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Abstract— Many robotic control tasks involve complex dy-
namics that are hard to model. Hand-specifying trajectories
that satisfy a system’s dynamics can be very time-consuming
and often exceedingly difficult. We present an algorithm for
automatically generating large classes of trajectories for difficult
control tasks by learning parameterized versions of desired
maneuvers from multiple expert demonstrations. Our algorithm
has enabled the successful execution of several parameterized
aerobatic maneuvers by our autonomous helicopter.

I. INTRODUCTION

Trajectory following is a fundamental building block for
many robotics tasks. By reducing the control problem to
trajectory following, one can often suffer less from the curse
of dimensionality as it becomes sufficient to consider a
relatively small part of the state space during control policy
design. Unfortunately, specifying the desired trajectory and
building an appropriate model for the robot dynamics along
that trajectory are often highly non-trivial, tightly coupled
tasks. For the control design to benefit from being reduced
to a trajectory following task, it typically requires that the
target trajectory is at least approximately physically feasible.
Specifying such a target trajectory can be highly challenging.

In the apprenticeship learning setting, where we have
access to an expert who can provide demonstrations, it is
natural to request a demonstration of the desired trajectory
as the specification of the target trajectory. However, rarely
will an expert be able to demonstrate exactly the trajectory
we desire to execute autonomously. Repeated expert demon-
strations together can often capture a desired maneuver, as
different demonstrations deviate from the intent in different
ways. Abbeel et al. [1] and Coates et al. [8] describe a
generative probabilistic model that enabled them to extract
an expert helicopter pilot’s intended trajectory from multiple
suboptimal demonstrations. They also show how multiple
demonstrations can be leveraged to obtain a high accuracy
dynamics model, which is specifically tuned to the particular
maneuver in consideration.

Unfortunately, most robotics tasks require us to adapt our
learned maneuvers to account for a changing environment:
consider flying aerobatic helicopter maneuvers while avoid-
ing trees and other obstacles. We may need to perform stall
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turns1 of any altitude between 10 and 50 meters. An approach
based on the work presented in [1] and [8] would require
us to anticipate every possible stall turn altitude and gather
expert demonstrations for each one in advance. This seems
wasteful, as the different stall turn trajectories will share
many properties.

In this paper, we present a probabilistic model-based algo-
rithm (building upon [1], [8]), which makes efficient use of
expert demonstrations by learning parameterized maneuvers
rather than a discrete set of maneuvers. We first collect a
wide range of executions of the maneuver of interest. When
asked for a particular execution of the maneuver, such as a
stall turn of a particular altitude, our algorithm generates the
appropriate target trajectory.

We tested our algorithm on three aggressive helicopter
maneuvers: stall turns, loops, and tic-tocs. Our algorithm
successfully generates flyable parameterized maneuvers from
a relatively small number of demonstrations. The generated
trajectories closely match held-out trajectories. Our heli-
copter can perform these interpolated trajectories with an
accuracy comparable to that of a human expert.

Fig. 1. Our Synergy N9 autonomous helicopter.

Videos of our autonomous helicopter flight results are
available at the following page:

http://rll.eecs.berkeley.edu/heli/icra10

II. OVERVIEW

In many trajectory-following problems, the trajectories can
be categorized into distinct maneuver classes. Furthermore,
for many maneuver classes, a particular execution of a

1During a stall turn a forward flying helicopter pitches 90 degrees
backwards and flies upwards until it reaches zero velocity. At that point
it spins 180 degrees around its vertical axis, and descends nose down and
levels out into forward flight. This is a standard aerobatic maneuver that
can be useful for changing directions.
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maneuver within the class can be specified using a small
number of parameters. Throughout the paper, we use stall
turns as a clarifying example of such a maneuver class.

We are given a number of demonstration trajectories
(likely of unequal durations) from a single maneuver class.
Our goal is to generate a new trajectory from the same
maneuver class that satisfies a given parameterization. In
order to specify parameterizations for different maneuver
classes, we first define the concepts of parameters and
waypoints.

A. Parameters

We define the parameters of a maneuver to be the defining
attributes that one must specify when generating a trajectory
from a maneuver class. In the case of stall turns, we use the
trajectory’s maximal altitude as the only parameter.

B. Waypoints

All trajectories within a single maneuver class share a
similar shape and structure. This structure can be captured by
a set of characteristic points that define the major variations
between different trajectories within the class. For example,
all stall turns generally share the same shape; however, two
different stall turns are easily distinguished by their altitude
at their peaks.

For each maneuver class, we define a set of characteristic
points, which we refer to as waypoints. For stall turns, we
define a single waypoint at the top of the maneuver, when
the helicopter is at its maximal altitude.

