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Abstract— Safe handling of dynamic highway and inner city
scenarios with autonomous vehicles involves the problem of
generating traffic-adapted trajectories. In order to account for
the practical requirements of the holistic autonomous system,
we propose a semi-reactive trajectory generation method, which
can be tightly integrated into the behavioral layer. The method
realizes long-term objectives such as velocity keeping, merging,
following, stopping, in combination with a reactive collision
avoidance by means of optimal-control strategies within the
Frenét-Frame [12] of the street. The capabilities of this ap-
proach are demonstrated in the simulation of a typical high-
speed highway scenario.

I. INTRODUCTION

A. Motivation

The past three decades have witnessed ambitious research

in the area of automated driving. As autonomous vehicles

advance toward handling realistic road traffic, they face street

scenarios where dynamics of other traffic participants must

be considered explicitly. This includes every day driving

maneuvers like merging into traffic flow, passing with on-

coming traffic, changing lanes, or avoiding other vehicles.

Under simplified conditions, such as during the 2007 DARPA

Urban Challenge1, this can be tackled with fairly simple

heuristics and conservative estimates [18]. However, these

approaches quickly reach their limits in nose-to-tail traffic

and at high driving speeds resulting in poor performance or

even accidents [5]. This is where trajectory concepts come

into play, which explicitly account for the time t on the

planning and execution level.

The presented method embarks on this strategy and sets

itself apart from previous work in that it is especially

suitable for highway driving, as it generates velocity invari-

ant movement2 and transfers velocity and distance control
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speed.

to the planning level. Additionally, the algorithm provides

for reactive obstacle avoidance by the combined usage of

steering and breaking/acceleration.

B. Related work

Several methods for trajectory planning have been pro-

posed [11], [19], [2], [4] that find a global trajectory con-

necting a start and a - possibly distant - goal state. However,

these methods fail to model the inherent unpredictability

of other traffic, and the resulting uncertainty, given that

they rely on precise prediction of other traffic participant’s

motions over a long time period. Other approaches taken

towards trajectory planning follow a discrete optimization

scheme (e. g. [16], [1], [7]): A finite set of trajectories is

computed, typically by forward integration of the differential

equations that describe vehicle dynamics. From this set, the

trajectory is chosen that minimizes a given cost functional.

For generation of the trajectory set a parametric model is

chosen, like curvature polynomials of arbitrary order. While

this reduces the solution space and allows for fast planning, it

may introduce suboptimality. We will show in Sec. II that this

can lead to both overshoots and stationary offsets in curves.

In [9], a tree of trajectories is sampled by simulating the

closed loop system using the rapidly exploring random tree

algorithm [10]. The system incorporates many heuristics in

the form of sampling biases to assert well behaved operation.

An approach that is in a similar spirit to our method but

only considers the free problem that is not constrained by

obstacles has been taken by [17]. Here, the optimal control

trajectory for an aero dynamic system is found within a

function space that is spanned by a Galerkin base.

For the above mentioned reasons and to, at least partly,

overcome the limitations of the approaches described in the

literature, we propose a local method, which is capable of

realizing high-level decisions made by an upstream, behav-

ioral layer (long-term objectives) and also performs (reactive)

emergency obstacle avoidance in unexpected critical situa-

tions. One aspect that sets our method especially apart from

other schemes is the guaranteed stability (temporal consi-

tency) of the non-reactive maneuvers that follows directly

from Bellman’s principle of optimality. Within this work

we adhere with the strategy of strictly decoupling feedback

from planning. We demonstrated before that it is advantagous

to separate the navigation task into real time trajectory

generation and subsequent local stabilization through trajec-

tory tracking feedback control. This is in contrast to some

other approaches that close the control loop by feeding the

observed state of the system directly back into the planning
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stage. The focus of this work will be on the trajectory

generation phase, i.e. generating the nominal input required

to safely operate the vehicle in specific maneuvering modes.

