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Abstract— Passive stereo vision is widely used as a range
sensing technology in robots, but suffers from dropouts: areas
of low texture where stereo matching fails. By supplementing a
stereo system with a strong texture projector, dropouts can be
eliminated or reduced. This paper develops a practical stereo
projector system, first by finding good patterns to project in
the ideal case, then by analyzing the effects of system blur
and phase noise on these patterns, and finally by designing a
compact projector that is capable of good performance out to
3m in indoor scenes. The system has been implemented and
has excellent depth precision and resolution, especially in the
range out to 1.5m.

I. INTRODUCTION

Passive stereo vision is an important 3D sensing tech-

nology for object recognition and manipulation at short

range (30cm – 300cm). It produces dense point clouds with

excellent depth resolution, at high frame rates, and can deal

with moving objects. Because stereo systems use standard

imaging components, they are also potentially small, low

cost, and low power. However, textureless surfaces cannot be

matched by stereo, and produce dropouts in the stereo results

(see Figure 1, top). One method for removing dropouts is to

paint the scene with projected light (Figure 1, middle). But

finding the optimal texture is a complicated problem, influ-

enced by characteristics of both the projector, the pattern,

and the stereo cameras. This paper addresses this problem

from a theoretical and practical standpoint, with the end goal

of developing a compact, high-performance projected texture

system. The contributions of this paper are

• A method for generating near-optimal patterns using

techniques of Hamming codes and simulated annealing.

• Analysis of effects of phase and blur of the projector

and camera system.

• Design and construction of a compact projected texture

stereo system, and its experimental validation.

A. Projected Texture Systems

Block-matching stereo computes range by triangulation,

matching a small block in one image against a range of

blocks in the other [1]. The best match generates the range

to the center of the block.

Many complex stereo algorithms attempt to solve this

problem by “filling in” the low-texture areas using regular-

ization methods that propagate information from other areas

[2], [3]. A more direct method is to simply project a highly-

textured pattern [4], [5]. In Figure 1 middle, a projected

texture now covers the scene, and good stereo matches are

Fig. 1. Effects of texture on stereo. Top is a difficult scene, with dark
furniture and white reflective cup; right side is a color-coded disparity image,
showing that stereo is difficult with no texture. Middle is the same scene and
stereo algorithm with our projected texture system. Bottom is a reprojection
of the cup detail from an overhead view - note that the projected texture
is painted on the 3D points. At distances under a meter, the system has an
error of less than 2mm in all directions.

found almost everywhere (the reflection of the cup in the

table produces a bad match which is filtered).

But what pattern should be projected? In the first experi-

ments, we used a random black and white texture, in some

cases resulting in pockets of dropouts (see Figure 9, leftmost

image). What’s going on is that the pattern is too self-

similar in certain places, and the match is ambiguous over

the stereo search range. One way to approach the problem

is from ideas in coding theory. To transmit letters from an

alphabet, they are encoded in such a way as to differ from

each other as much as possible. In a similar manner, one

could try to make the matching blocks of stereo as dissimilar

as possible across the match region. The first part of this

paper pursues this idea using lexicographic codes, and shows

how to construct patterns that are better than the best current
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alternative, non-recurring De Bruijn patterns [4]. A further

technique is developed using simulated annealing, and shown

to be even better.

While there is some research on good projected textures

for stereo, it is invariably done without taking the imper-

fections in the projector and camera into account, or the

resolution and phase differences between pattern and image.

It turns out that these factors are large determiners of the

quality of matching – patterns that are good in the ideal

case degrade under non-ideal conditions. In the second sec-

tion, the process of simulated annealing is extended to find

good patterns under realistic conditions, and show how their

performance dominates the ideal patterns, both in simulation

and with an experimental setup.

Finally, we develop a compact fixed-pattern projector with

simple optics, capable of texturing an indoor scene at dis-

tance up to 3m, even under bright daylight conditions. There

are several practical advantages to using a texture projector

with stereo. First, it requires only that the stereo pair be

calibrated, which is already easily achieved with current

stereo systems. Second, it supplements natural texture: the

projector need not overcome ambient light and poor surface

reflectance, it just has to add enough texture to featureless

surfaces to enable block matching to work. These features

make projected texture stereo much more robust and suitable

for real-world applications than systems that must view and

reconstruct a structured light pattern.