Our trajectory learning algorithm specifies what values
certain state variables should take at the waypoints. These
values are derived from the input parameters. Rather than
specifying all of the state variables at each waypoint, we only
specify the subset of the state variables required to capture
the key characteristics of the maneuver at that waypoint. We
refer to this subset of state variables and the specified values
as the waypoint constraints.

At the waypoint of a stall turn, the waypoint constraints
specify an altitude equal to the input parameter and a vertical
velocity of zero. This enforces that the waypoint corresponds
to the maximal altitude. Our trajectory learning algorithm
attempts to find a trajectory of the specified maneuver class
that satisfies these generated waypoint constraints.

In addition to the defined waypoints for each maneuver
class, we always include waypoints at the beginning and
end of each trajectory. The constraints for these waypoints
specify the position and orientation of the helicopter.

III. TRAJECTORY LEARNING ALGORITHM

Our trajectory learning algorithm estimates a target trajec-
tory of a particular maneuver class from a set of demon-
strations from the same maneuver class and parameters
describing the desired trajectory.

The algorithm consists of two core steps. After initializa-
tion, the first step is time alignment; we align each of our
demonstration trajectories to the current estimate of the target
trajectory. The second step consists of a Kalman smoother

Input: Demonstrations D from desired maneuver class
c, parameters p

Output: Estimate of target trajectory z
Initialization:

Find closest trajectory r;
w ← GenerateWaypointConstraints(c, p, r);
Initialize z← r;

for i = 1 to numIters do
foreach demonstration d ∈ D do

Align(z, d);
end
z← KalmanSmoother(D,w);

end

Algorithm 1: Outline of trajectory learning algorithm.

used in conjunction with the EM algorithm to infer the target
trajectory from the aligned demonstrations. These steps are
summarized in Algorithm 1.

A. Initialization

Our algorithm requires three initialization steps. First, we
find the closest trajectory from the same maneuver class,
where distance is calculated in the parameter space. For
stall turns, we find the trajectory of the closest altitude to
the specified input parameter. We then use this trajectory
along with the input parameter to generate the waypoint
constraints, as described in Section III-D. Lastly, we set the
initial estimate of the target trajectory to be this same closest
trajectory.

B. Dynamic Time Warping

The demonstration trajectories collected from our expert
vary considerably in size and duration. Furthermore, the
important points in each trajectory may not occur at the
same time; two stall turns of the same altitude may still
reach their peaks at different times. To account for this, we
use a dynamic programming algorithm known as dynamic
time warping (DTW) in the speech-recognition literature
[19] and the Needleman-Wunsch algorithm in the biological
sequence alignment literature [18]. Dynamic time warping is
often used to align multiple sequences to a single reference
sequence.

The standard DTW algorithm performs poorly when the
two sequences vary greatly in magnitude, shape, or duration
[10]. For sequences with differences in magnitude, e.g. the
top of a stall turn, DTW will change the time scale to
match the exact magnitudes of the trajectories for as long
as possible, rather than matching the overall shape of the
trajectories. Our largest stall turns are up to two or three
times larger and longer than our smallest stall turns. Dynamic
time warping leads to unnatural alignments with abrupt
changes in the time alignment rate (the difference in time
from one time step to the next).

Because our trajectories correspond to physically feasible
flights, we expect alignment rate to remain fairly constant
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Fig. 2. Helicopter position during a stall turn: before (left) and after (right) alignment.

between time steps. Hence we modify DTW by adding a
penalty2 for changes in the time alignment rate. This algo-
rithm produces alignments with fewer kinks and smoother
rate changes over the course of the trajectory. Visual inspec-
tion indicates that important features of the underlying tra-
jectories were better matched using the rate penalty penalty.
Figure 2 shows an example alignment produced by DTW,
both with and without rate penalty.

C. Kalman Smoother

We closely follow the generative model for helicopter
trajectory learning given in [8], which we summarize here.

The demonstration trajectories, of possibly unequal
lengths Nk, are sequences of helicopter states skj (position,
velocity, orientation in quaternion form, and angular rate),
control inputs ukj , and model biases βkj (discussed in Sec-
tion III-F), composed into a single state vector:

ykj =

 skj
ukj
βkj

 for j = 0..Nk − 1, k = 0..M − 1.

The output trajectory is of length T :

zt =

 s?t
u?t
β?t

 for t = 0..T − 1.

We use the following notation:

y = {ykj | j = 0..Nk − 1, k = 0..M − 1}

z = {zt | t = 0..T − 1}

The generative model used for the desired trajectory is
given by an initial state distribution z0 ∼ N (µ0,Σ0) and an
approximate model of the dynamics

zt+1 = f(zt) + ω
(z)
t , ω

(z)
t ∼ N (0,Σ(z)). (1)

2The exact penalty term we use is the squared error between the last rate
and the current rate.

