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Abstract— We consider a navigation problem for a robot
equipped with only a map, compass, and contact sensor. In
addition to the limitations placed on sensing, we assume that
there exists some bounded uncertainty on rotations of our
robot, due to precision errors from the compass. We present an
algorithm providing guaranteed transitions in the environment
between certain pairs of points. The algorithm chains these
transitions together to form complete navigation plans. The
simplicity of the robot’s design allows us to concentrate on
the nature of the navigation problem, rather than the design
and implementation of our robotic system. We illustrate the
algorithm with an implementation and simulated results.

I. INTRODUCTION

The ability to navigate reliably through a cluttered en-

vironment is a fundamental capability for mobile robots.

Navigation can be a challenging problem because of the

dual difficulties of finding a path from the robot’s starting

location to its goal and executing such a path successfully, in

spite of unpredictable actuation and limited sensing. Typical

navigation methods take a decoupled approach, in which

path selection and path execution are handled separately. The

former phase chooses a path for the robot to follow without

considering sensing issues, and the latter uses the robot’s

sensors to execute the chosen path. The primary limitation

of that approach is that it is unsuitable for situations in

which the robot must choose its path, or portions thereof,

specifically to reduce or eliminate uncertainty.

In this paper, we present a unified approach that considers

uncertainty directly in the process of path selection. Our

approach has parallels to prior work on coastal navigation

[22], but applies in a minimalist setting, considering a robot

equipped with no sensors other than a compass and a contact

sensor. Our study of this very simple robot model is moti-

vated by the obvious desire to understand how navigation

problems can be solved with simple, inexpensive robots, but

also by a broader interest in understanding what information

is truly required to complete the navigation task.

Although prior work has considered similar robot models

for other tasks [20], [21], in this paper, we consider a

much more realistic model for robot motion that includes

substantial errors, and show that many navigation problems

can still be solved under this model.

The basic intuition of the algorithm is to find a sequence

of jumps, called high-level transitions, between corners in

the environment. Each high-level transition is composed of

repeated back-and-forth motions between the incident edges

of the target vertex. These motions make progress toward the
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Fig. 1. A robot in a complex environment executing a plan generated by
our algorithm. The robot uses convex corners to reduce its state uncertainty
several times throughout the plan.

target, but cannot be guaranteed to reach it at any particular

step because of the possibility of motion errors. If progress

is made with each motion, however, the robot can guarantee

to become arbitrarily close to the target node as the number

of motions increases. To determine whether such a jump is

possible, we use a formal notion of the preimage of the target

vertex. The interesting feature of these transitions is that they

tolerate uncertainty well—during their execution, the robot

does not know its own position exactly—but terminates only

after the robot has re-localized itself in a new place.

By finding pairs of environment vertices between which

such high-level transitions can be made, the algorithm forms

a directed graph of high-level transitions, through which it

then searches for a complete navigation plan.

The remainder of the paper is structured as follows. In

Section II, we discuss related research. Section III gives a for-

mal problem statement. Our algorithm appears in Section IV,

and we present an implementation in Section V. Section VI

concludes the paper with discussion and a preview of future

work.

II. RELATED WORK

Our planning algorithm is related to the idea of “pre-

image backchaining” introduced by Lozano-Pérez, Mason

and Taylor [17]. Our approach is similar in that we consider

an error cone that increases the set of possible states from a

single known state to some larger set of states derived from

a known bound on error.

Erickson, et al, [13] also use this idea of an error cone

to solve a global active localization problem. They describe

a system whereby actions are carefully chosen to drive
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the probability of the robot’s position toward a single cell

in a coarse discretization of the environment. We are not,

however, using a probabilistic approach, but rather a worst-

case analysis. The other obvious difference is that we are

solving a navigation problem and thus treat our points as

landmarks, indirectly providing additional information about

the robot’s state.

The idea of landmark-based navigation was also proposed

by Lazanas and Latombe [16]. They suggest the use of

landmarks such that while the robot is in proximity of a

landmark, the robot is able to execute error-free actions.

They also assert that the robot is able to recognize when

it has achieved its goal. In contrast, our robot has no sensor

which would allow it to do so, nor does our planner depend

on the robot explicitly sensing that it has achieved its goal

state. Our planner, also, never assumes error-free actions by

the robot nor an exact knowledge of any state after leaving

the initial state. Instead, we use carefully a crafted plan that

ensures the robot has reached its goal at plan completion, in

spite of its lack of a goal-detecting sensor.

