
Retraction-Based RRT Planner for Articulated Models

Jia Pan 1 and Liangjun Zhang 2 and Dinesh Manocha 3

1panj@cs.unc.edu, 3 dm@cs.unc.edu, Dept. of Computer Science, University of North Carolina at Chapel Hill
2zhanglj@stanford.edu, Dept. of Computer Science, Stanford University

Videos available at http://gamma.cs.unc.edu/ARRRT/

Abstract— We present a new retraction algorithm for high
DOF articulated models and use our algorithm to improve the
performance of RRT planners in narrow passages. The retrac-
tion step is formulated as a constrained optimization problem
and performs iterative refinement on the boundary of C-
Obstacle space. We also combine the retraction algorithm with
decomposition planners to handle very high DOF articulated
models. The performance of our approach is analyzed using
Voronoi diagrams and we show that our retraction algorithm
provides a good approximation to the ideal RRT-extension in
constrained environments. We have implemented our algorithm
and tested its performance on robots with more than 40 DOFs
in complex environments. In practice, we observe significant
performance (2-80X) improvement over prior RRT planners
on challenging scenarios with narrow passages.

I. INTRODUCTION

Sample-based planning has been widely used to com-

pute collision-free path for robots in complex environments.

These methods generate samples with randomized tech-

niques, and connect them using local planning methods. The

main goal is to capture the connectivity of the free space of a

robot’s configuration space by using tree or graph structures

such as probabilistic roadmaps (PRMs) or rapidly-exploring

random trees (RRTs) [15]. However, the performance of

sample-based planning algorithms may degrade if the free

space has narrow passages.

In this paper, we address the problem of computing

collision-free motion for articulated models in constrained

environments with multiple obstacles and narrow passages.

Most of the prior work on handling narrow passages has

been mainly limited to rigid models, e.g. [1], [8], [28],

[31]. In practice, articulated models result in some additional

challenges with respect to sample-based motion planning.

First of all, the articulated models have many more degrees

of freedom (DOFs), which increase the complexity of the

underlying planning problem. Secondly, the planner needs

to ensure that there are no self-collisions in the robot, in

addition to preventing collisions between the robot and the

obstacles. These self-collisions can generate many small and

isolated components in the C-Obstacle space and thereby

result in additional challenges in terms of handling narrow

passages.

Main results: We present a new retraction-based al-

gorithm for articulated models and combine it with RRT

planners. We formulate the retraction step as a constrained

optimization problem that performs iterative refinement on

the boundary of C-Obstacle space to compute a free-space

configuration that is nearest to the random sample. We further

generalize our retraction algorithm to planners that use de-

composition techniques to deal with very high DOF models.

We also analyze our retraction algorithm based on Voronoi

diagrams and show that our retraction is a good approxima-

tion for ideal RRT-extension in constrained environments. We

have implemented our algorithm and tested its performance

on models with 40 DOFs in complex environments with

narrow passages. In practice, our algorithm can significantly

improve the performance by 2-80 times as compared to RRT

planners.

The rest of paper is organized as follows. In Sec. II, we

briefly survey the related work. We present our optimization-

based retraction algorithm and combine it with RRT planners

in Sec. III. Sec. IV describes a modified algorithm to

combine our retraction step with decomposition planners to

handle very high DOF models. We analyze the performance

of our planners using Voronoi diagrams in Sec. V. We

discuss its implementation and highlight the performance on

different benchmarks in Sec. VI.

II. RELATED WORK

In this section, we give a brief overview of related work in

motion planning for articulated models and handling narrow

passages.

A. Motion Planning for Articulated Models

There is considerable work on motion planning for articu-

lated models using sample-based planners. Some of the most

popular algorithms are based on decomposition techniques,

which assume that the articulated model can be decomposed

into components with low-correlation and then use suitable

strategies to coordinate between different components [5],

[24], [32]. However, these methods may not work well in

dealing with narrow passages. Other approaches use reduced

kinematics [10], [18] and multi-level methods [29].

For articulated models with very high dimension (> 100),

e.g. protein chains, potential energy based approaches are

usually used [13], [20], [26], [27]. The potential energy

formulation is often defined to guide the search toward a

goal configuration.

B. Handling Narrow Passages for Articulated Models

Many techniques have been proposed to address the nar-

row passage problem for articulated models. These include

adaptive sampling according to workspace information [12]

or sampling history [4], dilation-based approaches [3], [25]

and retraction-based approaches. Dilation-based approaches

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2529

[3], [25] shrink the obstacles and thereby improve the visi-

bility of the free space. However, these methods are mainly

limited to volumetric objects and may not be able to handle

self-collisions well. Voronoi regions of workspace can be

used to generate samples in narrow passages [7], [19].

C. Retraction-Based Planning

The retraction-based approaches have been widely used

to improve the performance of sample-based planners in

narrow passages [1], [21], [23], [28], [31]. The main idea is

to retract a randomly generated configuration that lies in C-

Obstacle space towards a more desirable region, e.g. towards

the closest point on the boundary of C-Obstacle or the medial

axis of the free space.

However, the retraction step can be non-trivial. For ex-

ample, computing the closest boundary point for an in-

colliding configuration boils down to penetration depth com-

putation, which has high complexity [30]. Other algorithms

use heuristics to compute samples near the boundary of C-

Obstacle space or near approximate medial axis [1], [23],

[28]. These methods are mainly limited to closed models and

are prone to robustness problems. Other methods perform

contact space planning, i.e. generate more samples that touch

the boundaries of C-Obstacles [21], [22]. Based on efficient

penetration depth computation, Zhang et al. [31] present a

retraction-based planner for rigid models. [22], [31] search

within the contact space randomly for a new retraction

sample, but mainly work well for rigid robots.

