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Abstract— This paper describes a method of incorporating
sensor and localisation uncertainty into contextual occupancy
maps to provide for robust mapping. This paper builds on a
recently proposed application of the Gaussian process (GP) to
occupancy mapping. An extension of GPs is employed which
incorporates uncertain inputs into the covariance function. In
turn, this allows statistically consistent, multi-resolution maps
to be constructed which exploit the spatial inference properties
of GPs while correctly accounting for sensor and localisation
errors. Experiments are described, with both synthetic and real
data, which show the benefits of complete uncertainty modeling
and how contextual occupancy maps may be constructed by
fusing data from different sensors on different robots in a
common probabilistic representation.

I. INTRODUCTION

This paper addresses the problem of occupancy mapping

with uncertain measurements taken from one or more mobile

robots. Appropriate modeling of sensor and localisation

uncertainty is critical to obtaining consistent and robust maps

which may subsequently be used in planning and motion

control.

A popular approach to mapping is to model the hypothesis

of occupancy across the space. Occupancy grids, where the

occupancy hypothesis is computed on a regular spatial grid,

is one of the most widely used methods of mapping within

the robotics community. Developed by Elfes and Moravec in

the late 1980’s, [4] and [9], this mapping technique has ap-

peared in various forms employing sensors including sonar,

laser and stereo vision [11], [20], [2]. By segmenting the

environment into a field of discrete and independent cells, the

occupancy grid decomposes the high dimensional mapping

problem into many single dimensional binary classification

tasks.

This ‘independence between cells’ assumption made

in the occupancy grid approach to mapping results in

substantial simplification in implementation and much

improved real-time performance. However, the assumption

also ignores the fact that in the real-world, cells of

occupancy are not distributed independently at random over

the environment, rather there exists a spatial correlation

between cells due to the physical structure of objects and

environment. Use of this assumption frequently results in

cells of high uncertainty in regions where spatial context

could assist in classifying the state of a cell. This is perhaps
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most clearly seen in occluded areas or segments between

sensor beams where there is absence of sensor information

to make a specific classification. Furthermore, the classical

approach of representing the environment as a rigid grid

leads to discretisation errors and fixes the resolution of the

map which ultimately impedes scalability.

Recent work [12] proposes an occupancy mapping method

that employs Gaussian processes (GPs) to describe and

exploit spatial dependencies inherently introduced by struc-

ture in real-world environments. Rather than discretising the

world into a grid, GPs describe the properties associated with

a map, such as occupancy, in the form of a continuous non-

parametric function. This approach enables accurate maps to

be generated from relatively sparse sensor information and

allows inference of occupancy state and associated variance

in unscanned regions of the environment. The continuous na-

ture GP estimation means that scale now becomes arbitrary.

Large coarse resolution maps or detailed reconstructions of

specific areas of interest can be simply sampled from the

underlying model.

However, the mapping technique described in [12] does

not incorporate or account for sensor measurement or lo-

calisation uncertainty which may confuse the training pro-

cess and seriously degrade the quality and consistency of

the resulting map. This paper proposes an approach that

addresses uncertainty in these training input locations by

defining GP covariance functions over distributions rather

than deterministic locations.

The principle contributions of this paper are:

1) A major extension to the contextual occupancy maps

proposed in [12] to incorporate the effects of uncer-

tainty in sensor readings and platform localisation;

2) The derivation of a general method to approximate

covariance functions defined over probability distribu-

tions.

This paper is organised as follows. Section II summarises

relevant papers literature in occupancy mapping and dis-

cusses how uncertainty is incorporated into some of the

proposed techniques. Section III describes the fundamental

principles behind GP-based contextual occupancy maps and

proposes an approach to incorporating sensor measurement

and localisation uncertainty into this model. Section IV

presents experimental results for both simulated and real

data sets which demonstrates the efficacy of the proposed

approach. Section V discusses the principle conclusions.
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II. RELATED WORK

There is a considerable literature on the development of

spatial occupancy representations that account for uncer-

tainty in sensor measurements and localisation. The con-

ventional approach with occupancy grids is to transfer this

uncertainty into the sensor model where a Bayesian update

procedure is then employed to update uncertainty in the map,

[8]. While the addition of uncertainty increases the spread of

the sensor model and, consequently, the number of grid cells

whose hypothesis of occupancy is updated from the prior, it

is important to note that this smearing effect does not lead to

any notion of spatial correlation. The independence between

cells assumption still exists.

