
Control and Planning for Vehicles with Uncertainty in Dynamics

Daniel Mellinger and Vijay Kumar

Abstract— This paper describes a motion planning algorithm
that accounts for uncertainty in the dynamics of vehicles. This
noise is a function of the type of controller employed on the
vehicle and the characteristics of the terrain and can cause the
robot to deviate from a planned trajectory and collide with
obstacles. Our motion planning algorithm finds trajectories
that balance the trade-off between conventional performance
measures such as time and energy versus safety. The key is a
characterization of the vehicle’s ability to follow planned paths,
which allows the algorithm to explicitly calculate probabilities
of successful traversal for different trajectory segments. We
illustrate the method with a six-legged Rhex-like robot by
experimentally characterizing different gaits (controllers) on
different terrains and demonstrating the hexapod navigating
a multi-terrain environment.

I. Introduction

Planning and control for a mobile robot is a core problem
in robotics and has been addressed by many researchers [1]–
[4]. Planning generally refers to finding the path in space for
a robot to follow while control refers to the methods used
to force the robot to follow the planned path. Both aspects
work together to achieve some objective which is often the
fastest possible execution of a task. This requires planners
that can find the shortest distance path that is followable by
the given robot and controllers that can accurately track a
path while moving the robot as fast as possible along the
path. Here we define a trajectory as the combination of a
path and the controllers that are used to follow it.

In this paper we consider what happens when significant
process noise is added to the dynamics of the system so that
controllers cannot track paths with non-negligible error. This
uncertainty is generally a function of the type of controller
used and the nature of the terrain. There is significant
work on the problem of planning with uncertainty in the
environment [5], [6]. Other forms of uncertainty have also
been considered. In [7] the problem of finding a path for
UAVs to avoid being detected by adversaries is addressed. A
minimum risk path is found which accounts for uncertainty
in the location of the adversaries. In [8] and [9] uncertainty in
state estimation is considered. This uncertainty is corrected
for by localization algorithms which locate features of the
environment in known maps. In order to minimize uncer-
tainty these planners essentially find paths which pass near
features in the environment that provide a good degree of
localization so as to avoid becoming lost. Our work differs

D. Mellinger and V. Kumar are with the GRASP Laboratory, Department
of Mechanical Engineering and Applied Mechanics, University of Pennsyl-
vania, Philadelphia, PA 19104 USA {dmel,kumar}@seas.upenn.edu

We gratefully acknowledge support from: NSF grant no. IIS-0427313,
ARO grant no. W911NF-05-1-0219, ONR grants no. N00014-07-1-0829
and N00014-08-1-0696, and ARL grant no. W911NF-08-2-0004.

from this approach in that we assume that even with perfect
localization the noise in the dynamics is still significant
enough to deviate from the paths. Additionally, neither of
these approaches explicitly model the dependence of the
uncertainty on the type of controller and the characteristics
of the terrain.

In this paper we describe a planner that finds trajectories
with high probabilities of success while optimizing con-
ventional measures of performance such as execution time,
length of path, or energy. Depending on the trade-off between
risk and such performance measures as speed, it can find
plans that employ fast but potentially “noisy" controllers in
open space and slower but more precise controllers when
the robot is close to obstacles. In order to generate plans
with these features we formulate the planning problem as
an optimal control problem minimizing a scalar objective
function, J, that is a function of a performance measure
associated with the trajectory and the probability that the
trajectory is executed successfully. We discretize the problem
so that the optimal plan can be found using a search-based
planning algorithm.

Section II lays out the generic continuous optimization
problem and Section IV explains how we discretize and solve
this problem using the incremental planning framework. In
Section III we describe a six-legged robot called the RDK to
which we apply this method. We experimentally characterize
the performance of different controllers for this robot over
different terrains to build empirical models that are then used
for the planning algorithm. In Section V plans generated with
this method for different scenarios are presented. Finally,
we demonstrate the algorithm on the RDK along several
trajectories using only a laser range-finder for localization.