III. RETRACTION-BASED RRT PLANNER

In this section, we present our modified RRT planner. We

first introduce the optimization-based retraction algorithm

and then use it to improve the performance of RRT planners

in narrow passages. Given a randomly generated sample in C-

Obstacle space, our algorithm retracts to the closest point on

the boundary of C-Obstacle space. The basic idea is similar

to [1], [31]. The main difference lies in how we utilize the

workspace information to perform iterative optimization for

high DOF articulated models. Moreover, our approach can

handle narrow passages that are caused by obstacles as well

as self-collisions of the robot within the single retraction

framework.

A. Notation and Definition

We use following notations and symbols in the paper:

C configuration space or C-Space, includes several C-

Obstacles and the free space Cfree.

Ccont the contact space, the boundaries of C-Obstacles.

q configuration for a robot; q ∈ C.

dq variation of q in the C-Space; also a control term

that describes how to change q each extension step.

B. Retraction-Step

As shown in Fig. 1(a), given an in-colliding sample qr,

the retraction step attempts to compute the closest boundary

point qm, which can be formally defined as

qm ≡ q∗ = argmin
q∈Ccont

δ(q,qr), (1)

(a) qr is an in-colliding sample (b) qr is free but qn qr is not CCD free

qcqn

qr

qi
qd

Obstacle

qcqn

qr

qd

Obstacle

qm

qi

(c) qr is an in-colliding sample (d) qr is free but qn qr is not CCD free

qn

qr

qc

qd

C-Obstacle

contact contact

(e) retraction for self-contact

qn qcqr qd
qm or

qd qr is

free

qn

qr

qc

qm

qd

qi

C-Obstacle

contact plane at qc

contact space

Fig. 1. (a) Given an in-colliding sample qr , retraction tries to move it
to the closest point qm ∈ Ccont by iterative retraction-step. (b) If qr

is collision-free but can not connect to qn by direct extension, we also
perform retraction for qr . (c) and (d) show the retraction computation in
the workspace. (e) shows the retraction process for a self-collision. qn has
the red (right) chain in front of the black (left) one while qr’s case is just
the opposite. qr and qn can not connect to each other due to self-collisions.
Retraction makes the red chain slide over black one and creates retraction
samples like qc, qd. Retraction stops once qd can connect to qr or a local
minimum qm is reached.

where δ is a distance metric defined in C-Space. The choice

of a suitable metric is important but difficult. For rigid

models, DISP metric, which does not involve any weighting

factor, is used in [31]. For articulated models there is no

such an equivalent metric: DISP metric does not have a

closed form to compute for articulated models and therefore

can not be used for our optimization algorithm. Moreover,

a weighted Euclidean metric is prone to the values of

different weights. Therefore we simply use the norm-2 metric

δ(q,qr) = ‖q − qr‖2, which is simple and works well on

our benchmarks.

As shown in Fig. 1(a), in order to retract an in-colliding

sample qr, we start with a non-colliding sample qn (usually

the nearest node in the RRT-tree): its projection on the

contact space is the initial guess qc, which is pushed into

a set S. Next we perform the following steps iteratively:

1) Perform contact query for qc, i.e. compute the closest

feature pairs that cause the contact, including robot’s

self-collisions and collisions with the obstacles.

2) Use constrained optimization to compute a configura-

tion qi nearest to qr within qc’s neighborhood.

3) Project qi onto the contact space and compute qd,

which is the new retraction sample. Push qd into S.

4) Assign qc = qd and go to step 1.

These steps are repeated until the distance to qr can not be

further reduced, which means a local minima has been found

or the maximum number of iterations have been performed.

All the retraction samples are collected in a set S, which is

2530

used by our planner in Sec. III-C.

In step 1, we perform the contact query. Unlike the rigid

models, articulated models can have self-collisions, which

makes the topology of C-Obstacle space more complex.

As Fig 1(e) shows, there is no obstacle between qr and

qn, but these two samples can not be connected by linear

interpolation in C-Space due to self-collisions. The retraction

step locates the two components of the articulated model that

are in-contact, slides them over each other and finally finds

a local collision-free path between qr and qn. More details

about self-collisions are given in Sec. VI-A.

We next describe the constrained optimization in step 2.

We first calculate a linear approximation of the contact space

by the tangent space at qc and then try to compute a q within

the tangent space that minimizes δ(q,qr).
We first formalize the tangent space constraint. Suppose

the contact query in step 1 reports N contacts, each with

a contact position ci and a contact normal ni, where 1 ≤
i ≤ N . ni and ci define a workspace tangent space at the

i-th contact point. When robot’s configuration q changes, the

contact positions will also modify, but we constrain them to

stay within the original tangent space:

Ji dq = d ci (2)

nT
i d ci = 0 (3)

where Ji is the 3× |C| Jacobian matrix for contact position

ci when robot is in current configuration q. Therefore, the

tangent space constraint for ci can be represented as

Kdq = 0, (4)

where K = [KT
1 , ...,KT

N]T is the contact matrix, and Ki =
nT

i Ji. Then Eq. 1 can be approximated by

q∗ = min
K dq=0

δ(q,qr) (5)

