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Abstract— There has been significant progress recently in
object recognition research, but many of the current approaches
still fail for object classes with few distinctive features, and in
settings with significant clutter and viewpoint variance. One
such setting is visual search in mobile robotics, where tasks such
as finding a mug or stapler require robust recognition. The focus
of this paper is on integrating stereo vision with appearance
based recognition to increase accuracy and efficiency. We
propose a model that utilizes a chamfer-type silhouette classifier
which is weighted by a prior on scale, which is robust to
missing stereo depth information. Our approach is validated
on a set of challenging indoor scenes containing mugs and
shoes, where we find that priors remove a significant number
of false positives, improving the average precision by 0.2 on
each dataset. We additionally experiment with an additional
classifer by Felzenszwalb et al.[1] to demonstrate the approach’s
robustness.

I. INTRODUCTION

Object classification and recognition has progressed

rapidly in recent years due to advances in machine learning,

more sophisticated feature extraction techniques, and the ever

greater availability of image datasets. Despite the recent

success, there is still significant progress required before

we have robots assisting the elderly, cleaning our homes,

or fetching household items. A particular challenge for

mobile robots in an indoor environment is that most of the

objects to be manipulated occupy small portions of cluttered

scenes. However, much of the success thus far in object

recognition/localization has been achieved with large objects

that are often assumed to occupy a significant portion of

the image, such as pedestrians, vehicles, and animals [2].

Many smaller objects found within cluttered indoor scenes

are left relatively unaccounted for, such as mugs, staplers,

shoes, etc. Due to large variations in appearance, these types

of object categories are difficult to recognize with patch

based methods, which generally require significant resolution

and distinctive features that are internal to the object and

therefore not disturbed by background clutter.

There is an increasing body of work suggesting that

using scene context can improve the efficiency and accuracy

of localization. Scene cues such as the gist of a scene

were successfully used by Torralba [3] to predict the likely

location and scale of objects. It has also been shown that

local context, such as surrounding image texture can im-

prove object classification and segmentation [4]. Object co-

occurrence and co-location have also been shown by many

researchers to be valuable in object detection [5], [6], [7].
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More recently, many research results have demonstrated that

using 3D scene information such as surface orientation and

scale [8], [9], [10], [11], [12], [13] can be useful in object

recognition. In the case where the objects in a scene lack

sufficient resolution, or are difficult to detect with current

recognition methods, scene context can play a large role.

The focus in this paper is on fusing 2D image information

and depth information from stereo images into one model

for localization, particularly in the case of contour-based

objects. A primary motivation for our work stems from

our recent experiences in designing a vision system for our

robot Curious George [14], an entrant in the Semantic Robot

Vision Challenge (SRVC). This contest is a visual scavenger

hunt, where a robot explores a room and returns a set of

images corresponding to a list of objects it was tasked to

find. Despite winning the competition in 2007 and 2008,

it was apparent that recognition of generic objects from

arbitrary viewpoints is still very much an open challenge.

With stereo vision, we can use a prior on object size, which

can be as simple as a mean and variance of an object’s real

world size. We show that this reduces false positives, and

can increase computational efficiency, which is particularily

important with a mobile robot. In conjunction with the prior,

we experiment with methods to utilize surface variation

with a contour-based classifier. The primary contribution of

this paper is a model formulation that is robust to missing

information from stereo. We validate our approach on a

challenging set of scenes containing shoes and mugs.

A. Related Work

There are a variety of recent approaches that make use

of an object’s real world scale as a prior for the scale in

the image. One of the pioneering works in this regard, and

the most similar to our formulation, is that of Hoiem et

al.[8]. Using only an image, the approach jointly infers 3D

object locations and scene information, such as 3D surface

orientation, ground plane, and horizon. Assumptions using

the estimated horizon and a prior on an object’s real scale are

utilized to provide a prior on the expected scale in the image.

This prior modulates the response from an appearance-based

object detector, showing marked improvement in pedestrian

and vehicle localization. A primary distinction between our

work and theirs is that our scale prior uses stereo rather than

their horizon assumptions, which are not applicable indoors.

Another approach that is similar in spirit to our own is

the pedestrian detection work of Gavrila and Munder [15].