II. OPTIMAL CONTROL APPROACH

Applying optimal control theory to trajectory generation

is not new. In contrast to the well known works [13], [3],

our main focus is not on the optimization of a certain cost

functional. We instead formulate the problem of trajectory

tracking in an optimal sense to take advantage of the theory

asserting consistency in the choice of the best feasible tra-

jectory over time. With this, we seek to make sure that once

an optimal solution is found, it will be retained (Bellman’s

Principle of Optimality). For the car, this would mean that it

follows the remainder of the previously calculated trajectory

in each planning step and therefore temporal consistency is

provided.

This is in contrast to methods such as [16], [1], [7],

where the trajectories are represented parametrically, e. g. by

assuming system inputs or curvature to be polynomials, and

the set is generated by sampling from the parameter space [1]

or by optimizing on it in order to meet certain end constraints

[7], [16]. In general, the optimal trajectory - in terms of the

cost functional - is not part of the function space spanned

by the parameters. Consequently, Bellman’s principle of

optimality does not hold, and on the next iteration a trajectory

will be chosen that is slightly different. Figure 1 illustrates

that this temporal consistency can lead to overshoots or even

instabilities.

While our main criterion in choosing a cost functional is

compliance with Bellman’s principle of optimality, trajecto-

ries minimizing it must still be close to the desired traffic

behavior of the autonomous car. Therefore, let us verbally

describe the “ideal” behavior of an autonomous car moving

along a street: Suppose the car has a certain lateral offset to

the desired lane, say due to a recently initiated lane change or

an obstacle avoidance maneuver. The car should then return

within its driving physics to the desired lane making the best

compromise between the ease and comfort perceived in the

car and the time it takes to get to the desired lane position.

∆Ta

∆Tb

n0

n0

n1

n2

n1
n2

(...)

(...)

Fig. 1. Two different transient behaviors of the same planning strategy de-
pending on the replanning frequency: (top) High replanning frequency with
tolerable transient; (bottom) low replanning frequency causes overshoots.
∆Ta and ∆Tb are the inverse planning frequencies and ni the starting
points of subsequent planning steps.

At the same time, the best compromise has to be found

in the longitudinal direction in an analog manner: Assuming

the car drives too fast or too close to the vehicle in front,

it has to slow down noticeably but without excessive rush.

Mathematically speaking, ease and comfort can be best

described by the jerk, which is defined by the change of

acceleration over time, where needed time is simply T =
tend − tstart of the maneuver.

As the solution to the general restricted optimization prob-

lem is not limited to a certain function class3, the problem

becomes highly complicated and can be solved numerically

at best. This is why our approach searches, as a reasonable

approximation for the restricted optimization problem, only

within the set of optimal solutions to the unrestricted (free)

optimization problem and chooses the best solution, which

fulfills the restrictions. This in turn means that as soon as the

best solution is valid (restrictions are then not active) tem-

poral consistency of the non-reactive trajectories is assured.

The verification of the reactive heuristic is yet to be shown

simulatively.

III. MOTION PLANNING IN THE FRENÉT FRAME

A well known approach in tracking control theory is

the Frenét Frame method, which asserts invariant tracking

performance under the action of the special Euclidean group

SE(2) := SO(2) × R
2.Here, we will apply this method in

order to be able to combine different lateral and longitudinal

cost functionals for different tasks as well as to mimic

human-like driving behavior on the highway. As depicted in

Fig. 2, the moving reference frame is given by the tangential

and normal vector ~tr, ~nr at a certain point of some curve

referred to as the center line in the following. This center

line represents either the ideal path along the free road, in

the most simple case the road center, or the result of a

path planning algorithm for unstructured environments [20].