Our approach is similar to Erdmann and Mason’s work

on sensorless manipulation [10]. Our work follows suit with

an inspection of the robot’s environment, rather than any

engineering of the environment as in [17]. The synthesis of

these works results in a planner that uses parts of the environ-

ment as landmarks, by describing a careful iterative motion

process to eliminate uncertainty periodically throughout the

robot’s execution. By determining landmarks from plentiful

environment features, in this case, convex vertices, we show

that a very simple robot is able to solve problems previously

considered only through changing the environment in some

way or the addition of more sensors.

Our goal of considering simplified sensing and actuation

systems while solving meaningful problems is not new. A

number of different tasks have been addressed with this

approach, including manipulation in general [1], [11], [12],

[17], part orientation specifically [2], [10], [14], [18], [24],

navigation [3], [8], [15], [16], and mapping [6], [7], [19],

[23]. More generally, others have explored the question of the

minimal sensing requirements to complete a given task [4],

[9], [12]. This methodology of minimalist robotics research

can arguably be traced back to Whitney [25]. The idea of the

approach is that it is often useful to minimize the complexity

of a robotic system in order to focus instead on the problem

the robot intends to solve.

III. PROBLEM STATEMENT

This section formalizes the navigation problem we con-

sider.

A point robot moves in a closed, bounded, polygonal

region W ⊂ R
2 of the plane. The robot has a complete

and accurate map of its environment. A vertex v of W is

convex if the neighborhood of v in W is convex. Formally,

let B(v, ǫ) denote the open ball with radius ǫ centered at v.

A vertex v is defined as convex if there exists some ǫ > 0
such that B(v, ǫ)∩W is a convex set. Informally, notice that

convex vertices are formed whenever the two incident edges

of a vertex form an angle less than or equal to π radians.

The robot is equipped with a compass and a contact sensor,

but no other sensors. Note specifically that the robot has

no clock nor any method of odometry, and consequently

cannot measure the distances it moves. Using its compass,

the robot can orient itself in a desired direction relative to a

global reference frame, but because of noise in the sensor,

this rotation is subject to potentially large, bounded error.

Using its contact sensor, can translate in this direction until

it reaches the boundary of the environment.

Our model for the motions of this robot has the following

elements:

1) The state space X = W is simply the robot’s environ-

ment. Because we encapsulate the robot’s use of its

compass as part of the actions, we need not record the

robot’s orientation as part of the state.

2) The action space U ∈ [0, 2π) is the set of planar

angles. To execute an action u ∈ U , the robot orients

itself in direction u, subject to the error described

below, then moves forward in this direction until it

reaches the environment boundary.

3) Time proceeds in a series of stages, numbered k =
1, 2, . . .. In each stage, the robot chooses and completes

a single action. At stage k, the robot’s state is denoted

xk and its action is denoted uk.

4) Rotation errors are modeled as interference by an

imaginary adversary called nature. In each stage, na-

ture chooses a nature action θk ∈ Θ. Nature’s action

space Θ = [−θmax, +θmax] is an interval of possible

error values. Note that because we are interested in

worst-case guarantees of success, we need not consider

any probabilities over Θ. The robot has no knowledge

of nature’s choice, nor any way to observe it directly

or indirectly.

5) The state transition function f : X × U × Θ → X

describes how the state changes in response to the

robot’s actions, so that the current state xk, combined

with the robot’s action uk and nature’s action θk,

determines the next state xk+1:

xk+1 = f(xk, uk, θk). (1)

Specifically, f(xk, uk, θk) is defined as the opposite

endpoint of the longest segment in X , starting at

xk and moving in direction uk + θk. Note that, due

to error, the robot does not know xk+1 exactly. For

convenience, we occasionally abuse this notation to

apply several stages’ worth of actions at once, so that

xk+i = f(xk, uk, θk, uk+1, θk+1, . . . , uk+i, θk+i).
(2)

The robot’s goal, given W and θmax, along with initial and

goal states xI , xG ∈ W and an accuracy bound δ, is to

choose a sequence of actions u1, . . . , un so that

||xG − f(xI , u1, θ1, . . . , xn, un, θn)|| < δ (3)
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Fig. 2. The system of points: A, B, C, S

for all possible nature action sequences θ1, . . . , θn ∈ Θ. That

is, we seek actions that drive the robot from xI to a point

close to xG, regardless of nature’s actions. The accuracy

bound δ is needed because the robot’s motion error and

sensor limitations prevent it from knowing that is has reached

xG exactly.

