem is to use a least squares estimation

(LSE) [5]. But by design, using this method to estimate the

ICR when it is close to infinity and ill-defined is difficult (see

Sect. II).

This paper presents an innovative solution for ICR estima-

tion of non-holonomic omnidirectional robots using conven-

tional wheels. The solution is based on a real-time iterative

method which estimates the ICR as a projection in the

actuators’ space. The aim of the proposed solution is to obtain

the best possible estimation when the ICR is close to infinity.

A good estimation is being defined as the estimated ICR stays

close to infinity when the propulsion axes are closely parallel.

The paper is organized as follows. The concept of ICR and

its parameterization are first introduced. Then, the issues re-

lated to the standard way of estimating the ICR are presented,

followed by the details of the new method. Adaptation of the

method to the AZIMUT robot is then presented, followed by

comparative results on that platform.

II. ICR ESTIMATION

There are two standard ways to define the velocity state

of a robot chassis. The first is by using its twist (linear and

angular velocities), and the second is by using its rotation

around the ICR of its motion [3].

The twist representation is well adapted for holonomic

robots. But for non-holonomic ones, instantaneously acces-

sible velocities are limited and the representation using the

rotation around the ICR is more adapted. This is particu-

larly true for redundantly actuated robots using conventional

wheels, where all the wheels must be precisely coordinated

to enable motion.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 5435

β

γ
ρ α

l

(a) Mathematics and notation (b) Reality

Fig. 1. ICR defined by the intersection of the propulsion axes and notation

The ICR position in the robot frame can be parameter-

ized using two independant parameters. In the following, a

parameterization using polar coordinates is used. Fig. 1(a)

presents, for one axis, the main variables used throughout

this paper. The polar coordinates of the ICR are (ρ, γ) and

the propulsion axis’ angle is named β.

When the ICR is close to the robot, it is usually well

defined during motion and its estimation is not difficult to

achieve. But typically, when the robot moves, the ICR is

close to infinity (see Fig. 7(b) for an example) and this is

where the estimation becomes challenging, because a small

variation of β implies a big variation of the ICR position.

Robots using compliant actuators have drawn a lot of

interest recently [6], [7]. The use of such actuators makes it

possible to compensate for the fact that the propulsion axes

may not converge to a single point because of wheel slippage,

sensing errors, etc. Fig. 1(b) illustrates this situation for a

four-wheel-steer/four-wheel-drive robot. However, compliant

actuators provide lower stiffness, contributing in making the

ICR ill-defined. But even if non-compliant actuators were

used, at initialization the wheels could be in any position,

making the ICR ill-defined. Therefore, a method to estimate

the ICR is required.

One solution is based on least squares. The ICR is es-

timated as the point that minimizes its distance to each

propulsion axis [5]. Using a LSE to estimate the ICR has

the advantage of being a fast method with well known

implementations [8]. However, LSE does not cope well with

parallelism or near-parallelism. Indeed, when most or all the

wheels are parallel, the system of equations describing the

relationships between the wheels’ axes and the ICR position

degenerates up to the point where no solution exists (because

there are more unknowns than available equations).

As an alternative solution, the idea consists in considering

the ICR not as a free point in the working space, but as

a constrained point in the actuators’ space. Indeed, all ICR

reachable by the propulsion axes create a hyper-surface in the

actuators’ space, referenced from now on by the constraining

surface. Estimating the ICR is then done by finding the

orthogonal projection of the input point (the values of the

propulsion axes) onto the surface. For this purpose, our

approach uses a first order geometric iterative algorithm

which finds the projection by successive approximations, as

described in [9].

S

TS,pi−1

qqq

pppi−1

ppp′i

pppi

∂FFF i−1

∂ρ

∂FFF i−1

∂γ

Fig. 2. Illustration of the ith iteration of the algorithm

Let S be the constraining surface (in parametric form) and

n the number of conventional wheels.

