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Abstract— This paper describes the control of a human-like
robotic neck actuated with tendons. The controller regulates
the length of the tendons to achieve a desired orientation of
the neck and at the same time it maintains the tension of the
tendons within certain limits. The solution we propose does not
use any model of the system, but it relies on online learning
of the different Jacobian mappings required by the controller.
Learning, data acquisition and control are simultaneous; thus
learning is completely autonomous, and purely online. We show
that after enough iterations the controller produces straight
trajectories in the task space and is able to maintain the tension
of the tendons within safe limits.

I. INTRODUCTION

We propose a strategy based on autonomous online learn-

ing to control the orientation of a tendon-driven parallel

system. The controller regulates the length of the tendons to

fulfill a primary task (controlling the neck orientation), and

at the same time it tries to keep the tension of the tendons

within safe limits. The robotic neck we used in this paper

is a peculiar mechanical system that emulates the human

neck. This setup is a particularly interesting test platform for

the following reasons. Firstly it is a tendon driven system.

Tendon driven systems are getting popularity in robotics

because they allow sophisticated routing of the actuation thus

to reduce weight and inertia of the mechanical structure. Sec-

ondly, this setup is (roughly speaking) a redundant system in

which the number of actuators is higher than the mechanical

degrees of freedom. Finally, the neck is equipped with a

sensory system that provide a rich feedback about motor

positions, neck orientation and tendon tensions.

Previous works [1], [2] tested different solutions to this

problem, all exploiting more or less accurate analytical

models of the system. In these approaches errors arise from

discrepancies between the model and the real system: of

course, the more complex the system the more probable the

errors. In particular, non-linear and time-varying parameters

(e.g. due to elasticity or deformable parts) are difficult to

describe. On the other hand, the absence of a model reduces

the possibility to control the system. In these cases learning

offers an elegant and efficient solution to the problem,

especially if we can exploit a considerable amount of sensory

measurements.

Unfortunately learning in the literature is most often per-

formed off-line (or batch). Learning and data acquisition

are performed in separate phases. On the other hand we

are interested in implementing techniques that produce a

constant adaptation of the parameters of the controller.

The paper is organized as follows. In sections II we give a

description of the hardware platform, focusing in particular

on the neck structure. In sections III the structure of the

controller is described, discussing how the initial exploration

is linked to the subsequent behavior. In sections IV the

learning strategy is explained in details and in section V we

analyze the controller performances during and after training.

Finally, in section VI we present our conclusions.

Fig. 1. The humanoid robot James. The control of its neck is the topic of
this paper.

II. ROBOTIC PLATFORM

The work described in this paper has been carried out

on the head of the humanoid robot James [3]. James head

has 7DOFs on the whole: two independent moving eyes (4

DOFs), one motor actuating the yaw movement (1 DOF,

rotation around the axis perpendicular to the neck base),

a particular structure constituting the neck (2 DOFs). The

description of the peculiarities of such structure and the

sensors used for its control are described in II-A and II-B

respectively.

A. The neck design

The neck main body is a steel spring supporting the head.

This spring can bend forward and laterally allowing pitch

and roll rotations. These 2 DOFs are actuated by a system

of three motors pulling three tendons that surround the spring

120◦ apart. The tendons are connected to the top of the neck

(the top ’vertebra’) on one side, and to capstans actuated

by the motors on the other side. When the motors pull the
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regulate the tendon tension F by minimizing F − Fd with

Fd = Fmax+Fmin

2
, calling Fmax and Fmin the maximum

and minimum acceptable tendon force values. Practically,

these two objectives can be obtained by solving the following

optimization problem:

min
q

1

2
‖F (q)− Fd‖

2
s.t. x(q)− xd = 0 (III.1)

Following the approach of [9], we can tackle (III.1) setting

the desired motor velocities q̇ ∈ R
3 as follows:

q̇ = C1 + C2 (III.2)

where

C1 = J†(q)(xd − x) (III.3)

C2 = (I − J†(q)J(q))KJF (q)
T (Fd − F ) (III.4)

where J(q) ∈ R
2×3 is the jacobian matrix which maps

from motor velocities to task velocities, J†(q) ∈ R
3×2 is

its Moore-Penrose pseudo-inverse and JF (q) ∈ R
3×3 is

the jacobian matrix which maps from motor velocities to

tendons tension velocities (i.e. tendons tension variations).

These matrices are the core of the learning controller; they

are initialized with random values and then updated dur-

ing the head movements, relying on sensory measurements

coming from tendon tension sensor, absolute position sensor

and motor encoders. The way in which these matrices are

initialized and then updated is the subject of section IV.