Rather than formulating the trajectory generation problem

directly in Cartesian Coordinates ~x, we switch to the pro-

posed dynamic reference frame and seek to generate a one-

dimensional trajectory for both the root point ~r along the

center line and the perpendicular offset d with the relation

~x(s(t), d(t)) = ~r(s(t)) + d(t)~nr(s(t)), (1)

as shown in Fig. 2, where s denotes the covered arc length

of the center line, and ~tx, ~nx are the tangential and normal

vectors of the resulting trajectory ~x(s(t), d(t)).
Human perception obviously weights lateral and longitudi-

nal changes of acceleration differently. Since the vector pairs
~tx, ~nx and ~ts, ~ns almost align at higher speeds, we consider

the previously introduced jerk in these Frenét coordinates as...
d and

...
s . From [15] we also know that quintic polynomials

are the jerk-optimal connection between a start state P0 =
[p0, ṗ0, p̈0] and an end state P1 = [p1, ṗ1, p̈1] within the time

interval T := t1 − t0 in a one-dimensional problem. More

3This becomes clear if you imagine the autonomous car being trapped
between four moving cars, one in each direction, forcing the car’s motion
into a single possible solution, e. g. a sinusoidal.
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Fig. 2. Trajectory generation in a Frenét-frame

precisely, they minimize the cost functional given by the time

integral of the square of jerk

Jt(p(t)) :=

∫ t1

t0

...
p 2(τ)dτ.

We will use this result also for our approach:

Proposition 1: Given the start state P0 = [p0, ṗ0, p̈0] at t0
and [ṗ1, p̈1] of the end state P1 at some t1 = t0 + T , the

solution to the minimization problem of the cost functional

C = kjJt + ktg(T ) + kph(p1)

with arbitrary functions g and h and kj , kt, kp > 0 is also a

quintic polynomial.

Proof: 4 Assume the optimal solution to the proposed

problem was not a quintic polynomial. It would connect the

the two points P0 and P1(p1,opt) within the time interval

Topt. Then a quintic polynomial through the same points and

the same time interval will always lead to a smaller cost

term
∫ t1

t0

...
p 2(τ) in addition to the same two other cost terms.

This is in contradiction to the assumption so that the optimal

solution has to be a quintic polynomial.

IV. GENERATION OF LATERAL MOVEMENT

A. High Speed Trajectories

Since we seek to minimize the squared jerk of the resulting

trajectory, we choose the start state of our optimization

D0 = [d0, ḋ0, d̈0] according to the previously calculated

trajectory, s. Sec. VI, so that no discontinuities occur. For the

optimization itself, we let ḋ1 = d̈1 = 0 (the target manifold

in the optimal control lingo) as we want to move parallel

to the center line. In addition, we choose g(T ) = T and

h(d1) = d2
1 so that we get the cost functional

Cd = kjJt(d(t)) + ktT + kdd
2

1, (2)

since we want to penalize solutions with slow convergence

and those, which are off from the center d = 0 at the end.

Notice, that this cost functional and the ones used in the

sequel do not depend on the velocity of the vehicle (except

for Sect. IV-B). As we know from Prop. 1 that the optimal

solution is a quintic polynomial, we could calculate its coeffi-

cients and T minimizing (2) (rather lengthy expressions) and

4From an optimal control’s perspective this is directly clear, as the end
point costs g(T ) and h(p1) do not change the Euler-Lagrange equation.

check it (in combination with the best longitudinal trajectory

s(t)) against collision. If we are lucky, it is valid and we

are done. If it is not, we would have to find a collision-free

alternative, some kind of “second best” trajectory, by slightly

modifying T along with the coefficients of d(t) (and s(t))
and check for collision again, and so on.

Instead of calculating the best trajectory explicitly and mod-

ifying the coefficients to get a valid alternative, we generate

in the first step, such as in [16], a whole trajectory set: By

combining different end conditions di and Tj

[d1, ḋ1, d̈1, T ]ij = [di, 0, 0, Tj ]

for the polynomials, as shown in Fig. 3 at simulation time

t = 0, all possible maneuvers are sufficiently covered.

In the second step we pick the valid trajectory with the

lowest cost. Notice that, as we continue in each step along

the optimal trajectory (non-reactive, long-term goals), the

remaining trajectory will be, in contrast to Fig. 1, the optimal

solution in the next step. This is contributed, on the one hand,

to the fact that we choose the discrete points in absolute

time (in the simulation of Fig. 3 every full second), so that

in each step the previously optimal trajectory is available in

the next step, on the other, that we are in the correct (optimal)

function class for the unrestricted problem.