The model represents each demonstration as a set of in-
dependent “observations” of the hidden trajectory z. Specif-
ically, our model assumes

ytj = zt + ω
(y)
j , ω

(y)
j ∼ N (0,Σ(y)). (2)

D. Waypoint Constraints

From the input parameters, we generate waypoint con-
straints for each waypoint for the desired maneuver class. For
example, when generating a stall turn, the input parameter
specifies the desired altitude. We find the demonstration of
a stall turn with the most similar altitude and extract the
position and velocity from its waypoint. Rather than using
the altitude of the demonstration in the waypoint constraints,
we replace it with the desired altitude and set the velocity
in the vertical axis to be zero.

In addition to the observations given by the demonstra-
tion trajectories, we use the generated constraints as direct
observations of the hidden state:

qj = I(zt) + ω
(q)
j , ω

(q)
j ∼ N (0,Σ(qj)).

Here, qj , the constraints at the jth waypoint, occur at time
t and I is a function that selects the proper subset of the state
zt.

We set these observations to have very small variances,
essentially forcing the Kalman smoother to pass the trajec-
tory through the waypoint constraints while still respecting
the dynamics model.

E. Expectation Maximization (EM)

It is well known that manual tuning of the variances of
a Kalman filter can be difficult and time consuming. The
EM algorithm provides a natural alternative by finding the
covariances that maximize the log-likelihood of the data [12].

In our setting, however, we have a substantial amount
of prior knowledge about the physical meaning of each
variable. It is undesirable to ignore this knowledge by simply
maximizing the likelihood. We fix the order of magnitude
of the variances for each of the demonstration trajectories
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to be consistent with our prior knowledge of the accuracy
of our measurements. We use the EM step to weight the
different trajectories relative to one another by increasing
the observation variances on trajectories that are dissimilar
to the target trajectory and keeping the observation variances
on the other demonstrations low.

To achieve both these objectives, we constrain the vari-
ances to be of the form cV where V is the initial vector of
observation variances and c is a scalar. We take the least-
squares solution matching c against the variance vector E,
found by taking the diagonal of the covariance matrix given
by EM. This is equivalent to the projection V TE

||V || of E onto
V . Intuitively, this allows the EM algorithm to determine
the relative weight given to each observed trajectory without
destroying dynamical consistency.

F. Model Biases

To improve our modeling accuracy, we use a time-varying
model ft(·) that is specific to the vicinity of the intended
trajectory at each time t.

We express ft as our “crude” model, f , augmented with
a bias term β?t :

zt+1 = ft(zt) + ω
(z)
t ≡ f(zt) + β?t + ω

(z)
t .

We have β?t+1 ∼ N (β?t ,Σ
(β)).

We incorporate the bias into our observation model by
computing the observed bias βkj = ykj − f(ykj−1) for each of
the observed state transitions, and modeling this as a direct
observation of the hidden model bias corrupted by Gaussian
noise.

G. Drift

Different variations of the same maneuver often differ in
ways that cannot be modeled by independent noise at each
time step. For example, a shallow stall turn will consistently
be lower than a very high stall turn. The differences between
the trajectories are highly correlated over time and they are
not explained well by simply having a Gaussian noise term
in the observation model.

To capture such drift in the demonstration trajectories, we
augment the latent trajectory’s state with a “drift” vector δkt
for each demonstrated trajectory k, consisting of the drift in
position and heading. The state observations are now noisy
measurements of zt + δkt rather than only zt.

IV. EXPERIMENTS

We evaluate our algorithm’s ability to generate trajecto-
ries of the specified maneuver class that satisfy the gener-
ated waypoint constraints (Section IV-C). We also examine
whether the generated trajectories are dynamically reason-
able target trajectories by testing how reliably our controller
can fly them (Section IV-D).

A. Autonomous Helicopter Platform

Our helicopter platform is a Synergy N9 with an on-
board Microstrain 3DM-GX1 inertial measurements unit
(IMU) and off-board ground-based cameras which provide
stereo-based position estimates. We obtain the helicopter’s
position, orientation, velocity, and angular rate by fusing the
sensor data with an extended Kalman filter. To collect the
demonstrations we had our expert helicopter pilot fly stall
turns, loops, and tic-tocs of varying sizes and time scales.
Our feedback controller is a receding-horizon differential
dynamic programming (DDP) controller (see [1], [8] for
details).

B. Setup

We gathered 7-8 demonstrations of stall turns, loops,
and tic-tocs that span a wide range of executions for each
maneuver. All maneuvers were normalized to start at the
origin facing north. We used the following parameterizations:

• Stall turns: the maximum altitude (z-coordinate) at the
top of the turn.

• Loops: the maximum distance from the starting point
on the x-axis (for perfectly circular loops, this would
be the radius).

• Tic-tocs: the maximum distance from the starting point
on the x-axis.