II. Problem Formulation

The general hierarchical planning and control structure
is represented in Figure 1. At the bottom level are the
motor controllers for the locomotion elements (feet, wheels,
rotors). At the next level we assume there are several types
of controllers, κ ∈ {1, ...,mκ}, that can be used to follow a
desired path. These controllers can be simple controllers
as in Controller 2 of Figure 1 or more complex hybrid
controllers like Controllers 1 and mκ. At the top level the
planner generates trajectories which can be followed by these
controllers.

We let the state of the robot be x ∈ C, where C is the
configuration space. The controllers take xdes and ẋdes as
inputs and return the low level control signal u. We assume
that all controllers nominally follow the path but vary in how
closely they actually stay to the desired path. We assume that
the faster controllers are inherently noisier than the slower

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 960

Fig. 1. General Hierarchical Planning and Control Structure

controllers because if the fastest controller was also the most
accurate it would simply be used all the time. This method
allows C to be classified into some number of different terrain
types, ρ ∈

{
1, ...,mρ

}
. Note that the noise on the system, ν, is

a function of the controller type, κ, the terrain type, ρ, and
the control input u. The generic equations that govern the
motion of the system can then be written as:

ẋ = f (x,u) + ν(κ,ρ,u)
u = hκ(x, xdes, ẋdes)

where ν(κ,ρ,0) = 0 so that the dynamics have no drift term.
In this work we do not explicitly characterize the noise on
the system, ν, but instead its measurable affect on controller
performance.

We let C f ree be the set of collision-free robot states,
and Cobs be the set of states that result in collisions with
obstacles. We wish to find a collision-free path through the
environment, γ(ξ) : [0,1] → C f ree, from some given start
state, xstart, to a goal state, xgoal. Here ξ represents a path
coordinate that ranges from 0 at the start of the path to 1
at the end. We constrain γ(ξ) to be a followable path for
the given robot, for example a path for a Dubin’s car is
limited to some minimum turning radius. The controller type
can change throughout the trajectory so we let the controller
type being used at ξ be represented as κ(ξ). The problem is
to find a path and controllers to be used along that path (a
trajectory) that minimize some cost function. We state the
generic continuous problem here:

minimize J(γ(ξ), κ(ξ)) (1)
such that γ(ξ) ∈C f ree for ξ ∈ [0,1]

γ(ξ) is admissible
γ(0) = xstart

γ(1) = xgoal
III. Experimental Setup

A. Overview
We implemented our algorithm on the six-legged RDK,

shown in Figure 2, which is similar to the RHex robot [10].
This system is a specific instance of the control structure in
Figure 1. At the bottom layer, the six legs are controlled to
track trajectories using PD control on the hip motors. At the
next layer, different types of gaits described in Section III-B
send leg trajectories to the motors. The controllers described
in Section III-C utilize the gaits to follow line segments. At
the highest level our planner generates the trajectories for
the different controllers to follow.

B. Gaits

The alternating tripod gait is used as the starting point for
all gaits. To move forward (or backward), the legs within
each tripod rotate forward (or backward) along identical
trajectories so that one tripod comes into contact with the
ground as the other tripod leaves the ground. The exact
trajectories followed by legs in this gait are determined by the
four parameters shown in Figure 2 where φ= 0 represents the
straight down leg position [10]. Here φs is the stance angle,
φ0 is the angular leg offset, tc is the period of the gait, and
ts is the stance time.

Turning while walking is achieved by changing the relative
time legs are in the stance phase between the left and right
sets of legs, ts(le f t) = ts(base)+∆ts and ts(right) = ts(base)−
∆ts [10]. Here a positive ∆ts causes the legs on the right side
of the robot to move faster while in contact with the ground
than the legs on the left which causes the robot to turn left
while walking forward. Turning in place can be achieved
by rotating legs on opposite sides of the robot in opposite
directions.