Over the years, several papers have proposed alternative

methods of fusing uncertain sensor data into a map. Notable

is the histogram grid approach [1], and the use of the

Dempster-Shafer formulation, a generalisation of Bayes rule,

to estimate the evidence supporting hypotheses that a region

is occupied or unoccupied [13]. While these approaches

improve on traditional occupancy grids in some respects,

ultimately, inference in regions beyond the coverage of the

sensor model is not possible as there is no notion of spatial

correlation.

More recently, a number of authors have taken advantage

of the intrinsic structure in an environment to develop

mapping techniques that remove this independence between

cells assumption. Veeck and Burgard [18] train polylines

to form a continuous representation of the environment’s

boundaries based on discrete range samples. This approach

greatly compacts the size of the map using a set of heuris-

tically derived rules to iteratively optimise the polylines.

A drawback to this method however is that uncertainty in

the sensor measurements is not handled in a probabilistic

framework and noisy data that does not conform to the

user-defined list of optimisation criteria can lead to maps

converging to incorrect representations.

A more robust mapping technique was proposed by Paskin

in [14] using polygonal random fields to probabilistically

reason about occupancy, rather than the boundaries, of the

environment. The maps generated are continuous and allow

for inference to be made in unscanned regions. While this

approach can not iteratively add new data, the use of a

probabilistic model for occupancy enables this approach to

produce accurate maps with both laser and sonar datasets.

The work described in [12] extends this idea using GPs

with non-stationary neural network covariance functions to

model environment occupancy. This enables predictive repre-

sentations of the environment to be statistically inferred from

measured data by exploiting the inherent spatial correlation

structure of the GP. This was demonstrated to significantly

improve the accuracy and completeness of the occupancy

map. This paper further develops the GP model approach.

It incorporates the idea of modeling noisy inputs to a

GP [6], such as sensor measurements and location uncer-

tainty, through modification of the GP kernel function to

naturally fuse information from noisy sources into a common

probabilistic model.

III. THEORY

The task of mapping the robot’s surroundings is consid-

ered as a classification problem. A trained, non-parametric,

Bayesian regressor known as the Gaussian process [16] is

combined with a probabilistic least squares classifier [15] to

represent the environment as a probability distribution and

label it into regions of occupancy and unoccupancy.
Uncertainties in the physical system are integrated into the

map initially using an unscented transform to represent the

training points as probability distributions governed by the

associated noise in sensor range, bearing, vehicle position

and orientation. Modifications to the conventional Gaussian

process are made which redefine the covariance function as

a measure of correlation between distributions rather than

point locations. This enables information from noisy inputs

to be integrated into the probabilistic spatial representation

of the environment. Finally, the Gauss-Hermite quadrature is

employed to generalise these modifications to all categories

of covariance functions regardless of whether a closed form

solution exists or not.
Section III is divided into four main parts. The theory

behind Contextual Occupancy Maps is detailed in [12]

however a brief summary of the principal components is

presented in Subsection A. Subsection B introduces the

key equations by which uncertainty is incorporated into the

mapping technique. Subsection C provides an overview of

the Gauss-Hermite quadrature and Subsection D discusses

the manner in which probability distributions are estimated

using the unscented transform.

