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Abstract— In this note, we present initial results towards
developing a distributed algorithm for repairing topological
holes in the sensor cover of a mobile robot team. Central
to our approach is the melding of recent advances in the
application of computational homology (a sub-discipline of
algebraic topology) to static sensor networks with relative metric
information (i.e. relative pose). More precisely, we consider
a greedy, hybrid (discrete–continuous) algorithm whereby a
desired Cěch complex, the simplicial complex that captures the
underlying topology of the sensing cover, is iteratively generated
using local rules (between multi–hop neighbors) and agents are
driven towards achieving this topology via a gradient–ascent
simplicial control law. Convergence of the proposed algorithm
is established as a function of the convergence of the underlying
simplicial control law, and the relationship of the latter to
the spectrum of the combinatorial Laplacian is considered.
Simulation results for teams operating in R2 are presented.

I. INTRODUCTION
The coverage problem is among the most fundamental co-

ordination problems involving multi–agent systems. In recent
years, the robotics and wireless sensor network communities
have begun exploring the utility of algebraic topology for
providing a solution. Algebraic topology is attractive as it
provides a metric–free, mathematical toolkit for classifying
topological spaces. It has already been applied to wireless
sensor networks devoid of traditionally assumed geometric
information (e.g. GPS, relative localization, etc.) yielding
impressive algorithms which afford metric–free coverage
verification and even hole “localization”. Such approaches
have only recently emerged, and, as a result, they have almost
exclusively been focused upon static network topologies.
However, the question remains: “How can algebraic topology
be utilized by mobile robot teams for coverage control?”

In this paper, the first steps are taken towards addressing
this question by coupling abstract simplicial complexes with
relative metric information to facilitate coverage control.
Specifically, we consider what may be called the coverage–
repair problem and formulate a greedy, discrete–continuous
algorithm for repairing coverage holes in the network topol-
ogy. Intuitively, agents postulate in an abstract topological
(combinatorial) space to generate a desired simplicial com-
plex (i.e. the Cěch complex) that is ultimately used to govern
team behavior via decentralized simplicial control laws.
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II. RELATED WORK

Given the centrality of homological constructs to the forth-
coming algorithm, in this section, we only discuss related
work where the application of algebraic topology was central
to the authors’ primary results. In [1] the authors consider
metric–free static coverage verification by “sandwiching”
the Cěch complex of the sensor network between a pair of
bounding Rips complexes, which capture the topology of the
underlying communication graph. They extend this work in
[2] by formulating a set of homological criteria to verify a
static deployment of sensors covers a fenced region.

As simplicial homology (see §III) can be interpreted as
a higher–dimensional abstraction of connectivity in graph
theory it is not surprising that recent efforts have focused
upon exploring dynamical flows. In [3], the authors consider
such flows over combinatorial Laplaciancs and perform
stability analysis for applications to coverage verification.
The results presented in [4] exploit this result to localize
coverage holes using a decentralized sub–gradient method.
Additionally, [5] takes a hybrid systems perspective and
establish the asymptotic stability of switched higher–order
Laplacians operators for dynamic coverage verification.

Finally, a few have considered dynamic approaches rooted
in homology for addressing certain variations of the coverage
problem. Among these is [6] who consider a topological
variation of the evader–pursuer problem where the objective
is to ensure that the evader, initially occupying a coverage
hole, cannot go undetected indefinitely within some fenced
region. Additionally, in [7], the authors consider a switched
dynamical system using higher–order Laplacians and estab-
lish that for a team of agents constrained to some domain
that each point in that domain will be visited infinitely often.

III. SIMPLICES, COMPLEXES, & HOMOLOGY

Before proceeding, we introduce the homological con-
structs and terminology that are central to this discussion.
The interested reader is referred to [8] for more details.