Next we formalize the objective function. Instead of find-

ing the optimal q∗ for Eq. 5, we try to find the optimal

control dq∗ instead (i.e. its integration output
∫

dq∗ =
q∗). This approach does not solve the original optimiza-

tion equation (Eq. 5) but it is more convenient for our

tangent constraint. The new objective function is (dq −
dqdesire)

T (dq−dqdesire), where dqdesire = α(qr −qc).
This can be viewed as a simple feed-back control: where

the initial guess qc is far from the target, we hope that the

robot moves faster, otherwise it should move slower to avoid

overshooting. The actual control dq should approximate the

desired control dqdesire as much as possible. As a result the

local constrained optimization in step 2 can be formalized as:

dq∗ = argmin
K dq=0

(dq− dqdesire)
T (dq− dqdesire). (6)

According to first-order necessary condition for equality

constraints [2], dq∗ satisfies λ
T∇(Kdq) = ∇[(dq −

dqdesire)
T (dq − dqdesire)]. Overall, the optimal control

could be expressed as:

dq∗ = (I−K†K) dqdesire = α(I−K†K)(qr − qc), (7)

Fig. 2. (a) Standard RRT-extension grows the RRT-tree T from qn to
qr , the extension is truncated when meeting the obstacles and stops at
qc ∈ Ccont. (b) If qr is in-colliding, retraction-based extension creates
a sequence of contact samples S = {qc,qd, ...,qm}. RRT tree can grow
towards qr closer. (c) If qr is non-colliding, but segment qrqn is not
collision-free, retraction is executed similarly.

where I is unit matrix and K† is the pseudo-inverse of K.

Then the configuration qi in step 2 can be computed as

qi = qc + dq∗ (8)

and α can be used to control the stepsize of each retraction.

If qr is in free space, but the segment qrqn is not

collision-free, we can also apply the retraction strategy. As

Fig. 1(b) shows, we perform retraction similarly, except that

for each retraction sample qd, we check whether it can

connect to qr without collisions. Once such a configuration

is found, we stop the iterative step and add qr into set S.

For articulated models, we must handle joint limits care-

fully. Suppose the upper and lower joint limits for the

articulated model are qupper and qlower, respectively. If

some joints of qd are out of these limits, we update the

desired control to dqdesire = α(qr − qc) + β[(qupper −
qd)

− + (qlower − qd)
+], where (·)+ = max(·, 0) and

(·)− = min(·, 0). Next we compute qd again, which is very

fast as all the matrixes can be reused and only one extra

matrix-vector multiplication is needed. If the new qd still

violates the limits, we just truncate to remain within the joint

limits.

C. Retraction-Based RRT Planner

In this section, we use the retraction algorithm to improve

the performance of RRT. Our new RRT-planner is designed

for articulated models and retracts many of the generated

samples including ones that belong to free space.

The RRT algorithm [16] explores the free C-Space by

randomly sampling and building a RRT-tree. Multiple trees

are also used in some variations of RRT, e.g. Bi-RRT [11].

The RRT algorithm starts with a tree T with a root node, then

it adds more nodes into the tree iteratively by a tree extension

step. As Fig. 2(a) shows, standard RRT extension selects

a node qn in the tree that is nearest to a random sample

qr and attempts to extend the tree from qn towards qr by

connecting them with a straight line in the C-Space. However,

the obstacles result in a truncated RRT-extension: i.e. the

extension will stop at qc, the first in-contact configuration

between qn and qr. If qn is itself a configuration in Ccont,

then the RRT tree stays the same.

2531

Our retraction-based extension algorithm can improve the

performance of RRT algorithm by enabling RRT tree to

explore free space more efficiently. As shown in Fig. 2(b)(c),

when extension is interrupted by obstacles, retraction strategy

helps to create samples along the obstacles and to grow

the RRT tree toward qr. There are several benefits of this

enhanced scheme: First, more samples are created in and near

the narrow passages; Secondly, in free environment, RRT

implicitly biases for unexplored area and retraction helps

RRT to keep such property when obstacles exist. We further

analyze these behaviors in Sec. V.

IV. RETRACTION-BASED DECOMPOSITION RRT

PLANNER

In this section we present a retraction algorithm for a

decomposition RRT planner for high-DOF models. We first

briefly introduce a decomposition planner. Next we combine

our optimization-based retraction algorithm into this decom-

position planner.

A. Decomposition Planner

Our basic decomposition planner is based on prior ap-

proaches [24] and [32]. For a robot system R with D DOFs,

we decompose it into M parts: R = {R1, ..., RM}, with Cj
as the configuration space for subsystem Rj with Dj DOFs

and
∑M

j=1
Dj = D. The system configuration space C is

the joint configuration of all M robots: C = C1 × ...× CM .

Each subsystem can be regarded as a single robot in a multi-

robot system [24] or one part of an articulated robot [32].

The configuration of the system is q = {q1, ...,qM}, where

qj ∈ Cj is the configuration for subsystem Rj . qinit and

qgoal are the initial and goal configurations respectively.