B. Low Speed Trajectories

At higher speeds, d(t) and s(t) can be chosen indepen-

dently5, as proposed in the last section. At extreme low

speeds, however, this strategy disregards the non-holonomic

property of the car, so that the majority of the trajectories

has to be rejected due to invalid curvatures (s. Sec. VI).

For this reason the behavioral layer can switch below a

certain velocity threshold to a slightly different trajectory

mode generating the lateral trajectory in dependence on the

longitudinal movement, that is

~x(s(t), d(t)) = ~r(s(t)) + d(s(t))~nr(s(t)).

Remember that our focus is not on the minimization of a

certain cost functional, but we take advantage of optimization

theory in order to rate the generated trajectories consistently.

As quintic polynomials for d(s) (defined over the center line

arc length s) lead to clothoid-spline-like parallel maneuvers

for orientation deviations from the center line smaller than π
2

,

we stick to the polynomials also for low speeds and modify

the cost functional to

Cd = kjJs(d(s)) + ktS + kdd
2

1,

with S = s1 − s0 and with (·)′ := ∂
∂s

(·)

Js(d(s)) :=

∫ s1

s0

d′′′2(σ)dσ.

According to Prop. 1, the quintic polynomials over s belong

to the optimal function class. The set generation can then

5excluding extreme maneuvers, where the combined lateral and longitu-
dinal forces on the car play an important roll
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carried analogously out to d(t) with the start point D0 =
[d0, d

′

0, d
′′

0 ] and the various end points

[d1, d
′

1, d
′′

1 , T ]ij = [di, 0, 0, Tj ].
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Fig. 3. Optimal lateral movement resulting from cyclic replanning with
green being the optimal trajectory, black the valid, and gray the invalid
alternatives

V. GENERATION OF LONGITUDINAL MOVEMENT

In contrast to previous works where time or travelled

distance was the key criterion, we will focus here on comfort

and contribute at the same time to safety at high speeds, as

smooth movements adapt much better to the traffic flow. For

that reason, we also take the longitudinal jerk into account

in our optimization problem.

A. Following, Merging, and Stopping

Since distance keeping, merging, and stopping at certain

positions require trajectories, which describe the transfer

from the current state to a longitudinal, possibly moving,

target position starget(t), we generate a longitudinal trajectory

set, analogously to the lateral trajectories, starting at S0 =
[s0, ṡ0, s̈0] and vary the end constraints by different ∆si and

Tj according to

[s1, ṡ1, s̈1, T ]ij =[[starget(Tj) + ∆si], ṡtarget(Tj), s̈target(Tj), Tj ]

as depicted for t = 0 in Fig. 4, and finally evaluate for each

polynomial the cost functional

Ct = kjJt + ktT + ks[s1 − sd]
2.

Following

For following, the moving target point can be derived from

international traffic rules, e. g. [14], requiring a certain tem-

poral safety distance to the vehicle ahead, known as the

constant time gap law, so that the desired position of the

following vehicle along the lane is given by

starget(t) := slv(t) − [D0 + τ ṡlv(t)],

with constants D0 and τ and the position slv and velocity ṡlv

of the leading vehicle along the lane. As we would like to

derive alternative trajectories to the vicinity of this point,

the movement of the leading vehicle has to be predicted

and we reasonably assume s̈lv(t) = s̈lv(t0) = const. Time

integration leads us to

ṡlv(t) = ṡlv(t0) + s̈lv(t0)[t − t0]

slv(t) = slv(t0) + ṡlv(t0)[t − t0] +
1

2
s̈lv(t0)[t − t0]

2,

which we need in the required time derivatives

ṡtarget(t) = ṡlv(t) − τ s̈lv(t),

s̈target(t) = s̈lv(t1) − τ
...
s lv(t) = s̈lv(t1).
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Fig. 4. Optimal longitudinal tracking of a target position in blue with green
being the optimal trajectory, black the valid, and gray the invalid alternatives
in each replanning step

Merging and Stopping

In the same fashion as above, we can define the target point

starget(t) =
1

2
[sa(t) + sb(t)], (3)

which enables us to position the autonomous car next to a

pair of vehicles at sa(t) and sb(t), before squeezing slowly

in between during a tight merging maneuver.