A. Simplices and Simplicial Complexes

Given a set of points V , a k-simplex is an unordered
set σ = {v0, . . . , vk} ⊆ V where vi 6= vj ,∀vi, vj ∈
σ. By definition, each k-simplex is closed with respect to
its faces where the ith face, 0 ≤ i ≤ k, is given by
{v0, . . . , vi−1, vi+1, . . . , vk} ⊂ σ. A finite collection X of
such simplices that maintains closure with respect to faces
(i.e. σ ∈ X implies that all faces are included in X) is called
a simplicial complex (see Figure 1) where the dimension
of X corresponds to the maximum dimension of any of its
simplices with the dimension of a k–simplex being given by
dimσ = k. A subcomplex Y of X is a simplicial complex
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Fig. 1. Simplices are the building blocks of simplicial complexes. In the
context of this research, each 0-simplex naturally corresponds to a single
robot with higher–dimensional simplices being given by local properties of
the sensor cover.

such that Y ⊆ X . Additionally, we can define the k-skeleton
of a complex as X(k) = {σ ∈ X : dimσ ≤ k}. Intuitively,
the k-skeleton corresponds to the set of k–simplices of X .

A generalization of graphs, simplicial complexes also
embed some notion of adjacency. Specifically, a pair of k–
simplices are upper-adjacent (denoted σi a σj) if they are
faces of a (k+1)–simplex. Similarly, a pair of k–simplices are
lower–adjacent (denoted σi ` σj) if they share a face.

B. Homology Groups and Combinatorial Laplacians

Central to simplicial homology is the notion of the bound-
ary homomorphism between k-simplices and their lower–
dimensional faces. To generate this mapping on a complex
X , we induce an ordering (similar to graphs) where an or-
dered k–simplex in X is denoted σ = [v0, . . . , vk]. Given this
ordering, the vector space Ck(X;F ) can be defined as the
space whose basis corresponds to the set of all k-simplices
in X with coefficients in some field (for convenience, we
assume F = R and write Ck(X)) and whose members
correspond to chains of oriented k-simplices. Given these
definitions, a boundary homomorphism can be defined which
provides the linear mapping ∂ : Ck(X) → Ck−1(X) by
operating on the basis elements of Ck(X). Denoted Bk, in
matrix form, ∂ intuitively maps chains of k–simplices (i.e.
k–chains) to a linear combination of their faces.

Given the boundary operator, the kth homology group of
X can be defined as the quotient group whose generators
correspond to equivalence classes of non–reducible cycles
(i.e. k–dimensional cycles bounding a topological hole)

Hk(X) = kerBk/imBk+1 (1)

Among the key properties of Hk(X) is that its dimension-
ality (i.e. number of generators) corresponds to the number
of k–dimensional holes in the corresponding complex.

Perhaps more important, however, is the kinship between
Hk(X) and a linear operator called the kth combinatorial
Laplacian, which is defined as the following linear combi-
nation of boundary operators mapped with their adjoints

Lk = BTk Bk +Bk+1B
T
k+1 (2)

A classical result from algebraic topology establishes the
isomorphic relationship kerLk ∼= Hk(X). This is pow-
erful as it tells us that kerLk captures all of the infor-
mation regarding the underlying topology. As an example,
nullity(Lk) = dimHk(X). More precisely, it holds that

Lk � 0 ⇐⇒ Hk(X) = ∅ (3)

IV. PROBLEM STATEMENT

Given these homological constructs, we now present a
formal statement of the coverage–repair problem. Let R =
{r1, . . . , rn} denote a finite set of fully–actuated mobile
robots operating on the plane with dynamics

q̇i = ui (4)

Accordingly, let Q(t) = (q1(t), . . . , qn(t))T ∈ R2n denote
the system’s state at time t, and assume the following ∀ri
A1 ri has a radially symmetric coverage domain with radius

sr ∈ R+

A2 ri has radially symmetric low and high–power commu-
nication broadcast ranges with respective radii blr, b

h
r ∈

R+ that satisfy 2sr ≤ blr < 4sr ≤ bhr (see Figure 2).
A3 ri is able to measure the relative pose of neighbors

within broadcast radii blr or bhr
A4 ri only broadcasts at bhr when necessary to ensure local

network interconnectivity
A5 ri has a unique identifier that it includes in broadcasts

Intuitively, A4 serves as a mechanism for energy conserva-
tion to extend the mission–life of the team. Additionally, for
notational convenience, we define Q , Q(t) and qi , qi(t).