As Algo. 1 shows, the planner computes a collision-free

path using incremental steps: in the j-th step it computes

a collision-free path τj for a merged subsystem R̃j =
{R1, ..., Rj}. When j = 1, τ1 is computed for R̃1 = R1 with

standard RRT algorithm. In the following steps, τj is com-

puted by a special RRT algorithm shown in Fig 3. Notice that

R̃j = {R̃j−1, Rj} and τj−1 is already a collision-free path

for R̃j−1, we use a greedy bias similar to [24], [32]: R̃j−1

will be constrained on τj−1 and only Rj’s configuration

allows random sampling. As a result, the planning dimension

is reduced from
∑j

k=1
Dk to 1 + Dj . Such special RRT

can be viewed as planning Rj regarding R̃j−1 as moving

obstacles. τj−1 is called the guiding path for R̃j [32], which

is parameterized over [0, 1], i.e. τj−1 = τj−1(s), s ∈ [0, 1].
These methods can work well in many cases. However,

the guiding path bias is a greedy strategy and the overall

algorithm may fail to compute a collision-free path. For

example, moving obstacle R̃j−1’s trajectory τj−1 may make

a very narrow passage for Rj or block it. In order to handle

this problem, we can use perturbation [32] or decomposition

adjustment presented in Sec. VI-A.

B. Retraction-Step

As Fig. 3 shows, the retraction for a decomposition

planner is similar to that for RRT planner, except that we

must consider the guiding path constraint. Suppose we are

Algorithm 1: Basic Decomposition Planner

Input : decomposition profile: R = {R1, R2, ..., RM}
init and goal configuration qinit and qgoal

Output: a collision-free path τ in C
begin

τ1 ← RRT(C1, q1
init, q1

goal)

if τ1 = NIL then
return FAILURE

for j = 2 to M do
τj ← RRTWITHGUIDINGPATH([0, 1]× Cj ,

τj−1, (0, q
j
init), (1, q

j
goal))

if τj = NIL then
return FAILURE

return τ = τM

end

computing collision-free path τj for merged system R̃j =
{R̃j−1, Rj}. The configuration for R̃j can be represented as

q̃ = (qprev,qcur), where qprev and qcur are configurations

of R̃j−1 and Rj respectively. qprev is one point on the

guiding path τj−1(s) and qcur is a random sample in Cj .

Therefore we have q̃ =

(

τj−1(s)
qcur

)

. We also define a

(Dj+1)-dim vector q̆ =

(

s

qcur

)

which is one-to-one related

with q̃. The resulting algorithm is similar to the 4 steps in

Sec. III-B, but there are some differences:

The first difference is with respect to contact query for

q̃c. Only the contacts between Rj and obstacles or R̃j−1 are

needed to be checked, because τj−1 is already collision-free

and guiding path constraint requires R̃j−1’s configuration

lying on τj−1 during the retraction step.

The tangent constraint is also different. As τj−1(s) is

a polygonal line in C-Space, its derivative d
dt

τj−1(s) is a

staircase function: qprev changes with a constant ratio within

each path segment. Suppose such rate for segment containing

τj−1(sc) is v (refer to Fig 3(b)), Eq. 2 can be updated as:

Ji d q̃ = (Jprev
i ,Jcur

i)

(

dqprev

dqcur

)

= (Jprev
i ,Jcur

i)

(

d sv

dqcur

)

= d ci

(9)

Combined with Eq. 3, the tangent constraint Eq. 4 becomes

K

(

d s

dqcur

)

= Kd q̆ = 0, (10)

where K = [KT
1 , ...,KT

N] is the contact matrix in decom-

posed case, and Ki = (nT
i J

prev
i v,nT

i Jcur
i).

Other retraction steps are similar to Sec. III-B: we also

define a desired control d q̆desire =

(

α1(sr − sc)
α2(qr − qc)

)

and the

optimal control will be d q̆∗ = (I−K†K) d q̆desire. Finally,

the retraction result on the tangent space is q̆i = q̆c + d q̆∗,

and we pullback it onto C̃j and get q̃i. q̃i’s projection on

2532

guiding path�j-1

�j-1

(Sr , qr)

(Sn , qn)

(Sc ,qc)(Sd ,qd)
segment contains Sc

(b) retraction for decomposition-based planner: a 2-link example

0

1 S

T

(Sn , qn)

(Sr , qr)

(Sc , qc)

Sn

Sr

Sc

(Sd , qd)Sd

Cj

(a) retraction for decomposition-based planner

Fig. 3. (a) shows retraction-based extension for decomposition plan-
ner: The horizontal plane represents Rj ’s configuration space Cj . s-axis
represents the guiding path τj−1, s is the path’s parameterization. The
whole configuration space is [0, 1] × Cj , and one of its configuration is
q̆ = (s,q) ≡ (τj−1(s),q), where q ∈ Cj is a projection of (s,q) onto
Cj and s represents a point τj−1(s) on guiding path. RRT-extension tries to
connect a node on decomposed RRT tree (sn,qn) towards a random sample
(sr,qr). Due to self-collision or collision with obstacles, the extension
stops at (sc,qc), a contact state. Then a retraction in [0, 1] × Cj creates a
series of contact states (sd,qd) closer to (sr,qr). (b) shows the retraction
algorithm for a 2-link example in workspace. Here the red (upper) link is
sampled randomly and the black (lower) link is constrained on guiding path.

Ccont is the new extraction sample q̃d. We still have to

check whether q̃d is valid configuration: qc should be within

Rj’s joint limits; sd and sc must lie in the same segment

of guiding path (this can be viewed as extra joint limits

requirement for an extra ‘joint’ s). Any violation can be

resolved by the method introduced in Sec. III-B.