Using these parametrized trajectories we found a set of
base gaits parameters (φs, φ0, tc, ts(base)) that works well at
about 0.39 m/s, the slow gait, one that works well at about
0.62 m/s, the fast gait, and one that works well for turning in
place. All of these parameters are shown in Table I and were
found through testing on carpet. We fix φ0 to be constant
across all gaits so the robot reaches the position where one
tripod is at π+φ0 and the other is at φ0 twice during every
cycle as shown in Figure 2. For this reason, we allow the
controllers to switch to a different gait or change ∆ts every
half cycle.

The body velocities and angular velocities achieved using
several sets of gait parameters are shown in Figure 3. Here
each point represents data captured from about 25 steps for
a particular set of gait parameters. This plot shows that we
were not able to achieve a turning radius of less than about 1
meter for turning while walking forward or backward. This
unique set of achievable motions led to the creation of the
hybrid controller for path following described in the next
section.

Fig. 2. Left: Leg Trajectories for Forward Alternating Tripod Gait, Right:
RDK Hexapod Robot - www.sandboxinnovations.com

C. Controllers

We use a controller that switches between the turn-in-
place gait and turn-while-walking gait to follow a line. The
feedback controller uses the heading angle error, θerror =

961

Fig. 3. Left: Achievable Angular Velocities and Velocities for RDK, Right:
Line Following Controller

θ − θdes, and the distance from the center of the robot to
the line, e, as shown in Figure 3. Note that the orientation of
the line in space is arbitrary since θerror and e are measured
relative to the line being tracked.

While the heading error is greater than some maximum
heading error, θmax, the robot is commanded to turn in place
to reduce the heading error. While the heading error is below
θmax the turn-while-walking gait is used and we force the
error dynamics to obey ë = −kd ė− kpe. The gains of this
controller are chosen so that the tracking error is critically
damped and some rise time, tr, is achieved by setting kp =

(3.3/tr)2 and kd = 2
√

kp. In this manner only one parameter,
tr, is changed during tuning.

The small angle assumption is appropriate since the robot
turns in place whenever θerror is large. Also, for a given base
gait v is approximately constant. Under these assumptions
ė ≈ vθerror and ë ≈ vω.

As discussed previously, we have control over a parameter,
∆ts, that relates to the turning rate, ω. Through experimen-
tation we have found that this relationship is close to linear
while |∆ts| is less than some ∆t∗s . In this range ω ≈ η∆ts
where η is determined experimentally for each set of base
gait parameters. Putting it all together we have a control law:

∆ts = max(min(−
kd

η
θerror −

kp

vη
,∆t∗s),−∆t∗s) (2)

This is similar to the controller used in [11] except our
method adds the ability to turn in place when the angle
error is above some threshold, saturation of the turning
rate parameter at some magnitude, and a systematic method
for choosing gains. The parameters for the three gaits we
developed are shown in Table I. The slow controller (κ = 1)
uses the slow gait and the turn-in-place gait while the fast
controller (κ = 2) uses the fast gait and the turn-in-place gait.
For both controllers tr = 3s and θmax = 15◦.

TABLE I
Gait Parameters and Experimental Determined Values

Gait ts(s) tc(s) φs(rad) φ0(rad) ∆t∗s (s) v(m
s) η(rad)

Slow 0.3 0.5 0.9 −0.2 0.1 0.39 2.4
Fast 0.25 0.5 1.3 −0.2 0.05 0.62 6.45

Turn-in-Place 0.6 1.0 0.5 −0.2 N/A N/A N/A

D. Controller Performance

To characterize controller performance a Vicon motion
capture system was used for state estimation. Two types
of terrain were tested, a hard carpet (ρ = 1) and a rocky

terrain(ρ = 2) consisting of irregular-shaped rocks of aver-
age diameter 5cm glued to pieces of plywood. For each
combination of controller and terrain type the robot was
run over a 2 meter straight line segment trajectory 38
times. Ten representative trajectories are shown in Figure
4 for each combination of controller and terrain. This figure
clearly shows how the rocky terrain degrades the tracking
performance for both the slow and fast controllers. Videos of
these tests can be seen in the video attachment accompanying
this paper.