For stopping at intersections due to a red light or a stop sign,

we define starget = sstop, ṡtarget ≡ 0, and s̈target ≡ 0.

B. Velocity Keeping

In many situations, such as driving with no vehicles

directly ahead, the autonomous car does not necessarily have

to be at a certain position but needs to adapt to a desired

velocity ṡd = const. given by the behavioral level. Analog

to the calculus of variations in [15] (with the additional so-

called transversality condition for s1) and Prop. 1, quartic

polynomials can be found to minimize the cost functional

Cv = kjJt(s(t)) + ktT + kṡ[ṡ1 − ṡd]
2

for a given start state S0 = [s0, ṡ0, s̈0] at t0 and [ṡ1, s̈1] of

the end state S1 at some t1 = t0 + T . This means, that we

can generate an optimal longitudinal trajectory set of quartic

polynomials by varying the end constraints by ∆ṡi and Tj

according to

[ṡ1, s̈1, T ]ij = [[ṡd + ∆ṡi], 0, Tj ],

as depicted in Fig. 5.
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Fig. 5. Optimal velocity adaption to ṡd = 5.0 m/s with green being the
optimal trajectory, black the valid, and gray the invalid alternatives in each
replanning step

VI. COMBINING LATERAL AND LONGITUDINAL

TRAJECTORIES

Before combining the lateral and longitudinal trajectory

sets, denoted as Tlat and Tlon in the sequel, each one is

checked against outsized acceleration values of s̈ and d̈ or

d′′ (gray trajectories in the figures of the previous section).

As we do not concentrate in this contribution on maxing out

the vehicle’s physics, we choose them fairly conservative,

leaving enough safety margin to the feedback controller. The

remainders in each set are then brought together in every

combination Tlat × Tlon, as shown in Fig. 6.

Since the best valid trajectory describes the tracking refer-

ence for a feedback controller, we need to derive the higher

order information of ~x(t), that is the heading θx(t), curvature

κx(t), velocity vx(t), and acceleration ax(t). As for most

setups the center line is assumed not to be available in a

closed form but represented by presampled curve points with

orientation θr(s), curvature κr(s), and change of curvature

over arc length κ′

r(s), the required interpolation makes it im-

possible to derive the higher order information numerically.

The derivations of the required closed form transformations

can therefore be found in App. I. The curvature κx(t) is

then used for excluding trajectories exceeding the maximum

turn radius of the car. In a last step, the conjoint costs of

each trajectory is calculated as the weighted sum Ctot =
klatClat + klonClon.

As for collision detection, we would like to avoid adding

heuristic penalty terms to the cost functionals in the vicinity

of other obstacles, as they tend to lead to complex parameter

adjustments as well as unpredictable behavior. Instead we

add a certain safety distance to the size of our car on each

side and make a hierarchical zero/one decision in terms

of interference with other obstacles similar to [16]. Our

solution to preventing the car from passing other obstacles

unnecessarily closely without increasing the safety distance

in general, is as simple as effective: The collision-checked

contour is continuously expanded a little bit towards the time

horizon, so obstacles of any kind seem to continuously back

off as we get closer.

Every time we utilize a new reference as the center line, such

as during initialization and lane changes, or when we switch

between low and high speed trajectories, we have to project

the current end point (x, θx, κx, vx, ax)(t0) on the new center

line and determine the corresponding [s0, ṡ0, s̈0, d0, ḋ0, d̈0] or

[s0, ṡ0, s̈0, d0, d
′

0, d
′′

0 ] respectively. For this reason, the trans-

formations in the appendix can easily be inverted in closed

form, except for s0, as we do not restrict the center line ~r(s)
to a certain shape6. However the inversion can be restated

as the minimization problem s = argmin
σ

‖x − r(σ)‖, for

which efficient numerical methods exist.
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Fig. 6. Resulting trajectory set in global coordinates for velocity keeping:
The color map visualizes the increasing costs of both the reactive layer with
3.0 s lookahead from red to yellow and the alternatives for the long-term
objectives form gray to black. As there are no obstacles within the 3.0 s
horizon, the optimal trajectory of the free problem is chosen (green, light
gray), which leads the vehicle back to the center line and to the desired
speed.