IV. ALGORITHM DESCRIPTION

This section describes our algorithm to solve the naviga-

tion problem introduced in Section III. The basic structure of

the algorithm is to form a sequence of high-level transitions,

each composed of several actions. Each high-level transition

moves the robot between a pair of environment vertices. The

key feature that makes such transitions useful is that, after

each high-level transition completes, the robot has nearly

eliminated its uncertainty about its position.

The algorithm proceeds by identifying pairs of vertices

between which such a high-level transition can be made,

then using graph search techniques to assemble a sequence of

these high-level transitions into a complete plan. Section IV-

A describes the basic strategy the robot uses to make its high-

level transitions, and Section IV-B shows how to determine

whether this approach can successfully make a high-level

transition between two given vertices. Finally, Section IV-

C describes how we use this vertex-pair transition test to

build a directed graph, from which the complete plan can be

generated.

A. Corner finding algorithm

Given two distinct environment vertices S and A, how can

the robot use its unreliable motions to move reliably from

S to A? Let B and C be the predecessor and successor

of A in a counterclockwise ordering of the vertices of W

respectively. We refer to the segment formed by A and B as

AB and refer to the segment formed by A and C as AC.

To travel from S to A, the robot makes a series of

motions back and forth between AB and AC. To simplify

the description, we describe in detail the case in which the

robot’s first movement takes it from S to a point x1 on

AB. The complete algorithm considers both AB and AC

as potential initial segments, making the obvious changes

to the corner finding and preimage computation algorithms.

After this first motion, the robot alternates between the two

actions given in lines 4—8 of algorithm 1.

The intuition is that, at each step, the robot seeks to move

toward A as directly as possible. However, because of the

A

C

S = x0

x1x3

x2

x4

B

θmax

Fig. 3. Robot executing steps of corner-finding algorithm when AB is
target segment.

Algorithm 1 FINDCORNER(S, A, B, C, u0, θmax)

1: x0 ← S

2: for k ← 1 to n do

3: Execute action uk−1

4: if k mod 2 = 1 then

5: uk ← angle(A−B)− θmax

6: else

7: uk ← angle(A− C) + θmax

8: end if

9: end for

possibility of rotation errors, the robot must aim outward

from the edge on which it currently rests by an amount

equal to the maximum possible magnitude of this error.

See Figure 3. The robot repeats the process some specified

number of times, denoted n. This process is similar to the

angle adjustment method used by Erickson et al, [13]. Details

appear in Algorithm 1.

B. Computing preimages

Algorithm 1 depends on given vertices A and S, along

with an initial action u0. To apply this corner-finding algo-

rithm as part of a successful global plan, however, the robot

must find a value for u0 under which the corner-finding

algorithm is guaranteed to succeed. This section presents

our approach to finding such a u0, based on the notion of

preimages.

The preimage of vertex A from vertex S is defined as the

set of actions the robot can execute as the first action u0

of Algorithm 1, and be guaranteed not to collide with any

obstacle in W except the two segments AC and AB. The

following lemma provides the basis for the algorithm we use

to compute preimages.

Lemma 1: Let α denote the measure of angle formed at A

with B and C. If α < π−4θmax, and the robot is guaranteed

to make a collision free transition from x1 to x2, then the

robot is also guaranteed to make the subsequent transitions

to x3, . . . , xn without collision.

Proof: Use induction on the stage index k. As a base

case, note that the conclusion is given for k = 1. For the

induction step, assume that the statement is true for k = m

to show that it is true for k = m + 1. Refer to Figure 4. In
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Fig. 4. Showing that △(xm+1, xm+2, A) ⊂ △(xm, xm+1, A).

the transition from xm to xm+1, the robot may pass through

any point in the triangle formed by xm, xm+1, and A. By the

inductive hypothesis, therefore, we know that the interior of

this triangle does not contain any obstacles. Straightforward

reasoning about the angles in this arrangement shows that

∠(xm, xm+1, xm+2) = π − α − 4θ, which by supposition

is greater than 0. As a result, the triangle formed by xm,

xm+1, and xm+2 is non-degenerate, and xm+2 is closer to

A than xm. This implies that the triangle formed by xm+1,

xm+2, and A is fully contained within the triangle formed

by xm, xm+1 and A. Since the latter triangle contains no

obstacles, the former must also contain no obstacles. This

ensures that the transition from xm+1 to xm+2 is collision

free, completing the proof.

