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Abstract— This paper describes the control of a human-like
robotic neck actuated with tendons. The controller regulates
the length of the tendons to achieve a desired orientation of
the neck and at the same time it maintains the tension of the
tendons within certain limits. The solution we propose does not
use any model of the system, but it relies on online learning
of the different Jacobian mappings required by the controller.
Learning, data acquisition and control are simultaneous; thus
learning is completely autonomous, and purely online. We show
that after enough iterations the controller produces straight
trajectories in the task space and is able to maintain the tension
of the tendons within safe limits.

I. INTRODUCTION

We propose a strategy based on autonomous online learn-
ing to control the orientation of a tendon-driven parallel
system. The controller regulates the length of the tendons to
fulfill a primary task (controlling the neck orientation), and
at the same time it tries to keep the tension of the tendons
within safe limits. The robotic neck we used in this paper
is a peculiar mechanical system that emulates the human
neck. This setup is a particularly interesting test platform for
the following reasons. Firstly it is a tendon driven system.
Tendon driven systems are getting popularity in robotics
because they allow sophisticated routing of the actuation thus
to reduce weight and inertia of the mechanical structure. Sec-
ondly, this setup is (roughly speaking) a redundant system in
which the number of actuators is higher than the mechanical
degrees of freedom. Finally, the neck is equipped with a
sensory system that provide a rich feedback about motor
positions, neck orientation and tendon tensions.

Previous works [1], [2] tested different solutions to this
problem, all exploiting more or less accurate analytical
models of the system. In these approaches errors arise from
discrepancies between the model and the real system: of
course, the more complex the system the more probable the
errors. In particular, non-linear and time-varying parameters
(e.g. due to elasticity or deformable parts) are difficult to
describe. On the other hand, the absence of a model reduces
the possibility to control the system. In these cases learning
offers an elegant and efficient solution to the problem,
especially if we can exploit a considerable amount of sensory
measurements.

Unfortunately learning in the literature is most often per-
formed off-line (or batch). Learning and data acquisition
are performed in separate phases. On the other hand we
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are interested in implementing techniques that produce a
constant adaptation of the parameters of the controller.

The paper is organized as follows. In sections II we give a
description of the hardware platform, focusing in particular
on the neck structure. In sections III the structure of the
controller is described, discussing how the initial exploration
is linked to the subsequent behavior. In sections IV the
learning strategy is explained in details and in section V we
analyze the controller performances during and after training.
Finally, in section VI we present our conclusions.

Fig. 1. The humanoid robot James. The control of its neck is the topic of
this paper.

II. ROBOTIC PLATFORM

The work described in this paper has been carried out
on the head of the humanoid robot James [3]. James head
has 7DOFs on the whole: two independent moving eyes (4
DOFs), one motor actuating the yaw movement (1 DOF,
rotation around the axis perpendicular to the neck base),
a particular structure constituting the neck (2 DOFs). The
description of the peculiarities of such structure and the
sensors used for its control are described in II-A and II-B
respectively.

A. The neck design

The neck main body is a steel spring supporting the head.
This spring can bend forward and laterally allowing pitch
and roll rotations. These 2 DOFs are actuated by a system
of three motors pulling three tendons that surround the spring
120° apart. The tendons are connected to the top of the neck
(the top ’vertebra’) on one side, and to capstans actuated
by the motors on the other side. When the motors pull the

859



tendons, forces are transmitted to the upper ’vertebra’. When
these forces are unbalanced a bending moment is produced
on the top of the spring, causing the movement of the head
(see figure 2).

The structure of James neck recalls the design of a tendon-
driven parallel manipulator (see [4], [5] for details). It has
been shown in [6] that a tendon driven system with open-
ended tendons requires more tendons than DOFs to be fully
controllable. In particular, James neck is moved actuating
three motors (q € R3) in order to perform the pitch and roll
movements (x € R?). Mechanical constraints prevents the
arbitrary choice of q for a desired x4. In particular, due
to the elasticity of the structure, it exists a set of motor
positions g C R3 for a given desired orientation x4. Among
the possible q € q there is an ideal motor configuration
q* which generates an optimal value of stress of the three
tendons, while achieving the main positioning task. Values
of stress that are too small can send the tendons out of
the capstans, while too large values can misalign the spring
spirals or break the tendons.

B. Sensors and electronics

James head is equipped with 8 motors, 4 moving the
two spherical eyes, one performing the yaw movement of
the head and three actuating the neck. Vision is provided
by two digital CCD cameras (PointGrey Dragonfly remote
head), located in the eyeballs. A 3-axis orientation tracker
(Intersense iCube2) has been mounted on top of the head, to
emulate the vestibular system. This sensor is used as absolute
position sensor, providing the actual pitch and roll position
X.