VII. CHOOSING THE RIGHT STRATEGY

As far as our experience goes, it is sufficient for high-

way trajectory generation to classify all traffic scenarios as

merging, following another car, keeping a certain velocity,

stopping at a certain point, and all combinations thereof,

which are conflicting most of the time. In control the-

ory, override control [6] is a well-known technique, which

chooses among multiple control strategies according to a

scheme, prevalently the most conservative one via a max-

or a min-operator. This technique has been successfully

implemented in numerous autonomous cars on the control

level (Adaptive Cruise Control), but, to our best knowledge,

not on the trajectory generation level, as we propose here.

At any time, the lateral trajectory set is combined with the

ones of every active longitudinal trajectory generation mode

according to Sec. VI. Then the collision-free trajectory with

the lowest conjoint cost functionals Ctot of each active mode

is compared to the other ones, and the trajectory with the

smallest initial jerk value
...
s (t0) is finally put through to

the tracking controller. Typical combinations of active modes

are velocity keeping and following (Adaptive Cruise Control,

lane changes in sparce traffic), merging (lane changes in

dense traffic), and velocity keeping and stopping (intersection

with traffic lights).

VIII. EXPERIMENTS

A first version of the algorithm was implemented and

tested without obstacles (long-term objectives) on the au-

6For a straight line or a circular arc closed-form solutions exist.
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tonomous vehicle JUNIOR with a planning cycle of 100ms.

The trajectories generated in combination with a tracking

controller [8] a smooth, controlled ride with velocity in-

variant timing and the guaranteed temporal consistency as

already shown in Fig. 6.

Due to the associated risk of the real world highway scenario

shown in Fig. 7, we tested the reactive capabilities of the

trajectory generation method in simulation and hold off on

the practical validation. In order to show the functionality

of the algorithm, we disabled the behavioral layer, which is

otherwise meant to prevent the vehicle from solving critical

situations at the reactive layer as often as possible. As a

consequence, only the center line of the middle lane and

a desired velocity 5.0 m/s higher than the avarage traffic

flow is permanently put through to the algorithm: With

the cost weights klat ≈ klon, the car always drives well-

behaved right behind the leading car (not shown), so, for

the sake of clearness, we used klat ≪ klon. With this,

the car prefers passing the much slower vehicles, such as

between t = 0.0 s and 7.75 s, to slowing down for them,

but also provokes reckless driving between t = 29.07 s and

50.0 s, demonstrating the combined usage of steering and

breaking/acceleration.

IX. CONCLUSION AND FUTURE WORKS

In order to handle dynamic street scenarios with an

autonomous vehicle we proposed an optimal control based

solution to the trajectory generation problem, which we

illustrated by means of a conclusive experiment. The derived

strategy realizes effectively all necessary maneuvers for on-

road driving in the presence of dynamic and static obstacles.

The resulting maneuvers are characterized by a consistent,

effective, comfortable as well as safe integration into the

permanently changing traffic flow and can be tuned by a

small set of intuitive, orthogonal parameters. The trajectory

generation can directly be embedded into the behavioral layer

commanding abstract inputs to the algorithm, such as desired

speed, the position of the car to follow, or lane change

intents.