Fig. 4. Ten Representative Trajectories - Slow/Carpet: κ = 1, ρ = 1 (top left),
Slow/Rocky: κ = 1, ρ = 2 (top right), Fast/Carpet: κ = 2, ρ = 1 (bottom left),
Fast/Rocky: κ = 2, ρ = 2 (bottom right)

IV. Planning Algorithm

A. Discrete Formulation and Assumptions

We solve the optimal control problem (1) by discretizing
C f ree and using a search-based planning algorithm. We use
the A*-based ARA* algorithm [3] which is complete and has
optimality guarantees. Normal A* uses a heuristic function,
h(s), which is an estimate of the cost to a goal. Weighted
A* uses an inflated heuristic, εh(s) which often results in
fewer state expansions and faster searches. The trajectories
are guaranteed to be suboptimal by less than the ε that the
heuristic is scaled. ARA* uses a large heuristic scaling factor
and decreases ε until ε = 1. The constraints of making the
path admissible are enforced by using action spaces that obey
the constraints as in [2]. To obtain a good heuristic function
we run a 2D Dijkstra’s search from the goal state using the
fastest controller over the 2D discretization of C f ree. This
heuristic gives an underestimate of the cost for the full 3D
planning problem.

We based our code on an open source C++ implemen-
tation of ARA* [12]. Our algorithm can find a trajectory
from the current position to the goal quickly (0.3 secs
for a time horizon of 20-30 seconds and a 5 cm length
discretization and 22.5◦ angular discretization of a 4×4m
area). This enables the robot to replan at a fast rate and
quickly react to changes in a sensed environment. Thus,
this approach naturally integrates deliberative planners and
reactive controllers.

962

B. Estimating the Probability of Successful Trajectory Exe-
cution

We approximate the condition of navigating the trajectory
successfully as staying within a corridor in which there
are no obstacles inside the corridor. We define δ(ξ) as
the distance to the closest collision state in Cobs at path
coordinate ξ. Note that for a point robot δ(ξ) is simply
the distance to the closest obstacle. We define e(ξ) as the
distance from the robot to the path at path coordinate ξ.
These parameters are illustrated in Figure 5 for a point robot.

Fig. 5. Point Robot Following a Path Near an Obstacle

As long as the e(ξ) is always less than δ(ξ) then the robot
executes the trajectory successfully. We can write

P(S cor) = P(e(ξ) ≤ δ(ξ) for 0 ≤ ξ ≤ 1) (3)

where the probably of staying within a corridor around the
trajectory is denoted as P(S cor).

1) Successful Execution of Trajectory Segments: For plan-
ning we must consider smaller segments of the trajectory,
so we assume that the trajectory is broken down into n
segments. We define the variable q as the segment the robot
is currently navigating and δi as the minimum value of δ(ξ)
over segment i. We define the event of navigating segment i
of the trajectory successfully as S i.

S i = e ≤ δi while q = i (4)

The probability that the robot stays within the corridor
over the entire trajectory is greater than the probability that
all segments are navigated successfully, P(S cor) ≥ P(S 1 ∧

S 2 ∧ ...∧ S n). Note that the LHS and RHS of this equation
are approximately equal when the segment length is small
relative to the obstacle size. We can then rewrite this equation
as a product of conditional probabilities involving navigating
individual segments successfully.

P(S cor) ≥ P(S 1)P(S 2 |S 1)P(S 3 |S 1∧S 2)...
...P(S n |S 1∧S 2∧ ...∧S n−1) (5)

The term P(S 2 |S 1) is the probability of successfully
executing trajectory segment 2 (S 2) given that segment 1 was
successfully executed (S 1). Similarly, the subsequent terms
in this equation represent the probability that a segment is
traversed successfully given that all the previous ones were.