A. Contextual Occupancy Map
1) Gaussian Process: The proposed contextual occupancy

map is based upon the GP’s ability to predict p(O|x),
where O is the hypothesis of occupancy and x represents

a physical location within the map. Oi can be considered

as a class, either occupied or unoccupied, referenced by its

corresponding location, xi.
The Gaussian process is used to fit a likelihood function

to the training data
{

xi, yi

}
i=1→n

where n is the number

of training points and yi, the training output or target data,

represents occupancy (+1) or unoccupancy (−1) at a scanned

location. The resulting continuous function can then be used

to interpolate between data points and after applying a

sigmoid function prediction can be made on the probability

of occupancy in unscanned and occluded regions using the

well understood Bayesian statistical framework.
The Gaussian process itself can be viewed as a distribution

over an infinite number of possible functions and inference

takes place directly in the space of functions. By assuming

that all occupancy hypotheses, indexed by their correspond-

ing location in the environment, are jointly Gaussian, we

obtain

f(x∗) = N (μ, σ2), (1)

where

μ = k�(x∗, X)�
[
K(X, X) + σ2

nI
]−1y, (2)
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σ2 = k(x∗, x∗)− k(x∗, X)
[
K(X, X) + σ2

nI
]−1

k(X, x∗).
(3)

Here, x∗ refers to a query or test location, X the training

inputs, σ2
n the variance of the global noise and K is the

covariance matrix. The elements of the covariance matrix

Kij = k(xi, xj) are defined depending on a covariance

function k parameterised by hyperparameters θ. In this appli-

cation, the hyperparameters’ optimal values for the datasets

are derived by maximising the log marginal likelihood using

a simulated annealing algorithm followed by quasi-Newton

gradient ascent. An extensive explanation and derivation of

the Gaussian process can be found in [16].

Due to the non-stationary behaviour of typical map

datasets (sudden changes from non-occupied to occupied

regions), the commonly used squared exponential covariance

function with its smoothing properties is not suitable for this

application. The neural network covariance function is non-

stationary and is capable of modeling the sharp shifts in the

trend of the underlying function, f(·).
Williams in [19] following the work of Neal [10] derived

the following expression for the covariance function:

K(x, x∗) = σ2
f arcsin

( 2x̃�Σx̃∗√(
1 + 2x̃�Σx̃

)(
1 + 2x̃�∗ Σx̃∗

)
)
.

(4)

Here x̃ = (1, x1, ..., xd)� is an augmented vector and σ2
f is

a hyperparameter signal variance used to scale the correlation

between points. Σ in this case, is a diagonal matrix with a

component for each dimension of the training inputs and

a bias term. During inference, nearest neighbour approxi-

mations are used. Translational symmetry is preserved by

centring the test point and local training data at the origin.

The hyperparameters of the covariance function are thus

Θ = [σ2
f , Σ11, ...,Σ(D+1)(D+1), σ

2
n].

A post-processing classifier stage described in [15] is used

to represent the regressor’s mean and variance predictions as

a distribution over probabilities of occupancy in space.

Using the outputted probabilistic model, the environment

can be categorised into occupied, unoccupied and unsure

regions using user-defined thresholds which can be tuned

to match the desired level of greediness.

A more in-depth description of the contextual occupancy

map algorithm including the sensor model employed, local

approximations made to handle large datasets and the train-

ing method can be found in [12].

B. Propagation of Uncertainty in the Gaussian Process
Model

At its core, the Gaussian Process is a regression technique.

The technique assumes that the training outputs may be noisy

and accounts for this by the inclusion of the hyperparameter

σ2
n in Equation 2. However, the classical GP does not account

for the possibility of uncertain training inputs, i.e. noise in

the X domain.

To illustrate the effects that uncertain training inputs have

on the Gaussian process, a dataset containing ten measure-

ments, one of which has a degree of uncertainty associated

(a) Effects of an uncertain training input on a Gaussian process. Classic
GP (left), noisy input GP (right).

(b) Classic squared exponen-
tial covariance matrix. Noisy
input’s covariance shown on
third row

(c) Squared exponential co-
variance matrix defined over
distributions. Noisy input’s co-
variance shown on third row.

Fig. 1. Comparison of standard GP with noisy input GP.

with its location, is used to estimate the underlying ground

truth. Fig. 1(a) compares the output of the traditional GP and

a noisy-input GP. By assuming that each training input is a

deterministic point, the standard method incorrectly deduces

very noisy observations are the most likely explanation

for the dataset. This results in the importance of relatively

accurate data points being underestimated. The modified

GP, on the other hand, which learns dependencies between

distributions rather than single values, closely matches the

ground truth.