B. Related work

There are alternatives to stereo for close-range 3D sensing,

but they lack some of its advantages. Flash ladars [6] have

poor depth and spatial resolution, and have non-gaussian

error characteristics that are difficult to deal with. Line stripe

systems [7] have the requisite resolution but cannot achieve

10 Hz operation, nor deal with moving objects. Structured

light systems [8] are achieving reasonable frame rates and

can sometimes incorporate motion, but still rely on expensive

and high-powered projection systems, while being sensitive

to ambient illumination and object reflectance.

An interesting and early technology is the use of stereo

with unstructured light [9]. Even with projected texture,

block-matching stereo still forces a tradeoff between the

size of the match block (larger sizes have lower noise) and

the precision of the stereo around depth changes (larger

sizes “smear” the depth boundary). One possibility is to use

smaller matching blocks, but reduce noise by using many

frames with different projection patterns, thereby adding

information at each pixel. This technique is known as Space-

time Stereo (STS) [4], [10], [11]. It produces outstanding

results on static scenes and under controlled illumination

conditions, but moving objects create obvious difficulties.

While there have been a few attempts to deal with motion

[11]–[13], the results are either computationally expensive

or perform poorly, especially for fast motions and depth

boundaries. In our case we use just a fixed pattern, and

perform stereo only in the spatial domain.

Fig. 2. Projector / stereo camera system. A pattern P is projected onto
a surface to produce P ′, which is imaged by a left and right camera. For
stereo matching, the small red block in the left image is matched against a
range of blocks in the right image at the same vertical offset, indicated by
the outlined rectangle.

Several recent papers address the problem of finding

projected patterns that are not self-similar over some range.

Molinier et al. [5] randomly generate binary pixels to incre-

mentally fill a pattern, and test that each 5x5 block is unique.

Lim [4] uses the technique of De Bruijn sequences to find

similar patterns. However, these patterns are only satisficing,

that is, they are not necessarily patterns that are maximally

dissimilar. This paper improves on those results, showing that

patterns created with Hamming codes dominate De Bruijn

and random patterns. We also address problems of resolution,

phase and blur in practical systems, which to our knowledge

have not been considered in the projected texture literature.

II. IDEAL BLOCK-MATCHING PATTERNS

We consider a projector and stereo cameras configured

to be as nearly coincident as possible (see Figure 2). For

simplicity, the focal length of the projector and cameras are

similar, so that at any distance the projected pattern appears

to be the same size in the camera images. The pattern P is

a grid of black and white squares, projected by a compact

device with a fixed pattern that we design (Section IV). When

it is seen by a camera, it produces an image IP . In this

section, we take P = IP , to study the properties of patterns

abstracted from the characteristics of the projector/camera

system. In the next section we introduce more realistic image

transfer functions that incorporate phase and blur noise.

A. Block-Matching Stereo

To test the effect of the pattern on stereo, we use a strictly

local block-matching stereo algorithm (Figure 3). A square

block of size n × n in the left image is matched against
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Fig. 3. Block matching and pattern repetition. A pattern of size n × N

is tiled horizontally and vertically. The minimum matching distance of any
block in the upper blue rectangle is d; two such blocks are shown. No matter
where the rectangle is placed, the same minimum matching distance will
hold, e.g., in the lower left blue rectangle.

N other blocks in the right image, along the same scanline

(epipolar geometry is assumed for the images); N is the

search range for stereo disparities. The match score is the

sum of absolute differences of the corresponding pixels in

the blocks (SAD). There are many other correlation measures

that could be used, such as Sum of Squared Differences

(SSD) or Normalized Cross-Correlation (NCC), or even

non-parameteric measures such as Census (see [14]). SAD

is reasonable in curbing the effect of outliers. Standard

correlation measures such as NCC or SSD would exaggerate

the differences between the various patterns reported here.

Since the two images view the same pattern, within every

rectangle of P whose size is n×N , each n× n block must

differ from every other one, and we can measure how good

the stereo matching is by looking at the minimum difference.

The bigger the minimum difference, the better the pattern for

stereo. We write:

S(P ) = min
i6=j

SAD(P, i, j), (1)

where P is a pattern, i, j ≤ N are indices of the blocks, and

SAD(P, i, j) is the SAD score of blocks i and j of pattern P .

A good score occurs when every block is maximally at least

a minimum SAD distance from every other block. This idea

is similar to Hamming codes, where each code is a minimum

Hamming distance from all other codes, and we exploit the

connection to find good patterns in the next section.