Fig. 2. Illustrating A2: sr denotes the sensing (coverage) radius for ri
and blr and bhr respectively denote its low and high–power broadcasting
ranges. It is assumed ri is capable of sensing the relative pose to proximal
neighbors within blr or bhr units – depending upon the required broadcast
strength to maintain a desired level of local network connectivity.

Given assumptions A1 – A5, associate with agent ri its
convex sensor support Ui =

{
x ∈ R2 : ‖ x− qi ‖2 ≤ sr

}
⊂

R2 corresponding to the compact disk of radius sr centered
at qi. It is known (see [1]) that the topology of the sensor
cover, given by the union of convex sensor supports

UR =
⋃
∀ri∈R

Ui, (5)

is fully captured by a simplicial complex known as the Cěch
complex (see Figure 3(a)). It is defined as follows

Definition 1 (The Cěch Complex): Given a finite collec-
tion of convex sets, the corresponding Cěch complex is the
simplicial complex where each k–simplex corresponds to the
non–empty intersection of k + 1 sets in the collection.

Given this definition and stated assumptions, our problem
can be articulated using the terminology of §III as follows

Problem 1 (The Coverage–repair Problem): Given A1–
A5 and an initial Cěch complex X0 for UR such that
H1(X0) 6= ∅ (i.e. Lk � 0) transition R to new Cěch complex
Xn such that H1(Xn) = ∅ (i.e. Lk � 0).
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In this research, we are interested in developing a dis-
tributed solution to this problem.

V. AN ALGORITHMIC APPROACH
The intuition behind the proposed algorithm is to identify

cycles bounding coverage holes in X0 and supplant each
such cycle of length k with a k–simplex in the final topology.
Towards this end, we consider a coupled approach whereby
the original Cěch complex (i.e. X0) is iteratively augmented
with weighted 2–simplices among 2–hop neighbors lying
along the bounding cycle. By driving the robots to maximize
the weights of their respective 2–simplices (byway of our
simplicial control law) additional weighted simplices will
be introduced as robots become proximal. This process
continues until each bounding cycle is retracted and the
nullspace of the combinatorial Laplacian becomes trivial.

(a) (b)

Fig. 3. (a) An example of the Cěch complex capturing the sensor cover
(i.e. UR) of the underlying sensor network. Observe that a hole in UR
corresponds to a hole in the Cěch complex. (b) Given a bounding cycle
(bold), Algorithm 2 introduces desired simplices among 2–hop neighbors in
Xd(k) lying along the cycle. Additionally, to ensure each robot is involved
in a 2–simplex, it introduces the desired 2–simplex that lies to the far right.

Given this intuition, the key to formulating the proposed
algorithm is the realization that a sufficient criteria for solving
Problem 1 is to guarantee the convergence of the network
topology to a hole–free subcomplex of some Cěch complex
capturing UR. Towards this end, we let Xd(k) denote the de-
sired subcomplex at step k and let ∆ijk ∈ X(2)

d (k) ⊆ Xd(k)
denote the 2–simplex governed by the intersection of supports
Ui,Uj ,Uk ⊂ UR corresponding to agents ri, rj , rk ∈ R.
Accordingly, define the smooth functional

f(∆ijk) : X(2)
d (k)→ [0, 1] (6)

mapping each ∆ijk to its corresponding state–dependent
weight value. Intuitively, the weight f(∆ijk) loosely serves
as an indicator of Ui ∩ Uj ∩ Uk 6= ∅ (or, more naturally,
as a measure of adjacency for its 1–dimensional faces) as it
should achieve maximal value (i.e. 1) when the correspond-
ing 2–simplex is present. For the moment we defer further
discussion of f until §V-C with the exception of noting that
it will lead ri, rj , rk associated with ∆ijk towards a config-
uration where their supports have non–empty intersection.