We next simplify this expression into something which can
be used in planning. It is clear that S i are not independent
since the position of the robot at the end of segment i−1 is
the position of the robot at the beginning of segment i. Here
we will make the assumption that the successful traversal
of all segments prior to segment i can be approximated by
the condition that the robot is within δi of the trajectory
at the start of segment i. Note that if segment i − 1 was

traversed successfully then the robot is only guaranteed to
be within δi−1 of the trajectory at the start of segment i.
But since subsequent segments are physically close to each
other δi−1 ≈ δi. For simplicity we define a new term for this
quantity, P(S̃ i).

P(S̃ i) = P(S i
∣∣∣e < δi at start of segment)

≈ P(S i |S 1∧S 2∧ ...∧S i−1) (6)

This assumption allows (5) to be written in a much simpler
form. Using (6) the 2nd through nth terms of Equation (5)
can be approximated as P(S̃ i). The first term in (5) can be
approximated as P(S̃ 1) since the plan is formed from the
actual start location of the robot which is guaranteed to be
on the path.

P(S cor) ≥
n∏

i=1

P(S̃ i) (7)

Now we see that the probability of successfully staying
within a corridor around a trajectory is multiplicative in terms
that are functions of n segments of the trajectory. To incor-
porate this cost into the search-based planning framework
we take the logarithm of this quantity to make it additive in
each segment of the trajectory.

2) Segment Length: The length of the segment plays
an important role in the probability that it is successfully
traversed. For a given environment, a short segment with a
given δi should have a higher probability of success than
a longer segment with the same δi. In order to account for
this length each segment i must have a distance metric, li,
associated with it. Then for each controller over each terrain
we determine the probability of success for a particular
characteristic length, say L, for all δ > 0. From this data
we can determine the probability of success of a segment i
of any length, li, given P(S̃ (L)) for δi:

P(S̃ (li)) ≈ P(S̃ (L))
li
L (8)

C. Incorporating the Cost Function into the Planner

We next incorporate this probability into a cost function
which minimizes the time to completion of a trajectory and
maximizes the log of the probability of successfully staying
within a corridor around the trajectory.

J(γ(ξ), κ(ξ)) = ttra j−µlog(P(S cor))

The discretized version of the cost function is additive
in terms that depend on individual segments and is approx-
imately equal to continuous cost function if the segment
lengths are small relative to the size of the obstacles:

J(γ(ξ), κ(ξ)) ≈
n∑

i=1

ti−µlog(P(S̃ i)) =
∑

Ji (9)

Here, ti is the time to traverse segment i and µ is a scaling
parameter that defines that relative weight between the time
to completion versus the probability of success. Setting µ to
0 will yield the minimum time solution with no regard to the
safety of the trajectory. A large µ will result in a trajectory
with a high probability of success but at the cost of taking
longer to execute.

963

When ARA* expands a node of the graph a segment
is formed which connects two nodes of the graph and is
collision free. From the map of the environment the distance
to the closest collision state for each segment, δi, and the
type of terrain the segment is on are found. We consider that
if any part of the segment touches rough terrain then that
segment is on rough terrain. For each controller, we find
P(S̃ (L)) for δi and the terrain type from experimental data
and then use (8) and li to find P(S̃ i). The time to execute
the segment, ti, is calculated based on the length of the path
and the controller speed. The controller which minimizes Ji
is chosen for that segment. When the planning algorithm
terminates and a path is found we have the controller type
which should be used over each segment of the path.

Here, a cost for switching controller types could be added
but it would multiply the dimension of the state space by the
number of controller types. In our application, the fast and
slow controllers are very similar so we do not add a cost for
switching between them. Note also that we assign no cost for
switching between tracking line segments of different angles.
This is valid if the turn-in-place gait turns exactly on a point
but becomes less accurate the more the turn-in-place gait
drifts from a point.

V. Results

A. Data For Planner

From the data presented in Section III-D, we find the
probability of staying within δ > 0 of the line for some
characteristic length, L, given that the robot started within
δ of the line. We chose L to be 1 meter, so the 38 trials
were broken down into 76 1-meter sections. The results of
this analysis are shown in Figure 6. As expected, running
the vehicle faster decreases tracking performance for both
terrains. Also, the rocky terrain decreases performance for
both vehicle speeds.