The reason we use the score of every block against every

other one, rather than just the first block, is to allow the

pattern to repeat. Given a score S(P ) for a pattern P of size

n×N , we can construct any size pattern by just repeating P
horizontally and vertically. It is easy to show that the order

of rows of P has no effect on S(P ), so any n × N image

rectangle in a vertical stack of patterns P will have the exact

same rows as any other, and hence the same score S(P ).
Horizontally, it doesn’t matter where we place the n × N
rectangle, since all blocks are at least S(P ) different from

every other block along a row (Figure 3).

B. Minimum Hamming Distance Patterns

Each n × n block i in the pattern is a binary vector

vi of size n2. In this case, SAD computes the Hamming

distance between vectors SAD(i, j) =
∑

vi ⊕ vj . If vi and

vj were independent for all i 6= j, we could use the theory

of Hamming codes to find a set of vectors with a minimum

Hamming distance d (all vector pairs differ by at least d)

[15].

Unfortunately, the vectors aren’t independent: vi+1 in-

corporates n(n − 1) elements of vi. Instead, we note that

the column vectors ci of the n × N pattern can be chosen

independently. If we choose these vectors to have a minimum

Hamming distance d, then each block is guaranteed to differ

by at least d from every other block.

The problem then becomes: what is the maximum Ham-

ming distance for a set of N binary vectors of size n?

Although the problem in general is hard, a class of codes

known as “lexicographic codes,” or “lexicodes,” produces

near-optimal codes with a simple greedy algorithm [16]. For

a given d and n, start with the set Ld
n = {0}. Using dictionary

ordering of vectors (i.e., 000, 001, 010, 011, . . .), find the next

vector of at least distance d from all vectors in Ld
n, and add

it to Ld
n. The length of sequences produced by varying d

from 1 to n are all powers of 2; for example, we get the

following sequence for ‖ Ld
7 ‖: 128, 64, 16, 4, 2, 2, 2.

To construct an n × N pattern from the set of column

vectors of Ld
n, we add all vectors, repeating if necessary

until the pattern is filled, and then perform a random shuffle.

For example, with ‖ L3
7 ‖= 16 and N = 128, we add the set

8 times, and then shuffle it. For the pattern length N = 128,

for each value of n from 3 to 15, we constructed Hamming

Code patterns in this manner for all possible d’s, ran each

100,000 times, and picked ones with the best S(P ) for each

n. The results are in Figure 4. As might be expected, the

graph shows a quadratic behavior as the size of the blocks

increases by the square of the side. Surprisingly, even though

there are only 8 vectors of length 3, it is possible to find a

pattern of length 128 that has non-zero S(P ).

C. De Bruijn and Random Vectors

We compared the Hamming Code method against two

methods found in the literature: random selection and non-

recurring De Bruijn sequences [4]. De Bruijn sequences

of length s over an alphabet A (B(s,A)) contain all sub-

sequences of length s exactly once. For our purposes, A
are column vectors ci of the pattern, and we replace A by

the vector size n. If we set n = 2, we are guaranteed that

every block in the sequence is unique, since no two blocks

can contain the same subsequence. A non-recurring sequence

NB(s, n) is a sequence where no two neighboring vectors

are the same. Note that NB does not try to optimize the

separation between vectors, unlike the case with Hamming

codes.

In a manner similar to Hamming codes, we construct

patterns P using the vectors from NB(2, n), choosing the

next vector at random to satisfy the De Bruijn conditions.

For each n, we do this 100,000 times, and choose the best
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Fig. 4. Graph of S(P ) for patterns with varying block widths, using several
different algorithsm. A matching distance of N = 128 was used.

response S(P ). The results, summarized in Figure 4, are all

slightly worse than the Hamming codes. Data for the case

n = 3 is missing, since no sequence NB(2, 3) exists with

length 128.

Additionally we constructed random patterns of size n×N
for comparison. Again we ran a set of 100,000 tests to find

the best such patterns for each n; we also show the range of

generated patterns. Surprisingly, the best random patterns do

as well as the De Bruijn codes, but on average the random

patterns perform poorly. This explains why a single random

pattern does not fare well in comparisons in the literature.

D. Simulated Annealing

The results from random patterns above indicate that it

may be possible to find good patterns by search. Starting

from a random pattern, we use simulated annealing [17] to

search the large space of possible patterns, using the cost

function S(P ). At any point, we find pairs of blocks that have

the minimum Hamming distance. We randomly choose one

of these pairs, and swap two random dissimlar pixels. The

change is accepted with probability exp−∆S/T , where ∆S is

the change in the score, and T is a “temperature” that goes

to zero with increasing iterations. The minimum Hamming

distance S(P ) is actually too coarse a scoring function, since

many pairs may be at the minimum distance. To compensate

we include in the score the fraction of block pairs at the

minimum distance.