Given this functional, consider the weighted 2–skeleton of
Xd(k), which we define as the 2–tuple

X(2)
w (t) ,

(
X

(2)
d (k),W (t)

)
(7)

where W (t) is defined

W (t) =
1

#2(Xd(k))

∑
∀∆ijk

f(∆ijk) (8)

with #k(Xd) denoting the number of k–simplices in X . Ob-
serve that when W (t) = 1 all simplices in Xd(k) are defined
in the actual Cěch complex. For notational convenience, we
write X(2)

w (t) = X
(2)
d (k) (or equivalently Xw(t) = Xd(k)).

Our objective then is to design a hybrid algorithm that
generates a finite sequence of discrete topological transitions

X(2)
w (t)→

(
X

(2)
d (0),1

)
︸ ︷︷ ︸

k=0

, . . . , X(2)
w (t)→

(
X

(2)
d (n),1

)
︸ ︷︷ ︸

k=n
(9)

where X0 ⊂ Xd(0), H1(Xd(0)) 6= ∅, and H1(Xd(n)) = ∅.
Intuitively, the transition at step k should occur when the
team achieves Xw(t) = Xd(k). At which point, a new de-
sired subcomplex Xd(k+ 1) will be generated. This process
continues until a desired subcomplex is achieved that is hole–
free. As it is natural to consider the generation of Xd(k+1)
by simply augmenting Xw(t) = Xd(k) with additional
weighted simplices, it is assumed Xd(k) ⊂ Xd(k + 1).

Considering (9), it is clear that two convergent (dependent)
sequences must be established. First, it must be shown how to
effectively generate Xd(k + 1), given that Xd(k) = Xw(t),
to ensure convergence to a hole–free topology. Second, it
must be shown that Xw(t) can be driven to achieve Xd(k)
via a simplicial controller. To facilitate understanding, we
adopt a top–down approach and consider the former before
concluding with a formulation of simplicial control, and how
it can be utilized to solve Problem 1.

A. Statement of Algorithm

In generating the proposed algorithm, we leverage the
recent results of [4] and [7]. In [4] the authors employ
a decentralized subgradient method for metric–free hole
localization by solving the following LP

min
z∈R#k(X)

‖ x+Bk+1z ‖1 (10)

where x ∈ kerLk. The solution corresponds to an ap-
proximation of the sparsest generator of Hk(X). Loosely
speaking, this generator corresponds to the cycle (or linear
combination of such cycles) that has/have the fewest number
of hops and bounds some k–dimensional hole. In the context
of this research, we shall exploit this result to identify 1–
cycles bounding topological holes in the Cěch complex.

Additionally, we leverage the results of [7]. In this work,
the authors consider the combinatorial Laplacian flow

ẋ(t) = −Lkx(t), x(0) ∈ R#k(X) (11)

and show that of Hk(X) = ∅ implies that (11) is asymptot-
ically stable and that Hk(X) 6= {∅} implies (11) is semi–
stable with solution x ∈ kerLk. These results are key as they
provide a mechanism for distributed coverage verification
and computation of x ∈ kerLk, which is necessary for (10).

Algorithm 1 presents our high–level algorithm, and it can
be thought of as behaving as a ternary state machine. During
the initial state, (11) is solved to verify coverage. If the
solution x /∈ kerLk, it can be used to seed the second
state of the system, which localizes topological holes by
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Algorithm 1 repairCoverage(X0, ε)

Require: 0 < ε� 1 and X(1)
0 is connected.

1: X ← X0

2: while x 6= 0 do
3: Solve: min

z∈R#k(X)
‖ x+B2z ‖2

4: X ← retractCycles(X, ε)
5: Solve: ẋ(t) = −L1(X)x(t), x(0) ∈ R#1(X)

6: end while
7: return X

way of (10). In the final state, localized cycles are retracted
via a distributed algorithm (§V-B). Naturally, the machine is
repeated until coverage is repaired.