C. Retraction-Based Decomposition Planner

The retraction step improves Algo. 1 with a new RRT-

extension step for RRTWITHGUIDINGPATH. The new RRT-

extension is the same as the one in Sec. III-C except we

replace the RRT-extension and retraction algorithms by the

corresponding versions for the decomposition planner in

Sec. IV-B. We also discuss other improvements for decom-

position planner besides retraction in Sec. VI-A.2.

V. ANALYSIS

In this section we analyze the behavior of the retraction-

based RRT planner based on Voronoi diagram distortion.

It is well known that the behavior of RRT algorithms

can be analyzed using Voronoi diagrams [15]. As shown

in Fig. 4(a), given a tree built by the RRT algorithms, we

consider the Voronoi diagram of all the tree nodes in the C-

Space. In the RRT-extension step, in order to find the nearest

node for a random sample qr is equivalent to find a tree

node q whose associated Voronoi cell V (q) contains qr.

Therefore the probability of q to be selected for extension

is proportional to the volume of V (q). As a result, RRT

planners have an implicit bias towards unexplored regions.

(a) Voronoi diagram (b) Deformed Voronoi diagram

C-Obstacle

C-Obstacle

Fig. 4. (a) shows the Voronoi diagram. The black nodes are RRT-tree nodes
and the red lines are edges between nodes. Imagine the voronoi diagram is
deformable and mark holes in places where obstacles are to be placed (the
red points). Then enlarge the hole to the shape of obstacle and deform the
diagram, we obtain (b).

Such exploring property assumes no obstacles exist so that

exploring Cfree is equivalent to exploring C-Space.

When the environment contains obstacles, ideally we hope

that RRT will still bias towards unexplored regions in Cfree.

However, during sampling generation and finding a tree node

nearest to the sample, the RRT algorithm simply ignores

the obstacles in the scene. Rather it takes the obstacles into

account during the extension step. As a result, if a tree node

q is selected for extension, there is high probability that the

Voronoi cell V (q) has a large volume, but V (q)
⋂

Cfree may

still be small, especially in narrow passages. In other words,

when there are obstacles in the scene, RRT’s Voronoi bias

still prefers unexplored C-Space but not unexplored Cfree,

though C-Space is now larger than Cfree.

Our retraction strategy can improve the performance of

RRT planner in an environment with obstacles. We first

analyze what is the ideal RRT-extension when obstacles

exist and then show that our retraction approach is a good

approximation of the ideal case. We start from the RRT-tree

and its associated Voronoi diagram(Fig. 4(a)). Next we try

to embed C-Obstacles into the Voronoi diagram. Imagining

the diagram is deformable (i.e. edges and cells) and we mark

holes in places where C-Obstacles are going to be placed (red

points in Fig. 4(a)). Then we extend the holes to the shapes

of C-Obstacles. This will distort the diagram as shown in

Fig. 4(b). Since we use an elastic deformation, the distortion

function f is a topological transformation (or homeomor-

phism) [17]. After the distortion function has been applied,

the new cells of the partition and tree nodes will move

away from C-Obstacles and tree edges will become curved.

However, homeomorphism ensures that the curved tree edges

with stay within the free space (Fig. 4(b)) and enter/leave the

same cells by the same facets. These curved edges are the

ideal RRT-extension in the presence of obstacles, and the

difference between basic extension is that tree nodes must

be connected by curved interpolation, especially for those

edges in high-distortion regions, like narrow passages. These

curved cells are no longer strict Voronoi cells, in fact they are

closely related to the Landmark Voronoi Complex [6], which

is the natural extension of the geometric Voronoi diagram to

the case of a graph with the shortest-path metric.

Next we show that the retraction-step approximates the

ideal extension. First, the retraction step is executed when

2533

RRT-extension is truncated and we add more samples near

the contact space. As regions near C-Obstacles always have

high distortion (Fig. 4(b)), the retraction step uses truncation

as a heuristic to detect a high-distortion region. Secondly,

retraction tries to find a node in free space nearest to random

sample by searching along contact space. Ideal extension

does similar thing: for cells near C-Obstacles (the shaded

cells in Fig. 4(b)), tree nodes will move to some place near

C-Obstacles that is nearest to their original position. There-

fore, retraction-based extension implicitly uses the changed

Voronoi bias and can help RRT planner to perform better in

narrow passages.

VI. IMPLEMENTATION AND RESULTS

In this section, we present results of our retraction-

based planner on articulated robots. We first discuss some

implementation issues. Then we highlight the performance

of our new planner on a set of benchmarks with narrow

passages. We show that for the basic RRT planner and the

decomposition planner, the retraction algorithm can improve

their efficiency obviously. All the timings reported here were

taken on a laptop with 2.8GHz CPU and 2GB memory.

A. Implementation

1) Retraction Algorithm: We use PQP [14] [31] for

collision detection and contact query. Based on the three

types of contacts (vertex-vertex, vertex-face and edge-edge)

PQP reported, we compute the contact position and contact

normal for each contact, which is used in the retraction step

in Sec. III-B and Sec. IV-B. Besides reporting contact with

the obstacles, we also check for any self-collision in the

articulated model. However, we pre-filter these contacts to

remove some of the self-contacts. For example, for a human

shape robot we will not report the self-contact between left

hand and left arm, which are links adjacent to each other.

Thus we manually decompose robot into several parts, and

filter the self-contacts within the same parts. This strategy

can improve algorithm’s robustness.