For each n, we run simulated annealing for 100,000

iterations with 100 random restarts, and choose the best

result. Figure 4 shows that annealed patterns do significantly

better than Hamming distance, especially at larger n.

III. IMAGED PATTERNS

Patterns that are good under ideal imaging conditions do

not fare well when phase and blur noise are introduced. In

this section we continue the use of simulated annealing to

find good patterns under these conditions.

Fig. 5. Pattern as viewed by the cameras. The projected pattern is blurred
by the optics of both the projector and the camera, and then re-sampled by
the camera imager.

A. Resolution

In general the pattern resolution will differ from the

image resolution – digital projectors have typical resolutions

of 1024x768, while consumer-grade cameras can have 10

megapixels. The difference in resolutions is usually ignored

in the projected texture literature, but is critical in designing

good patterns for projection. Figure 5 shows the superposi-

tion of the image pixels on a projected pattern (we assume

that the image has at least as good a resolution as the pattern).

The ratio of pixel sizes is defined as:

α =
pixel width of pattern

pixel width of image
(≥ 1) (2)

The ratio α defines the block size np of the pattern, given

a block size n of the image:

np = ⌈n/α⌉

Np = ⌈N/α⌉

For example, with an image search range of 7 × 128, and a

ratio of α = 2, the corresponding repeating pattern is 4×64.

B. Phase and Blur

When projecting and viewing a pattern, the pattern and

image can be offset by an arbitrary amount, introducing

phase noise. For example, Figure 6 shows a pattern that

is sampled at 1/2 pixel offset in the image (red grid). The

original pattern on the left is mostly degraded to gray, with

only a few black and white pixels.

We model both phase noise and blur by introducing a

transfer function from the pattern to image pixels. Assume

that the 0,0 pixel of the pattern is aligned with the 0,0 pixel

of the image, with an offset given by x, y. We blur the pattern

P by convolving with a gaussian with standard deviation σ
to produce a continuous pattern P (σ). The value of an image

pixel at u, v is the average intensity of its footprint in P (σ):

IP (σ)
x,y (u, v) =

∫
A(u+x,v+y)

P (σ)dA (3)
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Fig. 6. Phase noise introduced by sampling at non-grid points.

where A(u, v) is the area of P (σ) taken by the image pixel

at u, v. The pattern P (σ) models the total system blur, to

which both the projector and camera optics contribute. In

practice, the integral of Equation 3 is computed by placing

a fine grid over P , convolving with a discrete gaussian, and

then summing up over the image pixel area. I
P (σ)
x,y indicates

the image formed by taking I
P (σ)
x,y (u, v) for every u, v at a

fixed offset x, y.

The scoring function S(P ) of Equation 1 can be modified

to take phase into account, by minimizing over every possible

displacement of less than 1 image pixel in the horizontal and

vertical directions.

S+(P (σ)) = min
0≤x,y<1

min
|i−j|>1

SAD(IP (σ)
x,y , i, j). (4)

The scoring function S+ incorporates both phase shifting and

system blur. It also changes the minimization over blocks to

consider only block pairs that are at least 2 positions apart.

When the correct disparity is at a half-pixel boundary in the

image, the response will be evenly split between blocks at

two neighboring positions, and we don’t want to penalize

this.

C. Good Patterns under Noise

The optimization developed in the previous section for

finding good patterns carry over directly here, using the

new match score S+. We first generate a random pattern

P , transform it to an image IP (σ), then compute the SAD

scores S+(P (σ)) by minimizing over all phases. Because

of the blur step, there is a unique minimum-score pair; we

translate their indices to the respective np blocks in the

pattern, and interchange two random dissimilar pixels in

that pair. The change is accepted if it passes the annealing

criterion, and the cycle repeats with decreasing temperature.

Because the calculation of IP and the scoring function are

more complicated, we limited the annealing to 5000 steps

and 10 restarts.

Figure 7 shows results for phase noise only (no blur) using

n = 11, for all values of np from 3 to 11. The results are

quite interesting. First, the best minimum SAD score, 40, is

substantially less than the ideal pattern value of 52; this is the

effect of phase noise. The best value also occurs at α = 11/8.

There are two competing phenomena that are balanced: phase

noise penalizes small α because of aliasing in the transfer

function; and large α have fewer pattern elements in an np×
np block, limiting the Hamming distance between blocks.