Fig. 6. P(S̃ (1 meter)) vs. δ - Slow/Carpet: κ= 1, ρ= 1 (top left), Slow/Rocky:
κ = 1, ρ = 2 (top right), Fast/Carpet: κ = 2, ρ = 1 (bottom left), Fast/Rocky:
κ = 2, ρ = 2 (bottom right)

From the average velocities reported in Table II, note that
both controllers result in slightly lower velocity on the rocky
terrain than the carpet. The body of the RDK is 35 cm long
so these controllers result in velocities ranging from about
1.1 to 1.8 body lengths per second.
B. Example 1

The velocity and probability data were encoded into the
cost function used in the planner. The planner was run on
a 4×4m map shown in Figure 7 with a length discretization

TABLE II
Controller Speeds

Carpet: ρ = 1 Rocky Terrain: ρ = 2
Slow Controller: κ = 1 0.391 m/s 0.356 m/s
Fast Controller: κ = 2 0.623 m/s 0.591 m/s

of 5cm and an angle discretization of 22.5◦. By changing
µ, five distinct plans with different probabilities of success
and times to completion emerge from this relatively simple
scenario and are shown in Figure 7. Note that these plans
account for the finite size of the robot and its legs (50×40cm).
In (1) the planner finds the trajectory with minimum time to
completion but requires the robot to pass very close to the
leftmost obstacle. In (2) the probability of success is slightly
increased by the robot traveling through the middle of the
first gap. In (3), the robot uses the slow controller through the
first gap which further increases the probability of success.
The probability of success jumps to around 75 percent in (4)
as the robot uses the slow controller through a gap which has
a shorter section of rocky terrain. Finally, in (5) the planner
finds the trajectory with 100 percent probability of success
by traveling far enough away from all obstacles.

Fig. 7. Planned Trajectories in Order from Fastest (1) to Safest (5), Black-
Obstacles, White-Carpet, Yellow-Rocky Terrain, Red-Fast Controller, Blue-
Slow Controller and Probabilities of Success and Completion Times

C. Example 2

In this example we demonstrate how our method can
be used to find trajectories for complex environments with
multiple terrain types. We label the four terrain types as easy,
tough, tougher, and toughest, each with progressively worse
controller performance. This situation is similar to a real-
world situation where precise characterization of the robot’s
performance on different terrains is not possible. Here we
generate plans for a point robot which has the option to use
a fast and slow controller. Figure 8 shows some of the many
trajectories that can be generated by varying µ. As the robot
moves to the right in this map the gaps are safer to navigate
because the terrain becomes easier, the gaps becomes wider,
or the lengths of the difficult terrain segments decrease. These
trajectories have higher probabilities of success but longer
execution times as shown in the right portion of Figure 8.

964

Fig. 8. Multiple Trajectories for Complex Scenario with Four Terrain
Types (White-Easy, Yellow-Tough, Green-Tougher, Cyan-Toughest) and
Two Controllers (Red-Fast, Blue-Slow)

D. Experimental Implementation

It is not possible to use the Vicon system outside of
the lab for state estimation so we used a laser-based lo-
calization method based on Section 4.5 of [13] that uses
a 2D occupancy map of the environment and scans from
a Hokuyo URG-04LX mounted on the RDK. In order to
easily extend our planner to any localization method with
non-negligible error we just add a buffer of the accuracy
of the localization system to all obstacles. For example, our
laser-based localization is accurate to approximately 5 cm so
we buffer all obstacles by this amount.

For the real world implementation of this planner we
use a 5×4m map shown in Figure 9 discretized to 5cm
and 22.5◦. For a given start and goal location changing µ
produces trajectories with different probabilities of success
and completion times. Figure 9 shows a sample of three
such plans that are found for three different µ values. In
(1), a fast but high risk trajectory is found where the fast
controller is used throughout the trajectory. In (2), a medium
risk trajectory, a slightly longer path is chosen and the slow
controller is used when moving close to obstacles. In (3), a
low risk trajectory is chosen by avoiding the rocky terrain
entirely and taking a long but safe path.