Examining the associated covariance matrix of the clas-

sical GP, Fig. 1(b), reveals that the noisy training point is

wrongly influencing test points far from its true position.

Ideally, by accounting for this uncertainty in the X domain,

the influence of noisier training points should be dispersed

in proportion to the magnitude of the associated variance.

Redefining the training inputs as observations corrupted

with some Gaussian noise, εxi
= N (0, Σxi

),

xi = ui + εxi . (5)

The training inputs can now be expressed as xi ∼
N (ui, Σxi

). Although this addition of uncertainty to X
results in the process no longer being Gaussian, Girard

details in [6] how it is still possible to calculate the predictive

mean and variance of f(·). This approach can be extended

to define kernel functions over probability distributions;

Kn(ui, uj) =
∫∫ +∞

−∞
K(xi, xj)p(xi, xj), dxidxj (6)
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where p(xi) = Nxi
(ui,Σxi

), p(xj) = Nxj
(uj ,Σxj

) and Kn

denotes the noisy covariance matrix.

In the case of sensor inaccuracies, it is reasonable to

assume that the noise is largely independent and so Equation

6 can be written as

Kn(ui, uj) =
∫∫ +∞

−∞
K(xi, xj)p(xi)p(xj), dxidxj . (7)

It is possible to derive an exact expression for Kn(ui, uj)
when the chosen covariance function is Gaussian. In [6],

Girard formulates an exact representation for the commonly

used squared exponential covariance function:

k(xi, xj) = σf exp
[1
2
(xi − xj)�L−1(xi − xj)

]
(8)

kn(ui, uj) = σf | I + L−1(Σxi + Σxj ) |−1/2

exp
[1
2
(ui − uj)�(L + Σxi

+ Σxj
)−1(ui − uj)

]
(9)

Examining Equation (9) shows that the inclusion of uncer-

tainty has the effect of reducing the covariance’s magnitude

(σf ) while simultaneously increasing the lengthscale (L)

to extend the influence of the training point to additional

neighbouring points. This diffusion of the training point’s

covariance over a larger area enables accurate fusing of the

uncertainty’s effects into the system. Fig. 1(c) demonstrates

the dissolution of the noisy inputs influence across neigh-

bouring test points.

However, in the case where the covariance function is non-

Gaussian, e.g. the Neural Network, or dependencies exist

between the probability distributions of training points, such

as correlation resulting from uncertainties in the vehicle’s

location, then a closed form solution does not exist and

approximations must be performed.

C. Gauss-Hermite Quadrature

The Gauss-Hermite quadrature is a modification of the

Gauss quadrature which approximates the integration of a

function between limits −1 and +1 as a weighted sum of

function values at specified points within the domain of

integration. It introduces a decaying function, e−x, to extend

the limits to −∞ and +∞.

∫ +∞

−∞
e−xf(x)dx ≈

n∑
m=1

wmf(xm) (10)

n is the number of samples depending on the user-defined

level of approximation while xm refers to the roots of the

Hermite polynomial, Hn(x)(i = 1, 2, ..., n). The correspond-

ing weights for each sample point are given by:

wm =
2n−1n

√
π

n2[Hn−1(xm)]2
. (11)

Equation 6 can be reformulated to resemble Equation

10 by first expressing p(xi, xj) as a multivariate Gaussian

distribution:

p(xi, xj) ∼ N
(

x; μ,Σ
)

(12)

(a) Level 1

(b) Level 2

Fig. 2. Gauss Hermite quadrature (dashed red line) approximating
the modified squared exponential covariance function (Eq. 9) (blue line)
evaluated over several distributions of increasing variance. (σ = 0 → 1)

where x = [xi, xj ]�,μ = [μi,μj ]� and Σ =
[

σ2
i σij

σji σ2
j

]
.

Following from this, the Gauss-Hermite quadrature can be

used to accurately approximate the effects of noisy training

inputs on the performance of the GP by expressing the

covariance function as follows:

Kn(xi, xj ,μi,μj ,σi,σj) ≈ 1
2π

n∑
m=1

wmK(zim , zjm) (13)

through direct substitution by letting zi =
√

2Σijxi + μi.