Our approach works on triangle soup models, which may

not be a smooth manifold. Thus qi in Eq. 8 may be in-

colliding due to surface noise. This can also be caused by

concave geometry of C-Obstacle at qc. This will make the

projection operation (step 3, to get qd) difficult. Moreover,

our motion planner tries to connect each retraction sample

qd to the RRT-tree, but the manifold noise or local convex

geometry of C-Obstacle at qd will make connecting two

nearby contact samples by linear interpolation, a part of RRT-

extension, rather difficult. Our solution is to relax the tangent

constraints in Eq. 3 a little, i.e. change it to d ci · ni = ǫi,

where ǫi is a small positive real number. As a result, the

optimal control in Eq. 7 will be dq∗ = K†ǫ + α(I −
K†K)(qr − qc). If this relaxation still does not work, we

use the vertex enhancement [9] method to generate additional

samples around qc or qd.

2) Decomposition Planner: Here we introduce some

methods other than retraction that are used by our implemen-

tation to improve the efficiency of decomposition planner.

First we replace the Euclidean metric by a semi-geodesic

metric. Euclidean distance between two samples (s1,q1) and

(s2,q2) is ‖τ(s1) − τ(s2)‖
2
2 + ‖q1 − q2‖

2
2. However this

metric does not bias enough for guiding path, e.g. when

a guiding path τ looks like a loop in C-Space, the two

endpoints have small Euclidean distance, but the guiding

path implies they should be very far away. Instead we use

the semi-geodesic distance (
∫ s2

s1

τ ′(s)ds)2+‖q1−q2‖
2
2. This

metric considers the guiding path constraint and can measure

distance better.

Decomposition planner is greedy, therefore it is possible

that the guiding path constraint will make it hard to compute

a collision-free path after adding new subsystem of robot.

For example, if τj−1 is not suitable, [0, 1] × Cj may not

contain a collision-free path. Our solution is automatically re-

organize the overall decomposition. We record the maximum

and minimum s values of current RRT-tree’s nodes, whose

configuration is of the form (s,q). If the two values do not

come close toward each other for a long time, we guess

guiding path τj−1 is not good. Then we abandon τj−1 and

merge Rj and Rj−1 into one system and execute RRT

again in configuration space [0, 1]×Cj−1 ×Cj with τj−2 as

guiding path. In the worst case, the decomposition planner

will degrade into a basic RRT planner.

B. Results

We test our retraction-based algorithm on a set of bench-

marks. In our experiment, we run every benchmark 10 times

with different random seed and compute the average running

time. We use two criteria to compare the performance be-

tween planners with and without retraction: 1) planning time

2) ND-ratio, which is the ratio of number of non-degraded

RRT-extensions (i.e. not the no-progress extension) to the

number of all RRT-extensions. We prefer a planner with

lower planning time and higher ND-ratio, which means more

RRT-extensions will contribute to the free-space exploring

and fewer computational capability is wasted on unsuccessful

attemps. ND-ratio is a rough measurement for performance,

though faster algorithms may have lower ND-ratio because

they can find a path with only a few RRT-extensions.

In our experiment, there are 3 types of planners: Whole

body planner is the basic RRT planner without decomposi-

tion technique, which is discussed in Sec. III. Decomposition

planner is discussed in Sec. IV. Designed+Decomposition

planner is a special decomposition planner: the trajectory

of some of its DOFs (e.g. lower body for human robot) is

predesigned and planner aims at computing the trajectory for

other DOFs with the predetermined path as dynamic obsta-

cles. This special planner is especially useful for computer

animation, where animator can design the trajectory for some

parts of a human-like articulated model and use planner to

compute trajectory for remain parts. For each type of planner,

we compare 4 types of variations: RRT, RRT with retraction

(RRT-R), BiRRT, BiRRT with retraction (BiRRT-R).

In the first bridge benchmark (Fig. 5) a hyper-redundant

robot (HRR) tries to go through a hole and brackets of bridge.

We only test our retraction-based basic RRT planner here.

2534

Fig. 5. Bridge: 40-DOF HRR robot tries to go through the hole and brackets
of bridge. Retraction algorithm’s maximum speedup is 4 times.

Fig. 6. Picking Object: 41-DOF human-shape robot stands up and places
object on the table. Retraction algorithm’s maximum speedup is 80 times.

Fig. 7. Placing Object: 41-DOF human-shape robot picks the book and
puts it on the shelf. Retraction algorithm’s maximum speedup is 4 times
and can succeed when non-retraction planner fails.

Fig. 8. Bending: 41-DOF human-shape robot bends and stretches to put
the tool inside the car. Retraction algorithm’s maximum speedup is 2 times
and can succeed when non-retraction planner fails.

In other 3 benchmarks, a humanoid robot tries to execute

some tasks in constrained environments. We compare all

3 types of planners for the first two benchmarks Object

Picking (Fig. 6) and Object Placing (Fig. 7), because the

constrained environments make it possible for planner to

find a reasonable trajectory for lower body. For the Bending

(Fig. 8) benchmark, complete planning can not find a good

path for lower body, so we only test decomposition planner

on it. The complexities of environments are shown in Table I.

All the four benchmarks have narrow passages: in bridge

hole and brackets of bridge make narrow passages; in Object

Picking grate, table and ceiling are main narrow passages for

arm and head; in Object Placing, grate, lamp and bookshelf

cause narrow passages for arms; in Bending, car and the chair

in car make environment challenging.