Here, they utilize sparse stereo and ground plane constraints

to determine regions of interest, where they will then run

a detector for a pedestrian at the appropriate scale. Similar
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Fig. 1. A stereo camera and monocular camera produce an edge image and a depth map. Missing depth information is shown in white.
A contour-based classifier evaluates bounding boxes in the edge image. The scale prior weights these scores depending on whether the
depth and scale of the bounding box agree, thereby reducing the score of false positives to a much greater degree than true positives.

to our own work, they also make use of a chamfer distance

metric. One of the primary distinctions between our work

and their’s is that our approach does not require ground

plane constraints, and is possibly more robust to missing

stereo information. Moreover, our approach follows a clean

probablistic framework, where as their approach involves

numerous parameters and thresholds that requires extensive

training to set. Other recent approaches using object scale

in recognition are those of Gould et al.[10], and Quigley et

al.[13]. They utilize a mobile robot to acquire high-accuracy

depth maps using a laser scanner, which requires 2-3 seconds

per scan. From this data, their object detector utilizes both

surface variation, 3D shape, and appearance to find objects

such as mugs, cups, staplers, etc. Their system achieves

impressive results, but their use of a laser scanner to acquire

data is unrealistic for many applications. Our approach

utilizes stereo which is faster, cheaper, and less invasive but

also requires additional robustness to uncertainty.

In regards to object detection, most successful approaches

have utilized patch based techniques that decompose recog-

nition into recognizing parts of the object. These range from

bag-of-word approaches that discard 2D spatial relationships

entirely, to approaches that model the spatial relation be-

tween features. However, for classes that are visually defined

by their 3D shape, the signal from the identifying contour

on a patch is sometimes overwhelmed by the noise of fore-

ground texture and background clutter. There are numerous

recent localization approaches, however, that make use of

contours and chamfer matching, including [16], [17], [18],

[19], [20]. We also experiment with extensions to chamfer

matching that utilize depth information.

II. METHOD

The task we are concerned with is localizing an object,

obj, in an intensity image Im, while also leveraging a noisy

depth image Iz . To achieve this we adopt and adapt a multi-

scale sliding window classifier, a widely used approach to

localization. Here, a subset of N windows, {θi}i=1..N , are

evaluated to determine a score as to whether they contain

the object of interest. We achieve this by using a probability

function p(o, θ|Iz, Im), where o = {obj, background}.

Finally, the scores from the sub windows are combined using

non-maximum suppression to determine likely detections.

There are two directions from which we can improve

object localization: reducing false positives, and increasing

the scores for true positives. Given that depth images derived

from stereo data are noisy and that the objects are small

relative to the depths involved, we cannot place much hope

in classification based solely on the depth data. Instead, we

focus our efforts on utilizing the depth data to reduce false

positives, and to help make the most use of the appearance

information.

To achieve this we separate information about the appear-

ance, the scale of a scene element (obj or background), and

the surface variation. We first assume that the appearance,

Im, and depth information, Iz , are conditionally independent

given o. This is not technically true since depth using stereo

is derived from appearance information, the effect of this

dependence is minimal for recognition. Next, the bounding

box θ implies a centre, scale sθ, and aspect ratio (which

we assume is fixed), and we denote Iz(θ) as the depth

values within θ. If we assume that a scene element’s presence

and appearance are independent of where it is in the scene,

then the nature of the element’s surface is independent of

where it is in the scene. So, if we have a scalar function

fθ(Iz) that measures where the surface of the element is

in the scene, then we can move that surface to the model

coordinate system, Iv(θ) = Iz(θ)−fθ(Iz). We discuss fθ(Iz)
further in Section II-A. As stated, now {fθ(Iz), Iv(θ), Im}
are statistically independent. So, at a particular bounding

box, {fθ(Iz), Iv(θ)} become our features that describe the

depths in that bounding box. We define our score as the

probability,
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p(o, θ|Iz, Im) =
p(fθ(Iz), Iv(θ), Im|o, θ)p(o, θ)

p(Iz, Im)
(1)

=
p(o|Im, Iv(θ), θ)p(fθ(Iz)|o, θ)p(θ, Iv(θ), Im)

p(Iz, Im)
(2)

∝ p(o|Im, Iv(θ), θ)p(fθ(Iz)|o, θ) (3)

where Equation 2 follows 1 by independence and an appli-

cation of Bayes rule. The final equation follows because we

assume uniformity in terms not involving o.