Figure 2 compares a Gauss-Hermite quadrature imple-

mentation of the squared exponential covariance function

with the performance of the closed form solution derived

by Girard (Equation 9). A level 1 approximation (11 sample

points) accurately matches the closed form case for low

degrees of uncertainty (Fig. 2(a)). However for significantly

large variances, the quadrature undercompensates for their

influence. Increasing the level of the quadrature considerably

improves its ability to match the output of the exact solution.

Fig. 2(b) illustrates the output of a level 2 approximation

consisting of 49 samples from the kernel function.

D. Unscented Transform

Equation 12 assumes the training inputs to have Gaussian

distributions. The variance associated with vehicle pose (lo-

cation and orientation) and sensor readings (range and bear-

ing) manifests itself as a non-trivial pdf when represented in

a the global coordinate frame. An unscented transform [7] is
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used to estimate the first two moments of these distributions

and represent them as Gaussians. A preferred alternative to

employing Jacobians when the transition model is highly-non

linear, the unscented transform uses a deterministic sampling

technique to pick a minimal set of sample points (2n+1 for

an n-dimensional space) around the mean.

These sample or ‘sigma’ points, χ, and their associated

weights, w, can be obtained using the following equations:

χ[0] = μ, (14)

χ[i] = μ +
(√

(n + λ)Σ
)

i
for i = 1, ..., n, (15)

χ[i] = μ−
(√

(n + λ)Σ
)

i−n
for i = n + 1, ..., 2n. (16)

Here λ = α2(n + κ) − n where α and κ are scaling

parameters that determine how far the sigma points are

spread from the mean.

These test points are propagated through the true nonlinear

system, g(x); {range,bearing,location,orientation}⇒ global

position, allow estimation of the posterior mean and covari-

ance (μ′ and Σ′, respectively) accurate to the third order for

any nonlinearity.

γ[i] = g(χ[i]), (17)

μ′ =
1
2n

2n∑
i=0

γ[i], (18)

Σ′ =
1
2n

2n∑
i=0

(γ[i] − μ′)(γ[i] − μ′)T . (19)

The weights and pattern scale of the sigma points may also

be adjusted however these variations are omitted here due to

space restrictions.

The resulting Gaussian functions approximate the training

points’ true probability distributions and can now be used to

form the inputs to the GP via Equation 13.

IV. RESULTS

A. Simulated Dataset

Initial tests were carried out using simulated datasets.

This approach enabled the levels of sensory and localisation

uncertainty to be easily manipulated while also providing a

known ground truth for quantitative comparisons. Fig. 3 is

an example of one of these simulated environments.

In this experiment, two robotic platforms are employed to

map the environment. The first platform is relatively slow

moving but possesses a highly accurate range finder. The

second platform, in contrast, is fast moving but the sensory

information it gathers is extremely noisy. Table I compares

the key characteristics of both platforms. Figure 3 illustrates

the sensor data obtained during the simulation.

Inputting this dataset into the traditional occupancy grid,

the previous version of the contextual occupancy mapping

technique [12] and the method proposed in this paper pro-

vides an interesting comparison that highlights a number of

the key benefits of the new approach.

Fig. 3. Simulated ground truth (top). Platform poses and laser returns from
experiment (bottom). Platform I poses (orange) and laser returns (green),
Platform II poses (red) and laser returns (blue)pp ( ) ( )p

Fig. 4. Sequence of images comparing the performance of the traditional
occupancy grid (first row), the GP mapping technique in [12] (second
row) and the new proposed method which incorporates uncertainty in the
observations (third row). Probability of occupancy versus location prior to
thresholding are shown in the left column. Reddish areas indicate regions
with high probability of occupancy while bluish regions suggest the area is
most likely unoccupied. The right column illustrates their corresponding
classified maps after applying thresholds. Classification labels: Black =
Occupied; White = Unoccupied; Grey = Unsure.
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TABLE I

COMPARISON OF SIMULATED ROBOTIC PLATFORMS

Platform I Platform II
Speed (m/s) 0.5 4
Firing Rate (scans/s) 0.5 4
Sensor Range (m) 20 8
Range Variance (m2) Negligible 0.8
Bearing Variance (degrees2) Negligible 0.5
Localisation Uncertainty (m2) 0 0

(a) (b)

Fig. 5. Predictive variance of previous, (a), and proposed, (b), approaches.