Before the time alignment step, each demonstration is
oversampled to a length of three times the length of the
target trajectory. This gives the algorithm more freedom in
choosing alignment points. At each step of the algorithm we
realign each of our demonstrations to the current estimate of
the target trajectory.

Our cost function for dynamic time warping is a weighted
squared error function, where the weight for each axis is
determined by the maneuver class. Certain axes are more
relevant for some maneuvers than for others, while other
axes are ignored because they tend to be very different across
flights of the same maneuver class. For example, we weight
the vertical axis for stall turns much more heavily than the
horizontal axes. Furthermore, some axes are on different
scales than others; for example, the quaternion entries are
always between 0 and 1 while the position entries can get
to be as large as 50 or even higher. We use these weights to
account for these differences. The alignments are not very
sensitive to the choice of weights as long as axes which
are consistently different across multiple examples from the
same maneuver class have significantly smaller weights.

C. Trajectory Generation Experiments

Our experiments investigate the ability of our algorithm
to reproduce held-out demonstration trajectories. We gather
a set of demonstrations for each maneuver class. For each
run, we choose one demonstration and evaluate how well
our algorithm can reproduce it based upon the other demon-
strations from its maneuver class. We first extract the input
parameters (e.g., the altitude of the target stall turn) from the
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(c) (f)
Fig. 3. Trajectory learning on a stall turn (top), loop (middle), and tic-toc (bottom). Each plot shows the demonstration trajectories (dotted), the held-out
test trajectory (dashed), and the learned trajectory (solid). For the position plots, blue, green, and red represent north, east, and down, respectively. For the
orientation plots, blue, green, red, and cyan represent qx, qy , qz , and qw , respectively.
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Fig. 4. Distance from target in position (left) and orientation (right).
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Fig. 5. Representative flight performance of our approach. Left to right: stall turn, loop, tic-toc.

held-out demonstration.3 We then run our algorithm while
excluding the held-out demonstration from being used by
our algorithm and compare the generated trajectory to this
held-out demonstration.

Figure 3 shows some representative generated target tra-
jectories of stall turns, loops, and tic-tocs obtained using our
method. The plots include the held-out trajectory aligned to
the learned trajectory as well as the waypoint constraints. The
generated trajectories closely match the held-out trajectories
at the waypoints.

D. Flight Experiments

We investigate the realized flight performance of our
generated target trajectories.

We flew three trajectories each for stall turns, loops, and
tic-tocs. For each type of maneuver we chose a small,

3For tic-tocs, we take the average of the two local minima on the x-axis
and use this value as a single parameter.

medium, and large demonstration to use as held-out trajec-
tories, and picked a disjoint set of demonstration trajectories
to learn from. We had our helicopter fly each trajectory
twice. Figure 4 shows the average distance from the target
in position and orientation. Figure 5 shows representative
flights for each maneuver for our method.

Videos of our flight results are available at the following
URL:

http://rll.eecs.berkeley.edu/heli/icra10

V. RELATED WORK

The work by Coates et al. [8] is the most closely related.
They consider the setting of learning a single intended
trajectory and a high-precision dynamics model along that
trajectory from several demonstrations. However, our prob-
abilistic approach can generate many similar, parameterized
maneuvers instead of a single desired trajectory. We also
leverage their observation that, for a specific maneuver, it is
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possible to obtain a very high fidelity dynamics model by
combining a crude low-order dynamics model with correc-
tions specific to that trajectory. A minor difference is the
handling of time warping: Coates et al. use dynamic time
warping with a cost function based on the log-likelihood
of the sequence in question. This worked well when the
demonstrations were all very similar, but we found that
our weighted squared-error cost function with rate-change
penalty yielded better alignments in our setting, in which
the demonstrations were far less similar in size and time
scale.

In [6], multiple demonstrations are used to learn a model
for a robot arm and find an optimal controller in their
simulator, initializing their optimal control algorithm with
one of the demonstrations.

The work of [7] considered learning trajectories and con-
straints from demonstrations for robotic tasks. They do not
consider the system’s dynamics or provide a clear mechanism
for the inclusion of prior knowledge.

Among others, [4] and, more recently, [3], [8] have
exploited the idea of trajectory-indexed model learning for
control.

Our work also has some similarities with recent work on
inverse reinforcement learning, which extracts a reward func-
tion (rather than a trajectory) from the expert demonstrations.
See, e.g., [2], [13]–[16], [20].

VI. CONCLUSIONS

We have proposed a generally applicable method for
learning parameterized maneuvers that makes efficient use
of expert demonstrations to learn a maneuver-specific local
control model. We applied our algorithm to autonomous
helicopter flight. Our algorithm has enabled our autonomous
helicopter to fly challenging aerobatic maneuvers of different
sizes from the same set of expert demonstrations.
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