The neck is composed of three DC motors placed on the root
of the robot. Each motor pulls one of the tendons actuating
the structure, in order to perform the pitch and roll move-
ments. Motors are controlled with a custom made control
board which uses a programmable 16-bit DSP processor and
is provided of a CAN-bus interface for communication. The
actual position of the motors are provided by optical encoders
mounted on the motor shaft.

A force sensor [2] measures the forces that the actuation sys-
tem transmits to the neck through the tendons (see figure 3).
This sensor is positioned on the upper *vertebra’ of the neck.
For each tendon, force is measured indirectly by measuring
the deformation of a cantilever beam structure; this quantity
is proportional to the tendon tension, which is the measure
we want to control (F € R®). Semiconductor strain gages
(SSGs) are employed in a Wheatstone bridge configuration.
A mechanical stop limit is exploited to avoid the risk of dam-
aging the sensing structure. A custom made board provides
for the force sensor data acquisition. The board is based on a
16 bit DSP from Microchip (dsPIC30F4013) which samples
up to a maximum of 6 analog channels for strain gauges
sensors in a bridge configuration. In our specific case, the
sampling rate is 1 kHz.

Fig. 2. Sketch of the neck actuation system and kinematics. Each motor
pulls a tendon which passes trough a hole in the neck base. In this way
the effective tendon length can be reduced to bend the spring in different
directions. Three force sensors measure the tendon force using strain gages
(SG).

Fig. 3. Views of the neck force sensor from the top (left) and of the
disassembled platform (right).

III. CONTROL LAW

Typically, learning is performed off-line. In this case
training and ’exploitation’ are separated phases. On the
contrary, on-line learning approaches need these two phases
to be somehow merged. Anyway, in both cases, an efficient
strategy should be implemented to gather the necessary
sensory data to train the system (exploratory movements,
i.e. movements whose main aim is to explore the state
space). In the on-line learning scenario we would like to
integrate training and execution phases in a unique and
continuous behavior. To achieve this, these initial exploratory
movements should be driven by the same goal that will guide
the 'normal’ behavior after leaming, employing the same
rule to generate the movements. If we have a look at what
happens in humans, converging evidences show that even the
primitive neonatal behaviors are goal-directed actions rather
than reflexes [7], [8].

In our implementation, we designed a control law which is
used during the whole robot life, from the very beginning
(exploration) to the end (exploitation). The performances of
such a controller improve with time, as learning occurs.

We want to achieve the main task of canceling the difference
between the head position x and the desired value xg4.
Furthermore, we want x trajectories to be linear in the
operational space. As a secondary task we would like to
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regulate the tendon tension F' by minimizing F' — Fy; with
Fy = fmeetFum calling Fqp and Frpg, the maximum
and minimum acceptable tendon force values. Practically,
these two objectives can be obtained by solving the following
optimization problem:

1
min o || F(q) - Fal® s.t. x(q) —xq =0 (IL.1)
q

Following the approach of [9], we can tackle (III.1) setting
the desired motor velocities ¢ € R? as follows:

q=01+Cy (II1.2)

where
Cy = J(q) (x4 — x) (I11.3)
Co = (I - J (@) (@)K Jp(@)" (Fa—F) (14

where J(q) € R?*3 is the jacobian matrix which maps
from motor velocities to task velocities, JT(q) € R3*? is
its Moore-Penrose pseudo-inverse and Jr(q) € R3*3 is
the jacobian matrix which maps from motor velocities to
tendons tension velocities (i.e. tendons tension variations).
These matrices are the core of the learning controller; they
are initialized with random values and then updated dur-
ing the head movements, relying on sensory measurements
coming from tendon tension sensor, absolute position sensor
and motor encoders. The way in which these matrices are
initialized and then updated is the subject of section IV.
Then, K € R3*3 is a positive definite diagonal gain matrix,
I € R3*3 is the identity matrix, xq € R? is the vector
of desired positions and Fy; € R3 is the vector of desired
tendons tension.

The control law (III.2) is the so called resolved motion
rate control technique (see [9] for details and proof of
convergence) applied to our problem. .JT(q) allows to control
neck orientation following straight trajectories (x) in the task
space. The operator (I —.J(q).J(q)) projects the term which
minimize the tension error in the null space of the primary
task (i.e. the neck orientation).

If the measured tendons tensions are outside the admissible
range [Fpnin Finaz], the (ITL2) controller is switched off, and
a ’safety controller’ is activated:

q =G - Ferp = safe (II1.5)
F - F’maw f F Fmaw

Ferr = ( ) 1 ~ (I11.6)
(F - FmML) if F < Fm,in

where G € R3*? is a positive definite diagonal gain matrix.
As soon as the measured tendon tensions have come back
within the limits, the main controller (III.2) is switched
on again. This ’safety controller’ has the unique task of
regulating the tendons tensions to the desired values, but of
course it interferes with the main neck orientation task. We
will show in section V how the activation of this controller
is frequent in the beginning of learning and more and more
absent in the later stages.