S : (β1, · · · , βn) = (F1(ρ, γ), · · · , Fn(ρ, γ)) (1)

where

Fk(ρ, γ) = arctan
ρ sin γ − l sinαk

ρ cos γ − l cos αk

, k = 1, . . . , n (2)

Given an input point qqq and assuming an initial point

ppp0(ρ0, γ0) on the surface, the linear approximation of the

surface at that point is the tangent plane TS,p0
(see Fig. 2

with i = 1), which can be parameterized as:

TS,p0
: xxx − ppp0 =

∂FFF 0

∂ρ
∆ρ +

∂FFF 0

∂γ
∆γ (3)

∆ρ and ∆γ are the free parameters and xxx the variable. A

point of particular interest on that plane is the orthogonal

projection ppp′
1

of qqq, as it is a first order approximation of the

projection of qqq onto S. For that particular point, we have:

ppp′
1
− ppp0 =

∂FFF 0

∂ρ
∆ρ1 +

∂FFF 0

∂γ
∆γ1 (4)

Multiplying (4) (〈, 〉 denotes the scalar product) with respec-

tively ∂FFF 0

∂ρ
and ∂FFF 0

∂γ
and using the fact that 〈ppp′

1
−ppp0,

∂FFF 0

∂ρ
〉 =

〈qqq − ppp0,
∂FFF 0

∂ρ
〉 and 〈ppp′

1
− ppp0,

∂FFF 0

∂γ
〉 = 〈qqq − ppp0,

∂FFF 0

∂γ
〉 gives (5)

and (6).

〈qqq − ppp0,
∂FFF 0

∂ρ
〉 = 〈

∂FFF 0

∂ρ
,
∂FFF 0

∂ρ
〉∆ρ1 + 〈

∂FFF 0

∂γ
,
∂FFF 0

∂ρ
〉∆γ1

(5)

〈qqq − ppp0,
∂FFF 0

∂γ
〉 = 〈

∂FFF 0

∂ρ
,
∂FFF 0

∂γ
〉∆ρ1 + 〈

∂FFF 0

∂γ
,
∂FFF 0

∂γ
〉∆γ1

(6)

∆ρ1 and ∆γ1 can then be computed as the solution of the

regular system of linear equations (5) and (6). Finally, the

new starting point ppp1 belonging to S that will be used for

the next iteration is computed by substituing the improved

parameters (ρ0 + ∆ρ1, γ0 + ∆γ1) into (2). The algorithm

stops when ‖pppi − pppi−1‖
2 is lower than a preset threshold.

The value of that threshold represents a compromise between

convergence speed and precision of the estimation.

5436

Fig. 3. The AZIMUT-3 platform

III. ICR ESTIMATION ON THE AZIMUT ROBOT

Like most iterative Newton-based first order algorithms,

the algorithm depicted in Sect. II is quite sensitive to the

choice of the starting point and to the local curvature of the

surface. Moreover, it works well with continuous surfaces,

but the constraining surface can become quite irregular

with real robots. For the algorithm to work, it is therefore

important to find a good starting point.

One simple solution is to have the surface discretized and

use an algorithm to find the best candidate on the generated

grid. The constraining surface and the corresponding grid

being specific to each robot, we illustrate our approach

using the AZIMUT robot [7], [10]. It is a non-holonomic

omnidirectional four-wheel-steer/four-wheel-drive symmetric

platform, whose third prototype is pictured on Fig. 3. Here

are the issues that need to be addressed when the algorithm

is used on that particular robot:

1) When the ICR is at infinity,
∂FFF i−1

∂ρ
becomes null and

the system of equations (5), (6) degenerates.

2) When the ICR is located on direction axis k,
∂Fi−1,k

∂ρ

and
∂Fi−1,k

∂γ
are undefined, because the axis’ angle may

have any value [11].

3) Each wheel can rotate with βk defined in the range

]− π
4

+(k−1)π
2
, 3π

4
+(k−1)π

2
], where k ∈ {1, 2, 3, 4}

represents each wheel starting from the front right

corner of the chassis and going counter-clockwise. This

splits the constraining surface in unconnected patches.

To help the algorithm cope with those matters, the grid is

generated in two phases. First, a two dimensional mesh is

generated using β1 and β2. For each point of the mesh, (2)

is used to calculate an ICR and the corresponding β3 and β4.

The method is then repeated with all possible combinations

of βk. This generates many duplicates, but ensures a grid

with a mostly uniform density. In the second phase, the

three issues are addressed. To help handle infinity and surface

discontinuities, a particular curve (circle for the infinity, line

for the borders of the patches) is discretized in the working

β1

β2

β3

Fig. 4. 3D representation of the grid points, the color map representing
the fourth axis

β1

β2

β3

Fig. 5. 3D representation of the constraining surface, the color map
representing the distance of the ICR in relation to the robot

space, and then each point is translated into the actuators’

space using (2). For an ICR on one direction axis, the three

other βk are determined with (2), and equidistant points in

its range are generated for the considered axis. Once all the

points have been generated, duplicates or points too close to

each other are removed.