B. Retracting Localized Holes

Recall that our approach for repairing coverage is to close
a hole by retracting a bounding cycle of length k to a corre-
sponding k–simplex in X . To this end, momentarily assume
the asymptotic convergence of Xw(t) → (Xd(k),1). Given
this assumption, we now show how to generate a sequence
of desired Cěch subcomplexes that ultimately converges to
new topology where a bounding cycle of length k has been
retracted to a corresponding k–simplex. Begin by considering
Algorithm 2 which generates Xd(k+ 1) ⊃ Xd(k) = Xw(t).

Algorithm 2 getDesiredCechSubcomplex(Xd(k))
Require: Xw(t) = Xd(k)

1: Xd(k + 1)← Xd(k)
2: for all ri ∈ R do
3: φ1 ← RCi ∩H1

ri(Xd(k + 1))
4: φ2 ← getAllCombinations(φ1, 2)
5: for all (ru, rv) ∈ φ2 do
6: X

(2)
d (k + 1)← X

(2)
d (k + 1) ∪∆iuv

7: end for
8: for all ru ∈ H1

ri(Xd(k + 1)) do
9: if �∃rv, u 6= v, rv ∈ H1

ri(Xd(k + 1)),
rv ∈ H1

ru(Xd(k + 1)) then
10: X

(2)
d (k + 1)← X

(2)
d (k + 1) ∪∆iuv

11: end if
12: end for
13: end for
14: return Xd(k + 1)

Algorithm 2 performs two separate steps. During the first
(lines 2–9), 2-simplices are introduced between ri and each
pair of 1–hop neighbors along its bounding cycle(s). The
second step is given by lines 10–21, and it updates the desired
subcomplex Xd(k+1) to ensure each agent is involved in at
least a single 2–simplex. See Figure 3(b) for example output.

Given this result, we can now establish a general algorithm
for retracting topological holes. Let CR = {c1, . . . , c`}
denote a set of cycles (or more generally, linear combinations
of such cycles) known to bound holes in X0. Let Cri =
{cj : cj ∈ CR, ri ∈ cj} denote those cycles involving ri. Ad-
ditionally, let RC denote the set of all robots involved in

Algorithm 3 retractCycles(X0, ε)

Require: 0 < ε� 1 and X(1)
0 is connected.

1: Xd ← X0

2: repeat
3: Xd ← getDesiredCechSubcomplex(Xd)
4: while ∃∆ijk ∈ X(2)

d , f(∆ijk) < 1− ε do
5: ∆ijk = ∆ijk + ∆̇ijkδt
6: end while
7: until ∀ri ∈ RC ,∀rj ∈ RCi , rj ∈ H1

ri(Xd(k))
8: X ← getCechComplex(Xd(k))
9: return X

such cycles (i.e. RC = {ri : ∃cj ∈ CR, ri ∈ cj}) and define
RCi as the set of all robots rj ∈ R, i 6= j such that ∃cj ∈
Cri , rj ∈ cj . Define H1

ri(Xd(k)) as the mapping of ri to its
1–hop neighbors in Xd(k). Given these definitions, consider
Algorithm 3 for generating a nested–sequence, Xd(k) ⊂
Xd(k + 1) that converges to a subcomplex where each k–
hop cycle has been retracted to a k–simplex. Accordingly, we
now formalize its convergence in Theorem 5.1.

Theorem 5.1: Assume Xw(t) → (Xd(k),1) and let the
length of cj ∈ C be given by kj ∈ Z≥3. Algorithm 3
converges to a subcomplex Xd(m) such that each cj is
retracted to a kj–simplex, σj ∈ Xd(m).