Then, K ∈ R
3×3 is a positive definite diagonal gain matrix,

I ∈ R
3×3 is the identity matrix, xd ∈ R

2 is the vector

of desired positions and Fd ∈ R
3 is the vector of desired

tendons tension.

The control law (III.2) is the so called resolved motion

rate control technique (see [9] for details and proof of

convergence) applied to our problem. J†(q) allows to control

neck orientation following straight trajectories (x) in the task

space. The operator (I−J†(q)J(q)) projects the term which

minimize the tension error in the null space of the primary

task (i.e. the neck orientation).

If the measured tendons tensions are outside the admissible

range [Fmin Fmax], the (III.2) controller is switched off, and

a ’safety controller’ is activated:

q̇ = −G · Ferr = Csafe (III.5)

Ferr =

{

(F − Fmax) if F > Fmax

(F − Fmin) if F < Fmin

(III.6)

where G ∈ R
3×3 is a positive definite diagonal gain matrix.

As soon as the measured tendon tensions have come back

within the limits, the main controller (III.2) is switched

on again. This ’safety controller’ has the unique task of

regulating the tendons tensions to the desired values, but of

course it interferes with the main neck orientation task. We

will show in section V how the activation of this controller

is frequent in the beginning of learning and more and more

absent in the later stages.

IV. LEARNING STRATEGY

As previously stated, movements are generated by the

(III.2) controller, in combination with the safe controller

(III.5) when measured tendons tensions exceed the limits.

Target orientations xd are provided to the robot every

20 seconds, choosen randomly within the (safe) physical

limits [−35◦ 35◦], with uniform distribution. During the

motion data are gathered from absolute position sensor,

x ∈ R
2, force sensor (tendons tensions), F ∈ R

3, and

motor encoders, q ∈ R
3. What is needed for learning are

little variations of these quantities (displacements): ∆x, ∆F

and ∆q. The time window on which these variations are

computed is 50 ms, while the controller rate is 5 ms (200

Hz). Here follows the description of how J(q) is learned

from these sensory measurements; the same strategy applies

to the learning of JF (q), and could be generalized to any

other non-linear matrix.

From a set of couples (∆x,∆q) we can estimate a local

Jacobian matrix Ĵ : ∆x = Ĵ∆q with Least Squares (LS)

Regression. This Ĵ is an approximation of J(q) : ẋ = J(q)q̇
in a local region of the q space, whose accuracy depends

basically on the size and distribution of the aforementioned

set. In our implementation this estimation is performed on-

line, with an incremental LS algorithm adapted from [10].

Then, since we need to build a global Jacobian matrix J(q)
starting from local models Ĵ , we employed a Receptive

Field Neural Network (RFWR [11], an on-line machine-

learning tool) to map from q to the corresponding local

Jacobian matrix Ĵ . Every time a new couple (∆x,∆q) is

computed (every 200 ms) the RFWR net is queried with the

current motor configuration q to obtain the correspondent

local model Ĵ . The obtained constant matrix is updated with

the couple (∆x,∆q) using incremental LS. The RFWR net

is then trained with the current motor configuration q as

input and the updated constant Jacobian matrix Ĵ as output.

The algorithm steps are summarized below:

1. collect new sample (∆x,∆q)i at time i

2. retrieve Ĵqi
= RFWR(qi)

3. update Ĵqi
with (∆x,∆q)i → Ĵup

qi

4. train RFWR(qi, Ĵ
up
qi

)

Since the incremental LS algorithm requires a non-null ma-

trix to update, the RFWR net is initialized with an arbitrary

Ĵ , which becomes the output for every configuration q

received as input (in the beginning, when the net is still

empty). The same holds for ĴF .

V. RESULTS

In this section the performances of the learning con-

troller are evaluated and discussed. The discriminants are the

steady-state orientation error (pitch and roll position errors)

and the slope of its convergence to zero, the linearity of the

trajectories in the operational (pitch/roll) space1, the amount

of tension measured on the tendons. In all the tests reported

1Trajectories would be perfectly linear if the Jacobian J(q) were exactly
known.
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Fig. 4. Task space trajectories (blue line) connecting the desired via
points (in red). The green dots are the points spanned during learning.
This performance was achieved after 2 hours and 20 minutes of training.
The linearity of the trajectories proves the convergence of the estimated
Jacobian.
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Fig. 5. Roll and pitch step response. Desired and actual positions relative
to the trajectories of figure 4 are shown.

hereinafter, the same sequence of 13 target positions xd

is provided to the robot, one different position every 20

seconds: these positions have been chosen arbitrarily to cover

homogeneously the task (roll/pitch) space. As previously

explained, the movements during which training data are

gathered and on-line learning is performed are generated

providing random xd to the robot.