The RDK was run along these trajectories using the
laser range-finder for localization. The high risk trajectory
was executed successfully less often than the medium risk
trajectory. The low risk trajectory was successful on all trials.
The data for nine of these experiments are shown in Figure
9. Videos of some of these runs can be seen in the video
attachment accompanying this paper. In these trials, the high
risk trajectory is executed in 28 seconds, the medium risk in
30.5 seconds, and the low risk in 33 seconds.

Fig. 9. (1-3) Planned Trajectories from High (1) to Low Risk (3), Black-
Obstacles, White-Carpet, Yellow-Rocky Terrain, Red-Fast Controller, Blue-
Slow Controller; (4) Experimental Data for RDK Following Trajectories
(1)-Solid Red, (2)-Dashed Blue, and (3)-Dotted Green

VI. Concluding Remarks

In this paper, we have addressed the problem of planning
to account for uncertainty in vehicle dynamics. We effi-
ciently solve the problem by incorporating it into the search-
based planning framework. Our planner chooses trajectories
which balance the trade-off between safety and speed. We
demonstrated the method on the RDK hexapod robot which
executed several trajectories of varying degrees of safety and
speed in a multi-terrain environment using only a laser range-
finder for localization.

Future work includes extending this method to larger
environments and more complex terrain. Larger, more open
environments will likely introduce significant errors in the
laser localization method. We plan to address this issue
by introducing localization errors which are a function of
environment into the process model. Extremely difficulty
terrain will introduce even greater errors into the dynamics
of the system. We plan to deal with this by developing new
controllers based on a low-level dynamic model of the RDK.

VII. Acknowledgments

The authors thank Jon Fink, Adam Komoroski, Dr. Haldun
Komsuoglu, Alex Kushleyev, Dr. Max Likhachev, and Dr.
Nathan Michael for their contributions to the work.

References
[1] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,”

International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, 2001.

[2] M. Likhachev and D. Ferguson, “Planning long dynamically-feasible
maneuvers for autonomous vehicles,” Proceedings of Robotics: Sci-
ence and Systems, 2008.

[3] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with
provable bounds on sub-optimality.” Advances in Neural Information
Processing Systems, vol. 16, 2003.

[4] R. Philippsen and R. Siegwart, “Smooth and efficient obstacle avoid-
ance for a tour guide robot,” International Conference on Robotics
and Automation, 2003.

[5] M. Likhachev and A. Stentz, “PPCP: Efficient probabilistic planning
with clear preferences in partially-known environments,” Proceedings
of the National Conference on Artificial Intelligence, 2006.

[6] M. Spaan and N. Vlassis, “A point-based pomdp algorithm for robot
planning,” International Conference on Robotics and Automation,
2004.

[7] M. Jun and R. D’Andrea, “Path planning for unmanned aerial vehicles
in uncertain and adversarial environments,” Cooperative Control:
Models, Applications and Algorithms, pp. 95–111, 2002.

[8] J. Gonzalez and A. Stentz, “Planning with uncertainty in position
using high-resolution maps,” International Conference on Robotics
and Automation, 2007.

[9] R. He, S. Prentice, and N. Roy, “Planning in information space for
a quadrotor helicopter in a GPS-denied environment,” International
Conference on Robotics and Automation, 2008.

[10] U. Saranli, M. Buehler, and D. Koditschek, “Rhex - a simple and
highly mobile hexapod robot,” International Journal of Robotics
Research, 2001.

[11] S. Skaff, G. Kantor, D. Maiwand, and A. Rizzi, “Inertial navigation and
visual line following for a dynamical hexapod robot,” Intl. Conference
on Intelligent Robots and Systems, 2003.

[12] M. Likhachev. Search-based planning library (SBPL),
http://www.seas.upenn.edu/ maximl/software.html.

[13] T. Bailey, “Mobile robot localisation and mapping in extensive outdoor
environments,” Ph.D. dissertation, The University of Sydney, 2002.

965