Proof: By contradiction. Assume Algorithm 3 termi-
nates and ∃cj ∈ C, σj /∈ Xd(m). This implies ∃σu, σv ∈
cj , u 6= v such that σu and σv are 0–simplices and σu��aσv .
Noting that X(1)

d (0) must be connected since X(1)
0 is con-

nected (since Xw(t)→ (Xd(k),1) at step k), ∃ a sequence
in Xd(m) of 1–simplices cuv ⊂ cj that joins σu and σv .
Since σu��aσv , ∃σs, σt ∈ cuv, s 6= t, s 6= u, t 6= u such that
σs and σt are 0–simplices, σt a σs, σs a σu, and σu��aσt.
However, by Algorithm 2, σt a σs, σs a σu ⇒ σu a σt in
X . This yields the necessary contradiction.

It should be noted that applying Algorithm 3 may inad-
vertently introduce holes in the desired topology Xd(k+ 1).
It is for this reason that (11) is solved after each iteration of
Algorithm 1 to verify coverage and ensure the algorithm only
terminates when a hole–free topology has been achieved.

C. Defining Simplicial Control Laws

Given Algorithm 1, it is evident that a hole–free topol-
ogy can be successfully generated provided that Xw(t) →
(Xd(k), 1) ,∀k. In this section, we now consider this conver-
gence in terms of simplicial control laws. Ideally, a simplicial
control law will allow us to abstract the team in terms
of k–simplices (in this research, k = 2) and drive the
underlying state implicitly as a functional of simplex weights
that capture the combinatorial relationship between robots.

a) Controller Synthesis: Begin by recalling the general
mapping (6) which serves to indicate Ui∩Uj∩Uk 6= ∅. Given
our application to coverage–repair, it is natural to consider a
simplicial control law that is a functional of the max–distance
separating ri, rj , rk who comprise ∆ijk. Accordingly, define
dijk , max {dij , dik, djk} ≤ 4sr,∀∆ijk ∈ X(2)

d (k) where
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dij ∈ R+ denotes the `2–norm between ri and rj . Abusing
notation slightly, define (6) as the real–valued mapping
f(dijk) : R3 → [0, 1] given by the sigmoid

f(∆ijk) , f(dijk) =
(

1 + εγ(dµ−dijk)
)−1

(12)

where 0 < ε � 1, γ = 1
dµ−dminijk

, dminijk = 2srcos(π6 ) is the
conservative maximal distance allowed between ri, rj , and
rk while still ensuring Ui ∩ Uj ∩ Uk 6= ∅ (see Figure 4(a)),
and dµ = 1

2 (dmaxijk + dminijk ) with dmaxijk = 4sr.
By definition, observe that f(dminijk ) = (1 + ε)−1 ≈ 1 and

f(dmaxijk ) = ε(1+ε)−1 ≈ 0. The latter value indicates that the
sensor supports are “far” from intersecting and thus the face
associated with ∆ijk ∈ X(2)

w (t) is “weak”. Conversely, the
former condition tells us that their supports meet in a non–
empty intersection. An additional benefit of choosing (12) is
that as f → 1 it holds that Of → 0. This property serves as
an embedded mechanism to reduce the collision–likelihood
between involved agents. Figure 4(b) illustrates this function.

At the simplex–level, driving Xw(t) = (Xd(k),1) (i.e.
solving (8) w.r.t. Xd(k)) corresponds to solving a standard
constrained convex optimization problem since f(dijk) is
a quasi–convex function in the entries of the combinato-
rial Laplacian L1(Xd(k)). Unfortunately, developing such
a controller directly as a functional of 1–simplices is hardly
straightforward. As such, for these initial results, we consider
simplicial control with respect to qi and sacrifice problem
convexity as f(dijk) is non–convex in Q.

To this end, consider the analytic approximation of the
max function (see [9]) given by the log–sum–exponential

dijk ≈
1
α

log
(
eαd

2
ij + eαd

2
ik + eαd

2
jk

)
(13)

where α ∈ R+, α� 1 and dij ∈ R+ is as previously defined
with respect to ri and rj . Differentiating (8) with respect to
qi yields the following simplicial control law for ri ∈ R

q̇i =
∑
∀∆ijk

αγ log(ε)εγ(dµ−dijk)f(dijk)2

eαd
2
ij + eαd

2
ik + eαd

2
jk

(eαd
2
ijqij+eαd

2
ikqik)

(14)
where qij = (qi − qj) is the relative pose of qj with respect
to qi with α and γ being as previously defined.