This formulation is similar in spirit to that of Hoiem

et al.[8], and likewise is general and not dependent upon

our choice of classifier and priors. The first term is the

object classifier which we describe in Section II-B. However,

note that the classifier can depend on both surface data in

Iv(θ) and the intensity image Im, which allows for a more

powerful classifier based upon both shape and texture. The

second term is related to our prior on the scale of a scene

element With both these terms, we are primarily concerned

with detecting the object of interest, obj, so we only search

through our p(o, θ|Iz, Im), for when o = obj. It’s necessary

to include o in the formulation so that we can utilize the

object classifier p(o|Im, Iv(θ), θ).

A. Object Scale from Depth

The scale prior of the object is captured in the distribution

p(fθ(Iz)|o, θ), which should also capture the uncertainty

in depth measurements. The scale of an object class could

be arbitrarily complex, as could the mechanism that is

responsible for errors in depth measurements. In this section

we first formulate the prior generically, and then describe the

approximations made in our approach.

The geometry of a scene is illustrated in Figure 2. For-

mally, zw is the distance of the object’s centre to the camera’s

origin, sθ is the scale (i.e., height or width) in the image

plane, and sw is the scale of the object in the fronto-parallel

plane at zw. For the moment we will restrict the object

to being represented as a plane parallel to the camera. We

denote the focal length of the camera, zc, and the baseline

distance between stereo cameras as b. The disparity dx on

the image plane for any point x ∈ θ is d (since the object is

a plane), and the number of points in the bounding box is

N . Using perspective projection and epipolar geometry, the

following relationships hold

zw =
zcsw

sθ
=

zcb

d
⇒ d =

bsθ

sw
(4)

Now, in practice we do not know the true values of zw,

sw, or d, so we use instead the random variables z, s, d.

For a particular point x, dx = d + ξx, where ξx is noise

due to discretization and the stereo algorithm. We can use

the relationships in equation 4 to show,

1

N

∑

x∈θ

zx =
zcbs

sθb + s 1

N

∑

x ξx

(5)

≈
zcs

sθ
(6)

We assume the errors, {ξx}x∈θ, are zero mean and inde-

pendent, and by the central limit theorem the second term

in denominator becomes 0, allowing the approximation in

equation 6. Using this, we define fθ(Iz) as the average depth

in an area within our bounding box, so fθ(Iz) ∼ zcs/sθ. The

average depth is taken over a bounding box that is γ times the

size of the original bounding box θ, but centered at the same

point in the image, as in Figure 2, a technique also adopted

by [13]. The reason for this is that depth values around the

edges of θ will be more likely to fall on the background. In

our experiments we use γ = 0.8. Formally, if we denote θγ

as this inner bounding box of θ, and missing depth values

as ⊘, then

fθ(Iz) = mean({Iz(x)|x ∈ θγ , x 6= ⊘}) (7)

The prior for the object’s scale can take any form. In

this paper we assume that the scale of the object class

is Gaussian, with parameters {µs, σs}. This implies that

fθ(Iz), ie. p(fθ(Iz)|o, θ), is also a Gaussian with parameters

{zcµs/sθ, fσs/sθ}. It should be noted that if we simply tried

to use the depth value at the centre of the bounding box,

versus an average, the classifier barely outperformed the base

classifier, in part because stereo often gives no reliable values

at the centre of a textureless object.

Up until this point we have treated the object as pla-

nar. This assumption can be relaxed if the object scales

isometrically and we know the aspect ratio of the object’s

dimensions. Here, the distance between the object’s centre

plane, zw, and the frontal plane, zf , will be proportional to

the scale for the object, i.e., zw − zf = βsw. This amounts

to little more than adding βµs to the mean for fθ(Iz). In

practice, this can be ignored for smaller objects.