IV. LEARNING STRATEGY

As previously stated, movements are generated by the

(II1.2) controller, in combination with the safe controller
(II1.5) when measured tendons tensions exceed the limits.
Target orientations x,; are provided to the robot every
20 seconds, choosen randomly within the (safe) physical
limits [—35° 35°], with uniform distribution. During the
motion data are gathered from absolute position sensor,
x € R2?, force sensor (tendons tensions), F' € R3, and
motor encoders, q € R3. What is needed for learning are
little variations of these quantities (displacements): Ax, AF
and Aq. The time window on which these variations are
computed is 50 ms, while the controller rate is 5 ms (200
Hz). Here follows the description of how J(q) is learned
from these sensory measurements; the same strategy applies
to the learning of Jr(q), and could be generalized to any
other non-linear matrix.
From a set of couples (Ax,Aq) we can estimate a local
Jacobian matrix J : Ax = J Aq with Least Squares (LS)
Regression. This .J is an approximation of J(q) : x = J(q)q
in a local region of the q space, whose accuracy depends
basically on the size and distribution of the aforementioned
set. In our implementation this estimation is performed on-
line, with an incremental LS algorithm adapted from [10].
Then, since we need to build a global Jacobian matrix J(q)
starting from local models J, we employed a Receptive
Field Neural Network (RFWR [11], an on-line machine-
learning tool) to map from q to the corresponding local
Jacobian matrix .J. Every time a new couple (Ax,Aq) is
computed (every 200 ms) the RFWR net is queried with the
current motor configuration q to obtain the correspondent
local model J. The obtained constant matrix is updated with
the couple (Ax, Aq) using incremental LS. The RFWR net
is then trained with the current motor configuration q as
input and the updated constant Jacobian matrix J as output.
The algorithm steps are summarized below:

1. collect new sample (Ax, Aq); at time i
2. retrieve Jo, = RFW R(q;)

3. update Jg, with (Ax, Aq); — JUP

4. train RFW R(q;, J2P)

Since the incremental LS algorithm requires a non-null ma-
trix to update, the RFWR net is initialized with an arbitrary
J, which becomes the output for every configuration gq
received as input (in the beginning, when the net is still
empty). The same holds for Jr.

V. RESULTS

In this section the performances of the learning con-
troller are evaluated and discussed. The discriminants are the
steady-state orientation error (pitch and roll position errors)
and the slope of its convergence to zero, the linearity of the
trajectories in the operational (pitch/roll) space', the amount
of tension measured on the tendons. In all the tests reported

ITrajectories would be perfectly linear if the Jacobian J(q) were exactly
known.
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Pitch [°]

Fig. 4. Task space trajectories (blue line) connecting the desired via
points (in red). The green dots are the points spanned during learning.
This performance was achieved after 2 hours and 20 minutes of training.
The linearity of the trajectories proves the convergence of the estimated
Jacobian.

Pitch [°]

Roll [

o 20 40 60 80 100 120 140 160 180
Time [s]

Fig. 5. Roll and pitch step response. Desired and actual positions relative
to the trajectories of figure 4 are shown.

hereinafter, the same sequence of 13 target positions xq
is provided to the robot, one different position every 20
seconds: these positions have been chosen arbitrarily to cover
homogeneously the task (roll/pitch) space. As previously
explained, the movements during which training data are
gathered and on-line learning is performed are generated
providing random x4 to the robot.

The first set of graphs (figures 4, 5 and 6) shows the best
performances we achieved on the system, after about 2 hours
and 20 minutes of training (170000 samples of the form
(Aq, Ax, AF) gathered).

The steady-state RMSE (Root Mean Squared Error) com-
puted over the sequence of movements is 0.020° for the
roll rotation and 0.018° for the pitch rotation. Figure 5 also
shows the exponential convergence of the position error to
zero. Furthermore, the tendons tensions are kept within the
limits by the controller C5, which acts in the null-space of
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Fig. 6. Activations of the different controllers and tension measurements,
for every q. On the first row the overall controller output, on the second row
the C'1 component. The third row shows the contribution of the controller
C. When x — xq = 0, The contribution of C'2 converges to zero, which
proves that the first order conditions of the secondary task are satisfied. On
the fourth row the ’safety controller’ activation is shown, while on the fifth
row tension measurements are reported. The effect of the secondary task
controller C'2, guarantees that tendon tension are within the limits F,,y, <
F < Fmaz-

the primary task.