The implication of Lemma 1 is that there are only two

ways in which the robot can have a collision while exe-

cuting Algorithm 1: colliding with an obstacle on its initial

translation from S to x1, or along its second transition from

x1 to x2. Our algorithm proceeds by finding intervals of

actions that are guaranteed to safely complete these first two

transitions.

1) From S to x1: This section references Algorithm 2.

To check for instances of obstacles between S and AB, we

define the robot’s error cone (lines 2-8). For a given action

u, this cone is defined as the region is bounded by rays

originating at S with directions u + θmax and u − θmax.

We sweep the error cone around S and note all the angles

at which the leading or trailing edge of the cone intersects

some vertex v ∈ W . An example appears in Figure 5. We

refer to the actions that generate these intersections as critical

actions.

Critical actions represent directions at which a preimage

segment might begin or end. Once all the critical actions are

known, for each consecutive pair in an ordered clockwise

sequence, a mid-direction is chosen and along that direction,

an error cone is drawn (line 14). If the error cone contains

no vertices of W , then the area between those two critical

actions is collision free and the segment formed by the

intersection of rays along the two critical actions and the

target segment is included in the preimage (line 18). If

any vertices are found, then collision avoidance cannot be

guaranteed and thus the area is excluded from the preimage

(line 15).

2) From x1 to x2: This section references Algorithm 3.

To ensure that all jumps between the two target segments

C

BA

θmax

S = x0

Fig. 5. Determining two critical actions of the system.

Algorithm 2 FIRSTTRANSITIONPREIMAGE(A, B, C, S)

1: for i← 0 to 1 do

2: for all vertices v ∈ W do

3: u← angle(vj − S) + (−1)iθmax

4: if Intersects(ray(S, u), AB) then

5: critActions.insert(u)

6: end if

7: end for

8: end for

9: sortClockwise(critActions)

10: for s← 1 to j do

11: f ← s− 1
12: for all vertices v ∈ W do

13: mid← critActions[f ]+critActions[s]
2

14: if v ∈ triangle(S, mid + θmax, mid − θmax, AB)

then

15: delete(critActions[f ])
16: break loop

17: else

18: preimage.add(critActions[f ], critActions[s])
19: end if

20: end for

21: end for

22: return preimage

are obstacle-free, we must determine a triangle representing

the largest collision-free error cone for the jump from x1

to x2. The triangle we’re seeking is formed by a pair of

rays separated by 2θmax radians, originating from a point

on the segment AB, and intersecting the segment AC. One

of the rays must lie along AB; therefore, to make the largest

triangle possible we must determine an originating point as

far from A as possible. Figure 6 depicts an instance in which

that would not be B.

To determine the originating point, we first construct a

direction opposite of the ray rotated 2θmax from AB’s angle

(line 1). Lines 3–8 use that direction to search for any vertex

in the environment that would result in the originating point

closest to A. The angle from S to this originating point must

be rotated by θmax radians to account for error on the jump

from S to x1.

Algorithm 4 shows how to compute the preimage. The
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Fig. 6. Determining right side of preimage along segment AB.

Algorithm 3 SECONDTRANSITIONPREIMAGE(A, B, C, S)

1: δ ← −(angle(A−B)− 2θmax)
2: q ← B

3: for all vertices v ∈ W do

4: p← intersect(ray(v, δ), AB)

5: if dist(A, p) ≥ dist(A, q) then

6: q ← p

7: end if

8: end for

9: preimage.insert(angle(S −A), (q − θmax))

10: return preimage

preimage is a set, possibly empty, contiguous, or noncontigu-

ous, from which the initial action, u0, is chosen. It is safe

for the robot to choose any action in the sets; consequently,

in our algorithm, we do not suggest an explicit method for

choosing some correct action, u0. That decision would be

based on factors which we are not considering, such as

optimality, thus any action in a non-empty preimage is a

correct u0 for our algorithm.