B. Object Classifier

In this section we describe our object classifier, which pro-

vides p(o|Im, Iv(θ), θ) for equation 3. The object classifier

is based upon the insight that for many manufactured objects,

there are often no distinctive textural features. As a result,

we instead base our object classifier upon the silhouette of

the object since this captures succinctly the shape of the

object. The measure that we utilize to determine how close

the image Im(θ) is to the object class is based upon an altered
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Fig. 3. Similarity between the model silhouette T and the edge
image E is based upon the sum of the differences ‖φ(xt)−φ(xe)‖,
and ‖xt − xe‖2 for edgels in xt ∈ T and their closest matches
xe ∈ E.

version of chamfer distance. Although this is not a state of-

the-art classifier, it is surprisingly effective for classifying

the canonical viewpoints of some contour-based classes. The

classifier we initially describe here does not utilize the shape

information contained in Iv(θ), we discuss an altered version

that does near the end of the section.

The chamfer distance was first introduced by [21] as a

means of measuring the distance between two curves. In its

most basic form, it is the total distance from all the points

in a template point set T to the closest points from point

set E. A threshold τ is used to account for missing edgels.

Relative to some translation x applied to T , the thresholded

chamfer distance is defined as,

dT,E
cham,τ (x) =

1

|T |

∑

xt∈T

min(τ, argmin
xe∈E

‖(xt + x) − xe‖2)

(8)

This measure however is inherently biased towards clut-

tered images [18], where a high density of edgels is likely to

have a small chamfer distance despite the fact that the pattern

of edgels looks nothing like template T . To overcome this,

we take an approach similar to Shotton et al.[16], who added

the difference in orientations between matching edgels to the

chamfer distance. Explicitly, if we denote xxt+x

e to be the

xe ∈ E closest to xt + x, then we can define two disjoint

sets, T ′ and T ′, where T ′ = {xt|‖x
xt+x

e − xt‖2 < τ} and

T
′

= {xt|‖x
xt+x

e − xt‖2 ≥ τ}. These sets denote nothing

more than splitting T into those edgels with a match less

than τ and those that are too far away. If we let to φ(x) be

the orientation of an edgel modulo π, then the orientation

penalty is defined as,

dT,E
orient,τ (x) =

2

π|T |

(

|T
′

|+
∑

xt∈T ′

|φ(xt)− φ(xxt+x

e )|
)

(9)

and the total oriented chamfer score is,

dT,E
τ (x) = (1 − λ)dcham,τ + λdorient,τ (10)

where λ weights the contribution of the orientation difference

to the chamfer score. The Figure 3 sheds some light on the

oriented chamfer distance. This description thus far has not

touched upon the issue of scale. Again, we follow Shotton

et al.[16] who scale the template rather than edge image.

For a bounding box θ = {sθ, ℓc}, we scale the edgels in the

template by s = sθ/sm, where sm is the model scale.

Using the chamfer score, dsT,E
sτ (x), in a logistic function,

our base classifier becomes

p(o|Im) = [1 + exp(αo − α1d
sT,Ie

sτ (xθ)]
−1 (11)

This classifier does not make use of the shape information

that is available in the depth variances Iv(θ). We did imple-

ment a variation on the score in equation 10, where we added

an additional term that penalized deviations in depths for the

matching edgels. The intuition here is that since Iv(θ) has

mean 0, we expect the variation from zero to be small relative

to the object’s size. We discuss results with this enhanced

version of the classifier in the results section as well.

There are a number of relevant parameters of the object

classifier that need to be set or learned. λ, which modulates

the influence of orientation differences on the distance, was

set to 0.25. The parameter τ was set to 0.15. Both of these

parameters are similar to values used by Shotton et al.[16],

and were set by cross-validation on an independent dataset.

The object silhouette we utilized was acquired taking an

image of a prototypical object on an uncluttered background.

From this, we extracted the silhouette by using only the

contours on the exterior of the object. The parameters αo and

α1 of the logistic classifer can be learned using maximum

likelihood on training data. For the class of mugs, we used

Graz 17 [22], and for the shoes we collected a set of training

images from the internet.