The first set of graphs (figures 4, 5 and 6) shows the best

performances we achieved on the system, after about 2 hours

and 20 minutes of training (170000 samples of the form

(∆q,∆x,∆F ) gathered).

The steady-state RMSE (Root Mean Squared Error) com-

puted over the sequence of movements is 0.020◦ for the

roll rotation and 0.018◦ for the pitch rotation. Figure 5 also

shows the exponential convergence of the position error to

zero. Furthermore, the tendons tensions are kept within the

limits by the controller C2, which acts in the null-space of
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Fig. 6. Activations of the different controllers and tension measurements,
for every q. On the first row the overall controller output, on the second row
the C1 component. The third row shows the contribution of the controller
C2. When x− xd = 0, The contribution of C2 converges to zero, which
proves that the first order conditions of the secondary task are satisfied. On
the fourth row the ’safety controller’ activation is shown, while on the fifth
row tension measurements are reported. The effect of the secondary task
controller C2, guarantees that tendon tension are within the limits Fmin <

F < Fmax.

the primary task.

To underline the importance of the controller C2 (III.4), we

tested the system controlling just the primary task, setting

C2 = 0. Figures 7, 8 and 9 describe the behavior of the

system using such a controller. We can notice from figure

9 that without the contribution of C2 the ’safety controller’

Csafe is often active; the activation of this controller af-

fects the performances of the main controller, sometimes

preventing the system from cancelling the position error. The

result is that with such a controller the system is not able to

consistently cancel the position error, nor to regulate tendons

tensions.

Figures 10, 11 and 12 show the improvements of the con-

troller during learning. In the left figures the system has

been trained with just 20000 samples (about 15 minutes),

and it is clear that the performances are far from being

acceptable. We will not quantify the errors in this case,

since they are too big. In the middle figures, on the contrary,

the system is already able to reach the desired orientations

xd, but the error convergence is not always perfect and

the task space trajectories are not so linear. The steady-

state RMSE computed over the sequence of movement is

0.064◦ for the roll rotation and 0.020◦ for the pitch rotation.

Furthermore, the tendons tensions are not regulated properly:
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Fig. 7. Task space trajectories without tendon tensions control. With the
only controller C1 tendon tension arise over the force limits, thus activating
the controller Csafe. In this way, the convergence to the target positions
xd is not guaranteed.
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Fig. 8. Desired and actual roll and pitch positions without the activation of
tendon tensions error projection in the null space of J((q)) (the controller
C2 is not active). The convergence to the target positions is not guaranteed,
because of the activation of the controller Csafe.

the ’safety controller’ is activated twice, and there are some

high-frequency oscillations. In the right figures the results

obtained with the best controller (the one already discussed

in the beginning of the section) are reported.

Finally, something can be added concerning the mere task

of estimating J(q) and JF (q).
Figure 13 shows the trend of the coefficients of J(q),
where q = 0. Remarkably, these coefficients, initialized

arbitrarily as stated in section IV, seem to converge to

specific values ( J(0) = [0.2;−0.1;−0.1; 0.0; 0.2;−0.2] ).

Furthermore, these values turn out to be reasonable if we

analyze the structure of the neck and the considered motor

configuration (q = 0, which means also x = 0). When the

head is straight (i.e. x = 0), to bend the neck forward the

system should shorten the front tendon of a certain length

(let’s say L1) and lengthen the two tendons in the back
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Fig. 9. Activations of the different controllers and tension measurements,
for every q, without tendon tensions control. Controller Csafe is often
active, because the controller of the secondary task is not present.

Fig. 10. Task space trajectories at three progressive learning stages (20000,
100000, 170000 training samples, from left to right). Left figure show that
most of the points are not reached because the Jacobian estimation is not
accurate enough. Central figure show that the estimation of the Jacobians is
converging. Right figure show that the Jacobian evaluation has converged to
a good estimation of the real Jacobian, which results in linear trajectories
in the Cartesian space (see figure 4).

of half that length (L1 · sin(120
◦), being the three tendons

separated 120◦ apart). This is consistent with the first row of

J(0), [0.2;−0.1;−0.1]. On the other hand, to bend the neck

laterally the front tendon do not play any role, while the

other two tendons must be displaced of the same quantity,

but in opposite direction; this is consistent with the second

row of J(0), [0.0; 0.2;−0.2]. For a more precise description

about this geometric model refer to [2].