C. Finding a global path

The two above sections define how we compute a preim-

age between two vertices. If that preimage is non-empty, then

it could be said that there exists a directed edge between

the given vertices, S and A. By noting which vertices are

connected by which directed edges we represent the problem

of moving through an environment via any number of high-

level transitions as a graph search. Using one of the usual

methods for computing paths through graphs, in our case a

breadth-first search, we search the graph and if a path through

the environment is obtained, the robot has a guarantee that it

can, using its corner-finding routine and preimages, transition

from its initial state and into its goal state.

V. IMPLEMENTATION AND EXPERIMENTS

We implemented this algorithm in simulation using C++,

OpenGL, and CGAL [5] as the geometry engine modeling

our robot and environment. Each experiment’s θmax is set

to, an arbitrary, π
50 radians. The environment in Figure 8

contains 44 vertices and its graph takes 3 minutes 16 seconds

to compute. The environment in Figure 9 has 62 vertices and

Algorithm 4 COMPUTEPREIMAGE(A, B, C, S)

1: return (FirstTransitionPreimage(A, B, C, S) ∩
SecondTransitionPreimage(A, B, C, S))

Fig. 7. A preimage with a noncontiguous set of critical actions.

its graph is computed in 6 minutes 24 seconds. It is given to

illustrate a more extreme example of the sorts of problems

our algorithm can solve.

Figure 7 is an example of a preimage in a simple en-

vironment. The illustration depicts the starting point of the

system S as the point denoted by the triangular icon. The

target vertex, A, is given as the shaded vertex. The arrows

originating at S represent the two ends of a set or sets

of angles forming the preimage of the system. Because

our algorithm is concerned only with feasibility, rather than

optimality, we decided the robot should choose the center

of the largest angle in the preimage. This has the effect of

passing as far from obstacles as possible.

We begin the robot with certain knowledge of its position.

From that point, we simulate its use of a map, contact

sensor, and compass to allow it to execute its corner-finding

algorithm. Using the graph determined previously, the robot

is able to make plans, i.e. search the graph, to find high-level

transitions which carry it from xInitial to xGoal. Each time

the robot makes a decision to execute some action, it is offset

Fig. 8. A plan generated by our algorithm in a realistic environment.

5523



Fig. 9. This figure illustrates an extreme environment which our algorithm
successfully determines a plan to navigate.

by nature a random amount bounded by ±θmax. Uncertainty

is allowed to accumulate naturally during each movement in

a transition, using a pseudo-random number to generate each

θk. The number of iterations of the corner-finding routine,

n, is set to 20.

Figures 8 and 9 are a plans the simulated robot devised

to transition from the initial state, again represented by the

triangle icon, to the goal state, the shaded vertex. The arrow

heads which occur at each of the convex vertices into which

the robot uses its corner-finding algorithm to drive itself are

depicting the repeated transition back-and-forth between the

two segments AB and AC.

VI. DISCUSSION AND CONCLUSION

In this paper we presented a strategy whereby a robot

having only a map, contact sensor, and compass navigates

between vertices in a planar environment using a corner-

finding routine and analysis of that routine to determine a

preimage which gives a guaranteed set of angles along. The

vertices of the environment are then mapped to the nodes of

a graph with the presence of a non-empty preimage defining

the edges. The complete plan is generated by a graph search

on this graph.

The following two sections propose future expansions to

our algorithm:

1) Bounds on Uncertainty: In Section V we arbitrarily

choose a value for θmax for our experiments. The value

of θmax has a great deal of impact on the results of each

preimage calculation; a preimage may be empty for one value

of θmax and not for another. The preimage’s dependence on

θmax means that for any given system, A, B, C, and S, there

are bounds on θmax itself which determine the largest value

for which a non-empty preimage exists. If this value was

known for each vertex pair in the environment, we could

then calculate the largest θmax for which a given instance of

the navigation problem can be solved.

2) Completeness: Though our current corner-finding rou-

tine is robust enough to navigate realistic environments with

guarantees of success, it is not complete. The most obvious

example of this incompleteness is the corner-finding routine’s

dependence on a large enough direct path from any given

vertex to one of the segments forming the convex vertex

into which the robot transitions. A complete algorithm would

need to, at least, overcome this problem.
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