Note that (14) lends itself to a decentralized control policy.
This results as q̇i is only computed over simplices in which
ri is involved and is, thus, determined locally (over 2–hop
neighbors in the Cěch complex). Furthermore, notice that
(14) requires ri to only estimate the relative pose of robots
comprising a 2–simplex with ri and does not require metric–
localization. Its convergence to a local equilibrium is ensured
since Q̇ is an ascent–direction for (8), which is bounded.

In order for (14) to be properly implemented, it is required
that the constraint dijk ≤ 4sr∀∆ijk ∈ Xd(k) be satisfied
at all times. Enforcing this constraint is straightforward via
standard gradient–projection algorithms [10]. Furthermore, it
is also required that agents maintain network connectivity
across each ∆ijk ∈ Xd(k). Although Xw(t) = Xd(k)
ensures blr will provide this level of connectivity, blr may not

(a) (b)

Fig. 4. (a) f(∆ijk) for different values of ε. f(∆ijk) is a quasi–convex
function of dijk that is used to drive agents towards a configuration where
Ui∩Uj ∩Uk 6= ∅. (b) Geometric derivation of dminijk = 2srcos(

π
6

), where
sr corresponds to the uniform radius of sensor coverage.

be sufficient in general as ri, rj , rk ∈ ∆ijk can be separated
by dmaxijk units. Accordingly, ri must utilize bhr to maintain
connectivity with rj and rk in ∆ijk when necessary.

Before proceeding, it is important to note that (14) does
not guarantee the convergence of Xw(t) to (Xd(k), 1) How-
ever, it should be noted that given this initial formulation,
our simulation results indicate that the convergence of Xw(t)
to (Xd(k), 1) is a functional of the underlying slope of the
chosen sigmoid. An exploration of this point is the focus
of ongoing research. Nevertheless, in our simulation results,
employing (14) has worked quite well.

b) Relating the Combinatorial Laplacian: Our objec-
tive is to now establish a relationship between (8) and the
spectrum of Lk. Begin by defining a weighted variation of
the combinatorial operator as follows

Lwk = WT
k B

T
k BkWk +Bk+1Wk+1B

T
k+1 (15)

where Wk = diag
(
wk,1, . . . , wk,#k(X)

)
∈ R#k(X)×#k(X),

and wk,i ∈ [0, 1]. It is straightforward to establish kerLwk ∼=
kerLk since all simplex weights are positive. Given this
discussion, we now present the following natural result

Theorem 5.2: Let R denote a team with kinematics (4),
and let Xd(k) denote its desired Cěch subcomplex. Maxi-
mizing (8) is equivalent to solving

max
∑
∀∆ijk

1
3λ(1,ijk)

s.t. Lw(1,ijk) − λ(1,ijk)I3 � 0
Lw(1,ijk) = WT

1 B
T
1 B1W1 +B2W2B

T
2

(16)

where I3 is the 3× 3 identity, W1 = I3, W2 = f(dijk), and
λ(1,ijk) denotes the smallest eigenvalue corresponding to the
combinatorial Laplacian associated with ∆ijk ∈ X(2)

d (k).
Proof: Observe that for ∆ijk, it holds that Lw(1,ijk) =

WT
1 B

T
1 B1W1 +B2W2B

T
2 = BT1 B1 +B2f(∆ijk)BT2 = 2 + f(∆ijk) 1− f(∆ijk) f(∆ijk)− 1

1− f(∆ijk) 2 + f(∆ijk) 1− f(∆ijk)
f(∆ijk)− 1 1− f(∆ijk) 2 + f(∆ijk)

 (17)

which has eigenvalues [3f(∆ijk), 3, 3]T . Given the range of
f , it follows λ(1,ijk) = 3f(∆ijk). Normalizing this sum over
all λ(1,ijk) with respect to #2(Xd(k)) yields (8).