Fig. 4 shows a 3D representation of the grid points. The

three axes correspond to β1, β2, β3, and the color map

illustrates β4. Even if the surface seems continuous in the

3D space, looking at the color map clearly indicates the

discontinuities in the 4D space, located at direct transitions

between dark blue and dark red.

Fig. 5 is the result of a 3D Delaunay triangulation of the

grid points. The color map illustrates the distance to the

robot of the corresponding ICR. This clearly shows how

infinity and its vicinity represent a very small part of the

constraining surface, albeit representing a very big part of the

working space. Estimating the ICR in this area is therefore

challenging.

5437

Having the grid points, the next step is to select the best

candidates for initializing the iterative algorithm. For this

purpose, we use a nearest neighbor finding algorithm. As

our algorithm is sensitive to the starting point and to the

curvature of the surface, we search for four nearest neighbors.

The iterative algorithm is initialized with each point until a

projection is found. If no projection is found after evaluating

each point, the solution with the least error is kept. Note that

to avoid being stuck in local minima, the algorithm is stopped

after a maximum of twelve iterations.

To handle the three issues with AZIMUT, the algorithm

described in Sect. II needs some adaptations:

1) Dealing with an ICR at infinity is done using a simple

trick. As we use a finite threshold (ρ∞) to describe

infinity, the system of equations does not degenerates,

but its solution gives very high values for ∆ρ. We

simply test for ρi > ρ∞ and stop if the condition is

true, assuming a found solution.

2) To handle the fact that the constraining surface is made

of unconnected patches, each patch is given an id (we

call it a mode) and if the modes of pppi−1 and pppi are

different, the algorithm is stopped.

3) To handle an ICR on one direction axis, each singu-

larity of this kind gets its own mode assigned. If an

iteration of the algorithm steps on it, it will then be

stopped. But if the starting point is already in such

a mode, a modified algorithm adapted to iterate on a

line is used to confirm that the input point is on a

singularity.

Overall, the approach can easily be adapted for other non-

holonomic robots with three or more standard wheels. The

main difficulty is to adapt the second item above to the wheel

configuration of a particular robot.

IV. RESULTS

To demonstrate our approach, we compare ICR estimation

using LSE and our iterative algorithm, first with simulated

data (to make extensive testing) and then with data recorded

on the AZIMUT-3 robot. More specifically, we focus on

the estimation of the ICR distance relative to the robot (ρ

coordinate), because all the tests indicate that no significant

differences (<10−2 rad) are observed for the ICR angle

estimation (γ coordinate) when both algorithms output a

similar distance estimation. Note that we assume that for

ρ ≥ 20.44 m, the ICR is at infinity. This value is related

to the precision of the robot sensors.

To help evaluate the results, it is useful to define a metric

quantifying the parallelism of the propulsion axes, which will

make more evident what an “ICR close to infinity” means.

To construct this metric, we simply use the relative difference

of the βk. We define

par(βββ) = 1 −
σβ

σβ,max

(7)

where σβ is the standard deviation of the βk and σβ,max =√
11

8
π is the maximum possible value on AZIMUT-3.

0 500 1000 1500 2000 2500
0

5

10

15

20

Evaluation #

A
b

so
lu

te
 d

if
fe

re
n

ce
 [

m
]

(a) Difference between the two algorithms distance estimation

= 1549

par(βββ) = 0.994

ρlse = 0.192 [m]

ρite = ∞ [m]

= 2889

par(βββ) = 0.995

ρlse = 0.066 [m]

ρite = ∞ [m]

(b) Details of two evaluations

Fig. 6. Results with simulated noise

We now have a percentage indicating how parallel to each

other the propulsion axes are.

We first conducted tests with simulated data using well-

defined ICR to confirm that both LSE and our iterative

algorithm provide the same results. To be as exhaustive

as possible, a tight Archimedean spiral (ρ = 0.05γ) was

computed to cover the whole working space, from the origin

to infinity, and the resulting points in the actuators’ space

were input to both algorithms. As expected, there were no

significant differences (<10−6 m) between both algorithms.

We then conducted trials with ill-defined ICR. Using the

same points generated precedently, we added a bounded

(±0.02 rad) white noise to each βk before inputting the point

to both algorithms. Fig. 6(a) shows the absolute difference

between the estimation from both algorithms. We see that

close to the robot, when the ICR is still well defined despite

the added noise, both algorithms give similar results. But

as the ICR moves towards infinity, the algorithms give

quite diverging results. Fig. 6(b) shows the details of two

evaluations and demonstrates how the proposed algorithm

5438

−1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

x [m]

y
 [

m
]

(a) Trajectory in the Cartesian space, starting at (0, 0)

(b) Trajectory in the actuators’ space

Fig. 7. Results with data recorded on AZIMUT-3

improves the estimation compared to LSE. The big dot

indicates the position of the ICR as estimated by LSE, ρlse

is the corresponding distance and ρite is the same distance

estimated by our algorithm.