The independence-between-cells assumption made by the

occupancy grid leads to large portions of the map in the first

image of Fig.4 remaining relatively unaltered from the prior

hypothesis of occupancy despite significant contextual infor-

mation available to perform reasonably confident inference

in those regions.

Alternatively, using contextual occupancy maps but ignor-

ing the variance associated with the location of the training

inputs, as in [12], has led to the learning process converging

to incorrect hyperparameters. The outputted occupancy maps

(second row of Fig. 4) are influenced heavily by the noisy

data resulting in fragmented walls and objects as well as

several phantom obstacles. Conflicting hypotheses of occu-

pancy in a number of regions between the noisy and accurate

sensors remain unresolved due to both sources being treated

as equally relevant. Due to these conflicts, the classified map

highlights a large number of areas where the label is unsure

despite having been extensively scanned by the more reliable

sensor.

In contrast, the proposed new approach generates maps

(third row of Fig.4) that bear a much stronger resemblance to

the ground truth. The boundaries of objects that were scanned

by the accurate sensor are well defined. Additionally, it can

be seen that occupancy estimates in regions scanned only by

the noisier sensor, such as in the far right of the map, are

correctly less certain.

The classified output (bottom right of Fig. 4) supports this

observation with the left section of the map (scanned by

both robots) contains significant portions of confident and

accurate classification. Conversely, the right half of the map

becomes unsure in areas where too few noisy readings occur

(upper right corner) and in regions where neither platform

have scanned (lower right corner).

Handling training input uncertainty appropriately also

yields benefits in the associated predictive variance output.

Fig. 5(a) shows how the previous approach does not discern

Fig. 6. ROC Curve comparison between proposed and previous mapping
techniques.

TABLE II

QUANTITATIVE COMPARISON OF EXPERIMENTAL RESULTS

Area under FP detection rate for
the curve TP detection rate of 0.97

Proposed Method 0.9303 0.2258
Previous Method 0.8715 0.7957
Occupancy Grid 0.8824 0.3405
No Discrimination 0.5 0.95

between varying levels of sensor noise and the resulting plot

poorly represents the degree of confidence one could have

in the associated predicted occupancy hypotheses for each

region. Alternatively, Fig. 5(b) illustrates how the predictive

variance in the proposed method is lowest in areas that

have been accurately mapped by Platform I and increases in

regions scanned by the less reliable Platform II. As expected,

the variance is highest where estimates of occupancy are

predicted in the largely unexplored lower right quadrant.

Crucially, this output of the algorithm could be combined

with a subsequent path planner to optimise the trajectories of

the vehicles to maximise the system’s overall understanding

of the environment.

A quantitative comparison between the outputs of both

approaches and the traditional occupancy grid was carried

out using a receiver operating curver (ROC), Fig. 6. By

monitoring the true positive rate (TP) as the frequency of

false positives (FP) is increased the benefits of the proposed

approach become apparent. Ignoring the effects of noise in

the training inputs (red curve) has led to several misclassified

regions which can be catastrophic when considered in a

navigation context and explains the relatively slow increase

in detection rate. Table II compares key features of each

curve.

B. Outdoor Dataset

To test whether the desirable characteristics of the new

approach could be replicated in a real dataset, a SICK laser

rangefinder was mounted onboard a vehicle which traveled

across approximately 1.2 kilometres of the University Of

Sydney’s campus. The vehicle itself used a NovAtel IMU-

HG1700 to perform dead-reckoning. Fig. 7 illustrates the

path of the vehicle and laser returns while Fig. 8 shows

the covariance for a small subset of the dataset’s poses both

prior to and following loop closure using a sparse extended

information filter.
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Fig. 7. Satellite view of scanned region with laser returns indicated

Fig. 8. Vehicle poses and covariance ellipses before and after loop closure

Initially, coarse maps depicting the outputted variance in

occupancy estimates over the entire region were generated

using the proposed approach. As was suggested by the simu-

lated experiments, uncertainties associated with the location

of the training data now influence the confidence in the

predictions made by the mapper. Fig. 9(a) correctly shows a

growth in variance as errors in the vehicle’s dead-reckoning

increases. Similarly, following loop closure detection and

subsequent shrinking of the covariance ellipses, Fig. 9(b)

indicates the improved belief in the accuracy of the predic-

tions based on a higher degree of confidence in the location

of the training inputs. In both maps, the variance is highest

in regions where no measurements were taken.