D. A Computationally Distributed Implementation
Accordingly, we now discuss a computationally distributed

implementation of the proposed algorithm. Begin by ob-
serving that both Algorithms 2 and 3 lend themselves to
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Fig. 5. Applying Algorithm 1 with simplicial control law (14): (a) Initial Cěch complex (i.e. X0) for a network of 58 robots in R2. (b) An embedding of
Xd(0) shown with localized holes (bold). (c) The final Cěch complex having trivial generator (i.e. X is hole–free) shown with the retracted cycles (bold).
Here, the algorithm converges to a local, hole–free equilibrium. (d) Initial UR showing coverage holes in (a). (e) Hole–free UR corresponding to (c).

a distributed implementation. Specifically, Algorithm 3 be-
haves as a state machine whose states and transitions can be
managed by some subset of robots in the network. Coupling
this with the fact that that the construction of a desired sub-
complex is inherently local as it only depends upon localized
distance measures fosters a distributed algorithm. In fact,
decentralized network protocols already exist for computing
simplicial complexes [11], which can be exploited.

Melding these observations with the results of [4] and
[7] fosters a computationally distributed implementation of
Algorithm 1. Supporting this point, recall that solving (10)
can be readily done via a decentralized subgradient method
[4]. Additionally, a robot can readily detect if it lies on a
cycle by evaluating the coefficients associated with its 1–
simplices determined by (10). Finally, as the Cěch complex
can be constructed locally, (11) is also readily distributed.

VI. SIMULATION RESULTS
Algorithm 1 was implemented in Matlab. In this imple-

mentation, a slightly more intelligent variation of Algorithm
3 was chosen1 that checks the underlying topology during
each iteration of lines 2–7 to determine whether the retraction
of each bounding k–cycle to a k–simplex is still necessary for
repair. Figure 5 shows the results obtained for a team of 58
robots in R2. The initial topology, X0, and cover (see Figures
5(a), 5(d)) reveal a pair of holes. Given X0, Algorithm 1
localizes the coverage holes by finding bounding cycles for
each. These cycles are then utilized to generate Xd(0) as
seen in Figure 5(b). Figures 5(c) and 5(e) show the final
Cěch complex and cover, UR. Each ri had a uniform sensing
range sr = 0.05 with ε = 1e− 8 and α = 5000.

As a final note, our communication radii were respectively
chosen such that rwc = 2sr and bhr = 4sr = dmaxijk . Given
our choice of bhr , each hop in our desired Cěch subcomplex
corresponded to a single hop in the weak communication
graph. Furthermore, given the choice of both blr and bhr ,
our algorithm can be loosely interpreted as sandwiching the
desired Cěch complex between strong and weak communi-
cation topologies. Such an approach is reminiscent of [1],
who consider metric–free, static coverage verification.

VII. CONCLUSIONS
In this paper, we presented initial results in developing a

distributed, greedy algorithm to solve the coverage–repair

1this variation still preserves our original convergence results and analysis

problem for planar networks. Central to these results is the
coupling of an abstract Cěch complex with relative metric–
information. An algorithm was presented that generates a
nested sequence of desired Cěch complexes heading towards
a hole–free topology. The notion of a simplicial controller
was proposed to drive agents towards achieving each desired
complex, and we considered its interpretation with respect to
the spectrum of the combinatorial Laplacian. When the un-
derlying simplicial control law drives Xw(t) asymptotically
to (Xd(k), 1), it was shown that the proposed algorithm will
converge to a hole–free topology. Finally, we presented initial
results in developing a position–based simplicial control law.

A few final points should be made. First, given the
greedy nature of the proposed algorithm, it is best suited
for networks where topological holes are relatively small
with respect to the size of the overall network. Second, it
is theoretically possible that UR can be retracted to a point;
however, this has not been seen in any of our simulations.

As continued research on this topic, we aim to characterize
the conditions under which pathological retraction can occur.
Additionally, we are exploring the effects of stationary nodes
on convergence and extensions to perimeter surveillance.
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