Due to the short optimization horizon, however, the approach

is not intended to relieve the behavior layer of making

farsighted decisions. New suitable heuristics, such as the

constant-time-gap-law or conservative merge checks, can

minimize the number of critical situations handled on the

reactive level. The better the algorithm gets integrated into

the behavioral layer and the more precisely other traffic

participants can be predicted, the further we can advance

with our test vehicle to open road traffic, which will reveal

the level of acceptance there.
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APPENDIX I

TRANSFORMATIONS FROM FRENÉT COORDINATES TO

GLOBAL COORDINATES

In addition to (1), we seek for transformations

[s, ṡ, s̈; d, ḋ, d̈/d, d′, d′′] 7→ [~x, θx, κx, vx, ax]

The mayor challenges at this is to handle the singularity vx =

0. Therefore we introduce ~tr(s) :=
[

cos θr(s) sin θr(s)
]T

and ~nr(s) :=
[
− sin θr(s) cos θr(s)

]T
, where θr(s), ~tr(s)

and ~nr(s) are the orientation, the tangential and normal

vectors of the center line in s. In addition, we denote the

curvature as κr and assume that we travel along the center

line excluding extreme situations, such that ‖∆θ‖2 < π
2

,

with ∆θ := θx − θr, and 1 − κrd > 0 at all times. As we

can derive the transformation needed for higher speeds from

the one associated with lower speeds, we will start with the

latter. With (1) we get

d = [~x − ~r(s)]T~nr. (4)

Time derivative yields with ~̇nr = −κr
~tr

ḋ = [~̇x − ~̇r(s)]T~nr + [~x − ~r(s)]T~̇nr

= vx
~t T

x ~nr−ṡ~t T

r ~nr
︸ ︷︷ ︸

=0

−κr [~x − ~r(s)]T~tr
︸ ︷︷ ︸

=0

= vx sin ∆θ. (5)

Therefore, we calculate

vx = ‖ẋ‖2 =

∥
∥
∥
∥

[
~tr ~nr

]
[

1 − κrd 0
0 1

] [
ṡ

ḋ

]∥
∥
∥
∥

2

=

∥
∥
∥
∥

[
1 − κrd 0

0 1

] [
ṡ

ḋ

]∥
∥
∥
∥

2

=

√

[1 − κrd]2ṡ2 + ḋ2

and d′ : =
d

ds
d =

dt

ds

d

dt
d =

1

ṡ
ḋ =

1

ṡ
vx sin ∆θ

=
√

[1 − κrd]2 + d′2 sin ∆θ

d′2 = [[1 − κrd]2 + d′2] sin2 ∆θ

d′2[1 − sin2 ∆θ] = [1 − κrd]2 sin2 ∆θ,

so that we get d′ = [1 − κrd] tan ∆θ. (6)

Additionally, we know that [~x − ~r]T~tr = 0 at all times, so

that differentiating with respect to time gives us analog to (5)
vx

ṡ
cos ∆θ − 1 + κrd = 0 and we can solve for the velocity

vx = ṡ
1 − κrd

cos ∆θ
. (7)

With this and sx being the arc length of the trajectory ~x, we

can conclude that

d

ds
=

dsx

ds

d

dsx

=
dsx

dt

dt

ds

d

dsx

=
vx

ṡ

d

dsx

=
1−κrd

cos ∆θ

d

dsx

, (8)

so that we calculate the second derivative of d to be

d′′= −[κrd]′ tan ∆θ +
1−κrd

cos2 ∆θ

[
d

ds
θx − θ′r

]

= −[κ′

rd+κrd
′] tan ∆θ+

1−κrd

cos2 ∆θ

[

κx

1−κrd

cos ∆θ
−κr

]

. (9)

Equations (6) and (9) can be solved for θx and κx, including

vx = 0. Time differentiating the velocity once more yields

the last unknown in our transformation

ax := v̇x = s̈
1−κrd

cos ∆θ
+ ṡ

d

ds

1 − κrd

cos ∆θ
ṡ =

s̈
1−κrd

cos ∆θ
+

ṡ2

cos ∆θ
[[1−κrd] tan ∆θ∆θ′−[κ′

rd + κrd
′]] .

For high speed driving we calculate ḋ = d

dt
d = ds

dt
d

ds
d = ṡ d

and d̈ = d′′ṡ2 + d′s̈. As ṡ 6= 0 holds for higher speeds,

subsequently solving these equations for d′ and d′′ enables

us to use the previously calculated transformations. Notice,

that the center line ~r(s) needs to have a continuous change

of curvature κ′

r in order to provide for a trajectory ~x(t) with

a continuous κx.
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