Estimates made of the hypothesis of occupancy within a

region should reflect the ambiguity of its training data. Fig.

10(a) and 10(b) plot the probability of occupancy focusing on

an area highlighted by the black rectangle in 9(a) and 9(b),

respectively. Akin to the simulated tests, predictions using

training inputs with distributions of higher variance results

in less well defined boundaries however rough estimates

of larger objects such as the road and buildings are still

discernable. As a result of this poorly localised data, the

majority of occupancy probability predictions within the map

range from 0.4 to 0.65.

(a) Predictive variance prior to loop closure

(b) Predictive variance following loop closure

Fig. 9. Comparison of coarse predictive variance maps before (a) and
after (b) loop closure using the real outdoor dataset. Arrows illustrate path
of vehicle.

Once loop closure detection shrinks the covariances as-

sociated with vehicle pose, the unscented transform in turn

reduces the uncertainty in the training inputs. The result-

ing map becomes sharp and more certain with predictions

ranging from almost 0 to 1. The roadway and buildings are

easily identifiable. Similar to the results in [12], Bayesian

inference is carried out between training points and in

occluded regions. As a result, a number of cars and side

streets can also be identified. It is important to note also that

the probability of occupancy correctly returns towards 0.5

for estimates made far from any scanned areas.

The proposed changes currently increase the computa-

tional cost of the procedure by an order of magnitude. How-

ever, there are several trade-off choices in the approximation

methods such as the number of neighbouring points selected

during inference or the level of the Gauss-Hermite quadrature

that can be tuned by the user to suit the intended application.

Additionally, performing inference with GPs lends itself to

distributed computing and refining the algorithm to work

online efficiently will be the focus of future work.
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(a) Occupancy map of area highlighted by black rectangle in
Fig.7 and Fig.9(a)

(b) Occupancy map of area highlighted by black rectangle in
Fig.7 and Fig.9(b)

Fig. 10. Comparison of contextual occupancy maps generated for a
street segment before (a) and after (b) loop closure using the real out-
door dataset.Arrows illustrate path of vehicle. As localisation uncertainty
decreases, contextual occupancy maps referenced to the global coordinate
frame become sharper and more certain about the hypotheses of occupancy
within its regions.

V. CONCLUSIONS

Contextual occupancy maps offer several important ben-

efits when compared to other mapping techniques being

employed by the robotics community today. Using a Gaus-

sian processes with non-stationary neural network covariance

functions to model occupancy in real-world environments

allows Bayesian inferences to be performed to produce con-

tinuous probabilistic representations of occupancy estimates

with associate variance plots.

This paper proposes several crucial extensions to the exist-

ing technique that make it robust to the inescapable effects of

uncertainty present in measurements and localisation. Sensor

readings from multiple sources of differing noise levels can

now be naturally integrated into the learning and inference

procedures to create an accurate common probabilistic model

of the system’s surroundings.

Similarly, the outputted variance no longer depends en-

tirely on the learnt hyperparameters and the sparsity of

the data as is the case with the classical GP but rather

now accounts for the ambiguity in the training inputs.

The resulting maps provide predictions of occupancy with

corresponding variance that can be used to optimise path

planning algorithms to maximise the robot’s understanding

of its environment.
In recent years, Gaussian processes have been applied to a

wide range of problems in the robotics community. The ap-

proach proposed in this paper to incorporating the uncertainty

in training inputs into any generic GP kernel function is not

limited exclusively to occupancy maps. Applications such as

terrain modeling [17], Wi-Fi SLAM [5] and reinforcement

learning [3] may also benefit from directly modeling the

effects of noisy measurements in the system.
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