We finally conducted trials with data taken on the real

robot. The trajectory illustrated in Fig. 7(a) shows one of the

trial. The orientation of the robot is not represented, but it

is used in a car-like fashion, with its velocity vector tangent

to its trajectory. Fig. 7(b) shows the same trajectory in the

actuators’ space. It illustrates how important it is to have a

good ICR estimation for ill-defined situations, because with

real robot motion, the trajectory in the actuators’ space can

be quite far from the constraining surface. The color map for

the surface indicates the vicinity of the infinity (dark blue

band). As with Fig. 6(a), we see that when the ICR is close

to the robot, it is quite well-defined and the trajectory in

the actuators’ space is close to the surface. But when the

wheels are closely parallel, that trajectory goes far away from

the surface, which means the ICR becomes really ill-defined.

Fig. 8(a) shows the same information as the colormap for the

trajectory on Fig. 7(b). The vertical dashed lines correspond

0 500 1000 1500 2000
0

5

10

15

20

Evaluation #

A
b

so
lu

te
 d

if
fe

re
n

ce
 [

m
]

(a) Difference between the two algorithms distance estimation

= 372

par(βββ) = 0.962

ρlse = 0.054 [m]

ρite = ∞ [m]

= 2242

par(βββ) = 0.978

ρlse = 0.492 [m]

ρite = ∞ [m]

(b) Details of two evaluations

Fig. 8. Results with data recorded on AZIMUT-3 (cont.)

to the markers on Fig. 7(a). There is a clear correspondence

between moves with an ICR close to infinity and the spikes

of Fig. 8(a). Two specific evaluations corresponding to those

spikes, one at the beginning and one at the end of the

trajectory, are detailed on Fig. 8(b). Both show a situation

where the propulsion axes are close to parallel. We see that

even for a simple trajectory involving no omnidirectional

motion, LSE has much trouble estimating real life ICR, where

the proposed algorithm gives a much better estimation.

Considering that our approach is iterative, it is important

to examine the computational resources it requires, so as to

evaluate its use on-board a robot. Analysis of the results from

the trials (with simulated and real data) has shown that for

most inputs, only the first starting point is evaluated and the

algorithm converges in average after 3 iterations. Moreover,

only the starting point selection and the projection finding is

done on-line: the grid is created off-line and the tree needed

for the nearest neighbor search is populated and balanced at

initialization only.

Table I shows a comparison of the computing time for

the different trials reported earlier. All tests were done on

5439

TABLE I
COMPARISON OF COMPUTING RESOURCES NEEDED BY EACH

ALGORITHM

Algorithm Simulation
(without
noise)

Simulation
(with noise)

Real robot

Minimum time
per evaluation [s]

LSE 3.15 E-6 3.28 E-6 3.28 E-6
Iterative 1.21 E-6 1.26 E-6 3.76 E-6

Maximum time
per evaluation [s]

LSE 3.80 E-5 6.43 E-5 8.78 E-6
Iterative 5.28 E-5 5.00 E-5 2.53 E-5

Average time per
evaluation [s]

LSE 3.68 E-6 3.75 E-6 3.63 E-6
Iterative 5.58 E-6 5.65 E-6 1.04 E-5
(Ratio) 1.52 1.51 2.86

the same computer with the same test program, changing

only the input file. Both algorithms were run sequentially

with each combination of βk and timed independently. The

time reported is the average of 20 calls to each algorithm.

Even though our algorithm needs on average 3 times more

computing time than LSE (with real data), the time required

is still reasonable, considering that AZIMUT’s control loop

runs at 100 Hz. On the other hand, the algorithm is not

as deterministic as the LSE, because not all starting points

are always evaluated and not all projections take the same

time to converge. This could be problematic in hard real-

time situations, but again, for a robot like AZIMUT, this is

negligible.

The average time needed by our algorithm is higher with

real data than with simulated one. This is because on the real

robot, the input point is often quite far from the surface, and

more iterations are then needed to obtain a precise estimation.

On the other hand, the global quality of the estimation has

been shown to be better. Interestingly, the minimum time

required for the trials with simulated data is quite lower

for our algorithm. This is because the added noise is not

very important, so the input point is close or already on the

constraining surface. If the input point is very close to a

grid point (which can happen as there are many grid points),

that point is chosen as the estimation and no iteration is

performed, which is quite fast.