The planning results of all the benchmarks are shown in

Figs. 5, 6, 7 and 8. The performance results are summarized

in Tables II, III, IV and V. According to the tables, our retrac-

tion algorithm can significantly improve the performance of

RRT planners in almost all cases with narrow passages. The

ND-ratio of retraction-based planners are also higher, which

means fewer degraded RRT-extension and makes planning

more efficient.

From the result we can find that our retraction-based

algorithm usually provide much larger speedup for whole

Bridge Picking Placement Bending

#obstacles 1 4 5 7

#DOF 40 41 (27∗) 41 (27∗) 41

#polygons 31718 7967 52810 372609

TABLE I

GEOMETRIC COMPLEXITY OF OUR BENCHMARKS (∗ ARE FOR

PREDESIGNED+DECOMPOSITION PLANNER).

Whole body RRT RRT-R BiRRT BiRRT-R

time (sec.) 30.515 8.031 25.109 10.140

ND ratio (%) 54.55 51.82 42.61 49.74

TABLE II

PERFORMANCE FOR BRIDGE BENCHMARK.

Whole body RRT RRT-R BiRRT BiRRT-R

time (sec.) 33.24 0.417 2.069 0.339

ND ratio (%) 38.65 56.71 30.69 67.53

Decomposition RRT RRT-R BiRRT BiRRT-R

time (sec.) 13.76 2.188 0.974 0.284

ND ratio (%) 66.17 91.55 66.48 86.27

Designed+Decomposition RRT RRT-R BiRRT BiRRT-R

time (sec.) 2.969 2.128 1.583 1.195

ND ratio (%) 80.95 93.02 87.20 91.03

TABLE III

PERFORMANCE FOR PICKING OBJECT BENCHMARK.

Whole body RRT RRT-R BiRRT BiRRT-R

time (sec.) FAIL 62.31 43.20 24.97

ND ratio (%) <10 31.23 22.15 44.50

Decomposition RRT RRT-R BiRRT BiRRT-R

time (sec.) FAIL 35.53 2.514 3.126

ND ratio (%) <10 68.58 46.12 55.55

Designed+Decomposition RRT RRT-R BiRRT BiRRT-R

time (sec.) 28.26 16.05 9.730 2.402

ND ratio (%) 71.00 81.16 68.01 78.57

TABLE IV

PERFORMANCE FOR PLACING OBJECT BENCHMARK.

Decomposition RRT RRT-R BiRRT BiRRT-R

time (sec.) FAIL 71.19 17.03 9.765

ND ratio (%) <10 36.47 16.41 28.77

TABLE V

PERFORMANCE FOR BENDING BENCHMARK.

body planner than for decomposition-based planner, for

RRT planner than for Bi-RRT planner. It is reasonable:

Both decomposition and RRT-connect algorithms are special

techniques designed to improve RRT planner’s efficiency.

They already add some extra samples due to their own

special biases to help robot go through narrow passages.

Many of these extra samples may also be the retraction

samples created by our retraction-based algorithms. In one

word, RRT-connect or decomposition techniques have al-

ready provided part of retraction algorithm’s benefit, so our

method’s benefit is not so obvious when combining with

them. However, even for these cases, our new planner can

still show an acceleration about 2-5 times. For RRT or whole

body planner, the acceleration ratio is about 5-80 times.

VII. LIMITATIONS

Our method has a few limitations. First, our method

behaves well when obstacles and links of articulated models

are locally convex near the contact points. If local convex

property holds, moving the links on contact points’ tangent

2535

space will not create new contacts and collisions because

there always exists a local separating plane between two non-

colliding convex shapes. However, if locally convex property

does not hold, qi can have collision which is difficult to

resolve.

Secondly, the retraction algorithm needs to compute the

normals at the contacts, which is sensitive to the surface’s

quality. As a result, the performance of the retraction algo-

rithm may be sensitive to the smoothness of the surface.

Another disadvantage is that we try to keep all the contacts

on their workspace tangent planes simultaneously. However,

this is not always possible, e.g. when contact matrix K in

Eq. 4 or Eq. 10 is over-determined or the null-space of K

is not within joint limits.

Finally, the optimization algorithm used for retraction

computation may be trapped in local minima. Compared to

the rigid body case [31], C-Space of an articulated model

can have much higher dimension, and so the local minima

problem is more serious. Moreover, the Euclidean metric

used by our optimization does not consider obstacles, which

also adds to the difficulty of dealing with local minima.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we present an optimization-based retraction

algorithm for articulated models to improve the performance

of RRT and decomposition planners. Our algorithm retracts

randomly generated C-Obstacle samples so that they can be

more likely to be connected to the RRT-tree. We apply our

algorithm for articulated models with high DOFs for chal-

lenging planning scenarios. The experimental results show

that our algorithm can efficiently explore narrow passages

with significant speedups.

There are many avenues for future work. We are interested

in analyzing our retraction-based planners using different

distance metrics. We are also interested in using Landmark

Voronoi Complex to design new PRM or RRT based planners

and analyze their performances for narrow passages.

Acknowledgements. This research was supported in

part by ARO Contract W911NF-04-1-0088, NSF awards

0636208, 0917040 and 0904990, DARPA/RDECOM Con-

tract WR91CRB-08-C-0137, and Intel.

REFERENCES

[1] N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo, “OBPRM:
An obstacle-based prm for 3d workspaces,” Proceedings of WAFR, pp.
197–204, 1998.

[2] A. Antoniou and W.-S. Lu, Practical Optimization: Algorithms and

Engineering Applications. Springer, 2007.