C. Sampling for Detection

Our object detector is based upon determining local max-

ima in the probability function p(o, θ|Iz, Im), which amounts

to finding the bounding boxes with high scores. In a multi-

scale sliding window setting, this can be computationally

expensive depending upon : 1) the computation required

to evaluate a single bounding box, and 2) the sensitivity

of the classifier to minor changes in scale and location.

Computation of a single bounding box is relatively efficient.

We use integral images to compute the scale prior and use the

distance transform so that chamfer matching is O(k) where

k is the number of edgels in our silhouette.

In general, the less sensitive to scale and location a

classifier is, the more sparsely we can sample p(o, θ|Iz, Im)
and still hope to find all detections. For location, a large

portion of the image can be sampled sparsely since the scale

prior and chamfer matching both vary somewhat smoothly.

Scale sampling is more tricky, since there can be considerable

performance degradation if too few scales are evaluated.

For chamfer matching, without scale priors, we found that

results were stable when sampling every 1/8 octave in scale

space, i.e., rescaling by {2i/8|i ∈ I,−16 < i < 16}. This

can be reduced to a sampling rate of 1/4 octave and only

sampling at a greater frequency in regions where the chamfer

distance is small. However, with a full detector that utilizes

the scale prior, the number of samples can be greatly reduced.

For example, for shoe detection at a particular location, we
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could use depth to infer at what scales to sample, allowing

a reduction of samples by up to 80 percent.

III. EVALUATION

To validate our approach we collected a dataset of stereo

and still images for a variety of scenes containing mugs

and shoes, examples of which can be found in Figure 5.

Using these images, we then compare the performance of

our chamfer-distance object detector versus the performance

when this base detector is augmented with a prior on scale.

A. Experimental Setup

The intent of our data collection was to produce a set of

images that would be challenging for an appearance based

classifier due to the significant amount of clutter and textural

variation on the object itself. With this in mind, the objects

were placed at a variety of depths (1 to 7.5 m), with varying

amounts of background clutter. In addition, the shapes and

texture of the objects themselves varied. Due to the restricted

range of viewpoints covered by our shape model, the objects

were placed parallel to the image plane, although the object

could be left or right facing. For the mug dataset we collected

20 images from different indoor scenes, with 15 different

mugs, with about 3 mugs per scene. For the shoe dataset we

also collected 20 images of different scenes, with 8 different

shoes, with about 3 shoes per scene.

The camera setup consisted of a Canon G7, using

1216x912 images, and a Bumblebee 2 stereo camera, using

1024x768 images, with the Canon camera on top of the Bum-

blebee as in Figure 1. The stereo algorithm used was Point

Grey’s stereo algorithm provided with the camera, which

provides fast, accurate depth maps for textured regions,

and annotates ambigous regions as missing information.

The motivation for the two camera approach is that the

quality of the edge images from the Bumblebee camera

were poor in comparison to those of the Canon camera.

However, this introduces an additional complication since the

3D point cloud derived from the Bumblebee and its software

are in the Bumblebee’s coordinate system. To overcome

this we find a set of point correspondences between one

Bumblebee image and the Canon image using SIFT features

and geometric constraints [23]. Using the 3D points from

the Bumblebee, we fit a projection matrix P , using the Gold

standard algorithm [24], that maps all 3D points from the

Bumblebee to the Canon. Although this introduces additional

errors into the depth image Iz , in practice this produced

considerable improvements in both the base classifier and the

classifier that utilized scale as a prior. In the case of shoes

for example, the average precision for the base detector on

Canon images was 0.49, whereas for the Bumblebee images

average precision was 0.35.

B. Results and Analysis

In order to evaluate our approach, we perform detection

over a set of scenes, where any bounding box returned by

the system is considered a true positive only if it’s overlap

with the true bounding box is at least 50 percent the area

of the union of the two bounding boxes, which is standard

for object detection [2]. The primary metric we utilize for

comparison is the average precision (AP). For the shoe

dataset, the base classifier achieved an AP of 0.51, and an

AP of 0.71 with the scale prior. For the mug dataset, the base

classifier achieved an AP of 0.48 and an AP of 0.72 with the

scale prior. Also, as we can see in the recall precision curves

in Figure 4, there is a significant difference in performance

in these two classifiers.