V. CONCLUSION AND FUTURE WORK

This work addressed the problem of ICR estimation of

non-holonomic omnidirectional robots using three or more

conventional wheels. A novel approach has been proposed,

which does the estimation in the actuators’ space instead of

in the working space of the robot. It overcomes the shortcom-

ings of the standard LSE approach, which fails in estimating

ill-defined ICR in the vicinity of infinity. The adaptation of

the approach to the AZIMUT robot demonstrated how it can

be applied to a real platform. Simulation results showed the

ability of the proposed approach to estimate ill-defined ICR.

Results on a real platform confirmed that the ICR is ill-

defined most of the time, even during simple trajectories.

Despite the fact that the approach is iterative, the comput-

ing requirements are small and the approach is suitable for

soft real-time control.

We are currently working on solutions to cope with the

non-deterministic nature of the approach and make it suitable

for hard real-time control. In addition, to come up with

a single representation of finite and infinite values, we

are currently investigating a new parametrization with less

singularities, similar to [4], [11], but using a more formal

approach.

ACKNOWLEDGMENTS

This work is funded by the Natural Sciences and Engi-

neering Research Council of Canada, the Canada Foundation

for Innovation and the Canada Research Chairs. F. Michaud

holds the Canada Research Chair in Mobile Robotics and

Autonomous Intelligent Systems.

The authors gratefully acknowledge the contribution of

their colleagues, François Ferland for his help with the

timings results and Julien Frémy for providing raw results

from the real robot.

REFERENCES

[1] J. A. Batlle and A. Barjau, “Holonomy in mobile robots,” Robotics

and Autonomous Systems, vol. 57, no. 4, pp. 433–440, 2009.
[2] I. Kolmanovsky and N. H. McClamroch, “Developments in nonholo-

nomic control problems,” IEEE Control Systems Magazine, vol. 15,
no. 6, pp. 20–36, 1995.

[3] G. Campion, G. Bastin, and B. d’Andréa-Novel, “Structural properties
and classification of kinematic and dynamic models of wheeled mobile
robots,” IEEE Transactions on Robotics and Automation, vol. 12, no. 1,
pp. 47–62, 1996.

[4] C. P. Connette, A. Pott, M. Hagele, and A. Verl, “Control of an
pseudo-omnidirectional, non-holonomic, mobile robot based on an
ICM representation in spherical coordinates,” in Proceedings of the

47th IEEE Conference on Decision and Control, 9-11 Dec 2008, pp.
4976–4983.

[5] T. L. Lam, H. Qian, Y. Xu, and G. Xu, “Omni-directional steer-
by-wire interface for four wheel independent steering vehicle,” in
Proceedings of the 2009 IEEE International Conference on Robotics

and Automation, 12-17 May 2009, pp. 1383–1388.
[6] P. F. Santana, C. Candido, V. Santos, and J. Barata, “A motion

controller for compliant four-wheel-steering robots,” in Proceedings of

the 2006 IEEE International Conference on Robotics and Biomimetics,
17-20 Dec 2006, pp. 532–537.

[7] M. Lauria, I. Nadeau, P. Lepage, Y. Morin, P. Giguère, F. Gagnon,
D. Létourneau, and F. Michaud, “Design and control of a four steered
wheeled mobile robot,” in Proceedings of the 32nd Annual Conference

of the IEEE Industrial Electronics, 7-10 Nov 2006, pp. 4020–4025.
[8] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-

garra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen, LAPACK Users’ Guide. Philadelphia, PA: Society for
Industrial and Applied Mathematics, 1999.

[9] E. Hartmann, “Numerical implicitization for intersection and Gn-
continuous blending of surfaces,” Computer Aided Geometric Design,
vol. 15, no. 4, pp. 377–397, 1998.

[10] F. Michaud, D. Létourneau, M. Arsenault, Y. Bergeron, R. Cadrin,
F. Gagnon, M.-A. Legault, M. Millette, J.-F. Paré, M.-C. Tremblay,
P. Lepage, Y. Morin, J. Bisson, and S. Caron, “Multi-modal locomo-
tion robotic platform using leg-track-wheel articulations,” Autonomous

Robots, vol. 18, no. 2, pp. 137–156, 2005.
[11] B. Thuilot, B. d’Andréa-Novel, and A. Micaelli, “Modeling and feed-

back control of mobile robots equipped with several steering wheels,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 3, pp.
375–390, 1996.

5440