Regarding JF (q), some additional experiments have been

performed in order to test the quality of its estimation.

First the system has been driven to a desired position xd

using the controller C1 (III.3) alone; the absence of the
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Fig. 11. Roll and pitch desired and actual positions at three progressive
learning stages (20000, 100000, 170000 training samples, from top to
bottom). Top figures show that most of the target positions are not reached
because the Jacobian estimation is not accurate enough. Central figures show
that the estimation of the Jacobians is converging. Steady state errors are
limited. Bottom figures show that the Jacobian evaluation has converged to
a good estimation of the real Jacobian. Here target positions xd are reached.
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Fig. 12. Activations of the ’safety controller’ and measured tendons ten-
sions at three progressive learning stages (20000, 100000, 170000 training
samples, from top to bottom). The first two rows show that when learned
Jacobian is not accurate, forces arise over the limits, thus activating the
’safety controller’ Csafe. The more learning improves the estimation, the
more the ’safety controller’ becomes unnecessary.
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converge to particular values that turned out to be quite reasonable.
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Fig. 14. Top figures: contribution of controller C2 for every joint. Bottom
figures: force errors F − Fd on every tendon.

C2 contribution causes the raising of the tendon tensions

and consequentely of the force error F − Fd. Then the

controller C2 was activated, with the effect of a sudden

reduction of the norm of the force error, as shown in

figure 15. Since C2 = 0 at steady-state, the system is in

a configuration which satisfies the first order condition of

the primary problem (III.1). Figures 14 and 15 show that

when C2 is active the error F (q) − Fd decreases, while

maintaining the task x − xd = 0. This means that JT
F is

a good approximation of the real Jacobian ∂FT

∂q
, or, more

precisely, that JT
F (F (q)− Fd) is a descent direction for the

secondary function ‖F (q)− Fd‖.

In an additional experiment, the system is driven toward an

arbitrary xd using the controller (III.2). When at steady-

state, the desired tendon force Fd is changed periodically.

The experiment is shown in figures 16 and 17. As expected,

steps of the desired tendon force result in steps of the actual

forces in the same direction. Of course, since the desired

force is the same for all the tendons, and the primary task

is the position control of the head (see figure 17), steady

state errors are present in the response of the system. This

experiment demonstrates that the controller C2 is able to

regulate tendon tensions following Fd, without interfering

with the main orientation task.

VI. CONCLUSIONS

This paper proposes a machine-learning approach for the

control of a human-like robotic neck, without any need of a-

priori modeling. The neck mechanical structure is innovative

and highly biologically inspired. The complexity of the

system makes it difficult to build an accurate kinematic
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Fig. 15. Top figure: norm of the force errors. Bottom figures: pitch and
roll desired and actual positions. The activation of the controller C2 reduces
the norm of the force errors, without affecting the main positioning task, at
steady-state.
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Fig. 16. Top figures: contribution of controller C2 for every joint. Bottom
figures: actual (green solid line) and desired (blue dashed line) forces on
every tendon. Step variations of the desired tendon forces are given to
evaluate the performances of the controller C2.
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Fig. 17. Desired and actual pitch and roll positions. The step variations of
desired forces does not influence the pitch and roll positions at steady-state.

model for its control. Conversely, the presence of a rich

sensory system and the peculiarity of the structure has

suggested the implementation of a controller based on on-

line sensori-motor learning. Data gathered from absolute

position sensor, tendon tension sensors and motor encoders

have been used to learn a model of the system Jacobian,

J(q), useful to precisely control the neck in the operational

space (pitch and roll rotations) generating linear trajectories;

furthermore, a tensions-motors Jacobian, JF (q) has been

learned in the same way, and employed to bound the tendons

tensions by acting in the null-space of the system Jacobian.

Learning occurs on-line, in a continuous and autonomous

way, without any separation between the training phase and

the execution phase. The controller performances have been

analyzed on the basis of the steady-state orientation error, the

profile of error convergence, the linearity of the operational

space trajectories and the regulation of the tendons tensions.

Results show that after some training (controlled movements

toward randomly distributed targets xd) good estimations

of J(q) and JF (q) can be learned and efficiently used

for control. The proposed controller allows to achieve a

steady-state RMSE of 0.020◦ for the roll rotation and 0.018◦

for the pitch rotation, with exponential error convergence;

trajectories in the task (roll/pitch) space are almost linear.

Moreover, tendons tensions are kept bounded within the

required limits.
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