[3] H.-L. Cheng, D. Hsu, J.-C. Latombe, and G. Sánchez-Ante, “Multi-
level free-space dilation for sampling narrow passages in PRM plan-
ning,” in Proc. IEEE Int. Conf. on Robotics & Automation, 2006, pp.
1255–1260.

[4] S. Dalibard and J.-P. Laumond, “Control of probabilistic diffusion
in motion planning,” in Proc. of Eighth Workshop on Algorithmic

Foundations of Robotics, 2008.

[5] M. Erdmann and T. Lozano-Perez, “On multiple moving objects,”
Proc. of IEEE Conf. on Robot. & Autom., pp. 1419–1424, 1986.

[6] Q. Fang, J. Gao, L. J. Guibas, V. Silva, and L. Zhang, “Glider: Gradient
landmark-based distributed routing for sensor networks,” in Proc. of

the 24th Conference of the IEEE Communication Society (INFOCOM),
2005, pp. 339–350.

[7] M. Foskey, M. Garber, M. Lin, and D. Manocha, “A voronoi-based
hybrid planner,” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems, 2001.
[8] D. Hsu, J. Latombe, and H. Kurniawati, “On the probabilistic foun-

dations of probabilistic roadmap planning,” in Proc. Int. Symp. on

Robotics Research, 2005.
[9] L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. Robot. Automat., pp. 12(4):566–580, 1996.

[10] J. Kuffner, “Goal-directed navigation for animated characters using
real-time path planning and control,” in In Proceedings of Captech’98.
Springer-Verlag, 1998, pp. 171–186.

[11] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” in Proc. IEEE International Conference

on Robotics and Automation, 2000.
[12] H. Kurniawati and D. Hsu, “Workspace-based connectivity oracle:

An adaptive sampling strategy for prm planning,” in Proc. of 7th

International Workshop on the Algorithmic Foundations of Robotics,
2006.

[13] A. Ladd and L. Kavraki, “Using motion planning for knot untangling,”
International Journal of Robotics Research, vol. 23, no. 7-8, pp. 797–
808, 2004.

[14] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha, “Fast proximity
queries with swept sphere volumes,” Department of Computer Science,
University of North Carolina, Tech. Rep. TR99-018, 1999.

[15] S. M. LaValle, Planning Algorithms. Cambridge University Press
(also available at http://msl.cs.uiuc.edu/planning/), 2006.

[16] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects,” Robotics: The Algorithmic Perspective (Proc.

of the 4th Int’l Workshop on the Algorithmic Foundations of Robotics,
2000.

[17] J. R. Munkres, Topology. Pearson Education, 2000.
[18] J. Pettre, J.-P. Laumond, and T. Simeon, “3d collision avoidance for

digital actors locomotion,” 2003, pp. 400–405.
[19] C. Pisula, K. Hoff, M. C. Lin, and D. Manocha, “Randomized path

planning for a rigid body based on hardware accelerated voronoi
sampling,” Proc. of International Workshop on Algorithmic Foundation

of Robotics, 2000.
[20] B. Raveh, A. Enosh, O. Schueler-Furman, and D. Halperin, “Rapid

sampling of molecular motions with prior information constraints,”
PLoS Comput Biol, vol. 5, 2009.

[21] S. Redon and M. Lin, “Practical local planning in the contact space,”
Proc. of IEEE ICRA, 2005.

[22] ——, “A fast method for local penetration depth computation,” Journal

of Graphics Tools, vol. 11, no. 2, pp. 37–50, 2006.
[23] S. Rodriguez, X. Tang, J. Lien, and N. Amato, “An obstacle-based

rapidly-exploring random tree,” in Proceedings of International Con-

ference on Robotics and Automation, 2006, pp. 895–900.
[24] M. Saha and P. .Isto, “Multi-robot motion planning by incremental

coordination,” in Proc. of IROS, 2006, pp. 5960–5963.
[25] M. Saha, J. Latombe, Y. Chang, Lin, and F. Prinz, “Finding nar-

row passages with probabilistic roadmaps: the small step retraction
method,” Intelligent Robots and Systems, vol. 19, no. 3, pp. 301–319,
Dec 2005.

[26] G. Song and N. M. Amato, “Using motion planning to study protein
folding pathways,” in Int. Conf. Comput. Molecular Biology, 2001, pp.
287–296.

[27] S. Thomas, G. Song, and N. M. Amato, “Protein folding by motion
planning,” Physical Biology, vol. 2, pp. 148–155, 2005.

[28] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, “Motion planning for
a rigid body using random networks on the medial axis of the free
space,” Proc. of the 15th Annual ACM Symposium on Computational

Geometry (SoCG’99), pp. 173–180, 1999.
[29] E. Yoshida, “Humanoid motion planning using multi-level dof ex-

ploitation based on randomized methods,” 2005, pp. 3378–3383.
[30] L. Zhang, Y. Kim, and D. Manocha, “A fast and practical algorithm

for generalized penetration depth computation,” in Proceedings of

Robotics: Science and Systems, Atlanta, GA, USA, June 2007.
[31] L. Zhang and D. Manocha, “An efficient retraction-based RRT plan-

ner,” in IEEE International Conference on Robotics and Automation

(ICRA), 2008, pp. 3743–3750.
[32] L. Zhang, J. Pan, and D. Manocha, “Motion planning of human-

like robots using constrained coordination,” in IEEE-RAS International

Conference on Humanoid Robots, 2009.

2536