For comparison, we also derive ideal patterns – i.e., using

S(P ) on the pattern and not taking the image transfer

function into account – using simulated annealing at the same

resolutions, and then measure their scores under S+P (0).
The ideal patterns can be optimized for one particular phase,
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but there is no guarantee that they will have good scores in

other phases. Overall, the scores are lower, emphasizing the

importance of creating patterns that explicitly account for

phase noise.

When blur is added, the scores go down, and the best

α shifts higher (the pattern becomes coarser). Both these

phenomena are expected, since the pattern becomes more

diffuse and loses fine structure. Figure 8 summarizes the

scores for image block size 11, and blur from 0.0 to 2.0

image pixels.

D. Experiments

We tested the optimized patterns against both ideal pat-

terns and completely random patterns, at various image block

sizes. A planar target was placed at an appropriate distance

for each of the image block sizes to keep the pattern blocks

in correspondence; the target contained the different patterns

under test (see Figure 9). The printed planar target is much

easier to change for experiments (and much cheaper) than
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Fig. 9. Disparity images from three different patterns. Left image is the
planar target with 3 patterns, as viewed by the left stereo camera; right is the
computed stereo disparity. In the target, the upper left subimage is a random
pattern; upper right is an ideal repeating pattern with np = 3; lower right
is an optimized pattern with np = 3. Lower left corner has been left blank.

the etched pattern in the projector (Section IV). The target

was presented fronto-planar to the cameras, which is a good

approximation of how the projected texture will appear –

note that a projected pattern always appears the same to a

camera if it is co-located with the projection, and the focal

lengths match. To a first approximation, these conditions are

satisfied by our system.

For these tests, we used n = 5, 7, 9, 11 for the size of the

image blocks, and np = 3 for the patterns, with a search

range of N = 128; all pattern pixel sizes were the same.

We also filtered based on the uniqueness of the response,

eliminating any disparity that was not at least 50% better

than the next best match. Figure 9 shows typical results from

the stereo, at n = 7. The exposure on the cameras was turned

down, to soften the pattern contrast and make matching more

difficult.

Note first that it is difficult to distinguish the ideal pattern

from the optimized pattern (right images of the first set).

Still, the upper right ideal pattern has a smaller minimum

SAD distance, which causes dropout striping in the yellow

disparity image. By contrast, the optimized pattern is filled

in. The completely random pattern fares most poorly, as

expected, with numerous holes scattered throughout.

More qualitatively, we compared the dropout rate at each

of the block sizes, for the three different pattern types:

fully random, ideal pattern, and optimized pattern1. For the

optimized pattern, we estimated the image blur to be about

0.5 pixels, based on images of sharp vertical lines. We

computed the dropout rate as the percent ratio of the number

of pixels not passing the next-best-match cutoff, to the total

number of pixels in the image of the pattern. The results are

summarized in the table below.

First, note that the larger SAD matching blocks do much

better at removing dropouts. At the lowest block size of n =
5, all the patterns have a large percentage of dropouts, with

the random pattern actually doing better than the ideal one. In

all cases, the optimized pattern does best, with no significant

dropouts until n = 5. The random and ideal patterns both

have significant dropouts at n = 7, 9.

1The De Bruijn patterns do not exist for np = 3, and in any case they
are subsumed by the ideal patterns.

TABLE I

DROPOUT PERCENTAGE FOR PATTERNS WITH np = 3

n random ideal optimized

5 28.6 33.3 10.9
7 14.2 3.0 0.6
9 4.1 1.3 0.2

11 0.7 0.4 0.01

IV. COMPACT PROJECTOR

We have developed a compact, fixed-pattern projector

based on the results of the previous sections. Figure 10

shows the optical design of the manufactured projector. A

high-powered, large-format LED is collimated onto a metal-

covered glass disk etched with the pattern (called a “gobo”).

The pattern is projected using a standard C-format camera

lens, with a focal length similar to that of the stereo cameras.

A. Power and Synchronization

The main issue with the projector is to send enough optical

energy out to be seen easily by the camera under ambient

light, while maintaining eye safety. A high-power LED with

optical output of 5 watts and large surface area was used;

for comparison, a typical bright display projector has about

3 watts of output power. Good performance was achieved

by:

• Using a red LED – red is much less harmful to the eye

than any other visible color. The device is eye safe as

defined by the limits of IEC 62471 for LED emissions

[18], as tested by an independent lab. It would also be

safe in the infrared range.