We also experimented with an additional classifer, the

deformable parts model (DPM) developed by Felzenswalb

et al.[1], which has source code available on the net. In this

case, we only trained the classifier for mugs since it also

coincided with our work for SRVC. Using the output from

this classifier for p(o‖Im), we also found that the results

improved with the use of the scale prior on the mugs data

set. This can be seen in Figure 4(a), for the DPM models.

This demonstrates that the approach is usefull for more than

the classifier we outlined earlier. The improvement is not as

drastic since the DPM is more sophisticated and trained on

a large set of training data.

There are two types of errors made by the object classifier,

false negatives and false positives. As can be seen by the

shape of the recall-precision curves and from the examples,

most of the improvement is a result of fewer false positives.

In both object classes, there were a number of instances of

false negatives that were due to the failure of the object

classifier, irregardless of the scale prior. These failures were

due partially to failure in edge detection, but also due to the

fact that a simple silhouette does not capture object class

variation particularly well.

We also performed a number of experiments to determine

the sensitivity of the approach to other parameters. The first

set of experiments were conducted in regards to the interplay

between the parameter settings for the object classifier, via

αo and α1, and scale prior σ2
s . The parameters in the final

results were set by optimizing for the α’s on a separate

dataset, and simply setting the variance, σ2
s , to an approxima-

tion of the real scale variance of the objects. In subsequent

experiments we noticed that the results were fairly robust to

alterations in these parameters. For example, if we doubled

σs, the difference in AP were not significant. This suggests

that the scale prior is primarily removing egregious false

positives, not assisting in modeling fine distinctions between

detections that have a scale that agrees roughly with depth.

We also experimented with utilizing the surface variance,

Iv(θ), i.e., the residuals after the mean in the region was

subtracted off, to improve detection. In general, for small

objects we do not expect a great deal of surface variation, so

discontinuities or cases where the template contour is match-

ing a background segment can be detected using Iv(θ). In

one experiment we embedded Iv(θ) into chamfer matching

as mentioned in Section II-B. In another experiment we used

a uniform prior on the variation of Iv(θ), with a range of

0 to object scale. This has the effect of disallowing large

discontinuities in depth with the region. In both cases, these

approaches did improves results by about 0.025 in AP for
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(a) Mugs (b) Shoes

Fig. 4. Recall Precision Curves

both datasets. Again this slight improvement is due to the fact

that the scale prior removed a majority of false positives.

C. Conclusion and Future Work

In this paper we have presented an approach that fuses

appearance-based recognition using contours with depth

information acquired from stereo. Although previous ap-

proaches have made use of depth information for recognition,

it has yet to be demonstrated that it is feasible with realistic

stereo data in an environment not dependent upon ground

plane assumptions, in which noise and missing values can

be significant. As our results indicate, a prior on scale can

be utilized to increase the accuracy, efficiency, and robustness

of object localization on the types of objects expected to be

manipulated by mobile robots in indoor environments.

In addition, the approach we presented is general in

that any object classifier can be used. The limitations of

a classifier based upon an entire silhouette are significant,

including sensitivity to viewpoint, clutter edgels, and intra-

class variation in the shape of the object. Future work will

focus on utilizing a more sophisticated object classifier. In

the context of a mobile robot, such as a setting like the

SRVC, more sophisticated object class models require more

computation, making the use of scale as prior that much more

important in focusing attention on relevant regions.

Moreover, for shape based objects, the primarily chal-

lenges are in disambiguating foreground contours from

clutter and modelling variation. Using a scale prior that

is independent of the detector can help in reducing false

positives, as shown by our results, but provides little help

in reducing the noise introduced by clutter edges. Future

work will also investigate utilizing depth information to both

improve edge detection and assist in reducing the effect of

clutter edges on measuring the distance between two curves.
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Some examples of mug detections

Some examples of shoe detections

Fig. 5. Examples of object detections. Examples in the left column are from the base classifier at a recall rate at 0.7. Examples in the
middle and right columns are from the classifier with the scale prior at the same recall rate. Green signifies true positives and red signifies
false positives. As can be seen, the number of false positives is significantly reduced with a scale prior.
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