• Pulsing. The LED is pulsed in synchrony with the ex-

posure of the camera. By limiting the exposure time to

several milliseconds, the average power of the projector

is reduced, while maintaining high power with respect

to ambient light during exposure.

A bandwidth filter at the LED frequency could improve

performance by rejecting ambient light, but was not included

because we want to be able to capture untextured images

with the same stereo pair. The system can be run in a mode

where every other frame is captured with the texture, giving

registered stereo and normal images separated by 1/30 of a

second. It is also possible to run the system at 60 Hz, and

we are upgrading the camera electronics to do this.

B. Performance

The system functions well in even bright daylight condi-

tions indoors, out to a distance of 2 to 3 meters. Without

bandwidth filtering, it is not strong enough to overcome

direct sunlight (1300 W/m2) except very near the projector,

but it can still supplement whatever natural texture exists,

unlike structured light devices.

We tested the device with a 50 degree field of view, using

both white and 5% reflectance black planar targets at differ-

ent distances. The SAD block-matching stereo algorithm of

[1] was used, with an image block size of 11×11. The error

is taken to be the standard deviation from the best-fit plane.
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Fig. 10. Optical design of the compact projector, showing major compo-
nents: high-power LED, condenser, gobo pattern disk, and projection lens.
Overall length is 1̃0cm.
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Fig. 11. STD error of a planar target. For a white target, the error stays
below 2mm until after 1.2m, then goes up to about 1cm at 2.5m. For a very
dark target, it is also low close up, then becomes larger at distance, when
the pattern is difficult to see.

From Figure 11, the system shows very low error, even out

to 2.5 meters. For the white target, the error stays below

1cm throughout this range. Some of the error at the larger

distances comes from calibration, as the reconstructed plane

will not be perfectly flat. Up to over 1 meter, the error is

about 2mm, which is good enough to reconstruct fine objects.

Note that we are using a standard stereo block-matching

algorithm for these experiments, without modification. A

concern is that, because of the blockiness of the pattern,

subpixel resolution in the disparity calculation might not

be possible, because the block correlation does not have

a smooth transition across the image. However, because

of significant blur in both camera and projector, subpixel

resolution works well, as can be seen in Figure 1. The 3D

points on the cup, for example, would not fit a curve so well

without sub-pixel resolution.

Even with a very dark (5% reflectance) target, the system

gives good results up to 2m, with some degradation in error

at the larger distance. Another issue with very dark targets is

that dropouts start to occur. We set a cutoff of 18% for the

minimum distance between the highest and second-highest

SAD response. For the white target, every pixel made this

cutoff. For the dark target, dropouts start to occur at 1.2m,

and increase linearly to 2.5m, when there are no pixels that

make the cutoff.

Fig. 12. Application to estimating the articulation model of a drawer.
This view shows the point cloud extracted from the stereo system, with the
projected texture, and the track of the door extracted from previous point
clouds as it moved. Image courtesy of Juergen Sturm.

We have used the projected texture system in several ap-

plications, most especially the recognition of tabletop objects

using both 2D and 3D features. An interesting application is

learning the articulation models of common objects (Figure

12, from [19]).

One interesting aspect of the system is that it can work

with fast block-matching algorithms, without the perfor-

mance loss associated with more sophisticated methods.

High-performance block-matching algorithms have been de-

veloped as part of the ROS open-source robotic software

system [20]. Running on a 3GHz Intel i7 processor, with a

single core, 640x480 images with 64 disparities and subpixel

disparity resolution achieve a 30 Hz frame rate.

C. Algorithm and Datasets

The stereo algorithms and the pattern generators are avail-

able under open source BSD license as part of the ROS

application packages (Robot Operating System - http:

//www.ros.org/Papers/ICRA2010 Konolige).

V. CONCLUSIONS AND FUTURE WORK

We have explored the concept of good projection textures

for overcoming stereo dropouts, both at the conceptual level

of finding patterns that exhibit good dissimilarity between all

blocks in a search range, and at the system level of dealing

with image resolution, phase and blur. The fixed-pattern

projection and stereo device that we constructed is a practical

sensor system for robotics applications, filling a niche for

short range dense 3D sensing that can deal with moving ob-

jects. It is being incorporated into the PR2 mobile robots built

at Willow Garage (http://www.willowgarage.com),

and will be the primary sensor for tabletop manipulation.

One problem with the sensor is that the strong red pro-

jected texture is annoying when viewed directly. The aversion

response helps to make the device safe, but it is not useful
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for directly imaging faces because of this drawback. An IR

version, with lower power and a more sensitive imager, is a

possible solution.
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