To underline the importance of the controller Cy (IIL.4), we
tested the system controlling just the primary task, setting
C5 = 0. Figures 7, 8 and 9 describe the behavior of the
system using such a controller. We can notice from figure
9 that without the contribution of C the ’safety controller’
Csafe is often active; the activation of this controller af-
fects the performances of the main controller, sometimes
preventing the system from cancelling the position error. The
result is that with such a controller the system is not able to
consistently cancel the position error, nor to regulate tendons
tensions.

Figures 10, 11 and 12 show the improvements of the con-
troller during learning. In the left figures the system has
been trained with just 20000 samples (about 15 minutes),
and it is clear that the performances are far from being
acceptable. We will not quantify the errors in this case,
since they are too big. In the middle figures, on the contrary,
the system is already able to reach the desired orientations
X4, but the error convergence is not always perfect and
the task space trajectories are not so linear. The steady-
state RMSE computed over the sequence of movement is
0.064° for the roll rotation and 0.020° for the pitch rotation.
Furthermore, the tendons tensions are not regulated properly:

862



Pitch [°]

Fig. 7. Task space trajectories without tendon tensions control. With the
only controller C' tendon tension arise over the force limits, thus activating
the controller Csqfc. In this way, the convergence to the target positions
Xq is not guaranteed.
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Fig. 8. Desired and actual roll and pitch positions without the activation of
tendon tensions error projection in the null space of J((q)) (the controller
C5 is not active). The convergence to the target positions is not guaranteed,
because of the activation of the controller Cyq fe.

the ’safety controller’ is activated twice, and there are some
high-frequency oscillations. In the right figures the results
obtained with the best controller (the one already discussed
in the beginning of the section) are reported.

Finally, something can be added concerning the mere task
of estimating J(q) and Jr(q).

Figure 13 shows the trend of the coefficients of J(q),
where q = 0. Remarkably, these coefficients, initialized
arbitrarily as stated in section IV, seem to converge to
specific values ( J(0) = [0.2;—0.1;—0.1;0.0; 0.2; —0.2] ).
Furthermore, these values turn out to be reasonable if we
analyze the structure of the neck and the considered motor
configuration (q = 0, which means also x = (). When the
head is straight (i.e. x = 0), to bend the neck forward the
system should shorten the front tendon of a certain length
(let’s say L;) and lengthen the two tendons in the back

q2
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Fig. 9. Activations of the different controllers and tension measurements,
for every q, without tendon tensions control. Controller Csq ¢, is often
active, because the controller of the secondary task is not present.

e

Fig. 10. Task space trajectories at three progressive learning stages (20000,
100000, 170000 training samples, from left to right). Left figure show that
most of the points are not reached because the Jacobian estimation is not
accurate enough. Central figure show that the estimation of the Jacobians is
converging. Right figure show that the Jacobian evaluation has converged to
a good estimation of the real Jacobian, which results in linear trajectories
in the Cartesian space (see figure 4).

of half that length (L; - sin(120°), being the three tendons
separated 120° apart). This is consistent with the first row of
J(0), [0.2; —0.1; —0.1]. On the other hand, to bend the neck
laterally the front tendon do not play any role, while the
other two tendons must be displaced of the same quantity,
but in opposite direction; this is consistent with the second
row of J(0), [0.0;0.2; —0.2]. For a more precise description
about this geometric model refer to [2].

Regarding Jr(q), some additional experiments have been
performed in order to test the quality of its estimation.
First the system has been driven to a desired position x4
using the controller Cy (II1.3) alone; the absence of the
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Fig. 11. Roll and pitch desired and actual positions at three progressive
learning stages (20000, 100000, 170000 training samples, from top to
bottom). Top figures show that most of the target positions are not reached
because the Jacobian estimation is not accurate enough. Central figures show
that the estimation of the Jacobians is converging. Steady state errors are
limited. Bottom figures show that the Jacobian evaluation has converged to
a good estimation of the real Jacobian. Here target positions xq are reached.
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Fig. 12. Activations of the ’safety controller’ and measured tendons ten-

sions at three progressive learning stages (20000, 100000, 170000 training
samples, from top to bottom). The first two rows show that when learned
Jacobian is not accurate, forces arise over the limits, thus activating the
'safety controller’ Csqf.. The more learning improves the estimation, the
more the ’safety controller’ becomes unnecessary.

o3| 0| 0|

Fig. 13. Trend of the coefficients of J(q) in q = 0 during learning. They
converge to particular values that turned out to be quite reasonable.
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Fig. 14. Top figures: contribution of controller C> for every joint. Bottom
figures: force errors F' — F; on every tendon.

C5 contribution causes the raising of the tendon tensions
and consequentely of the force error F' — Fj;. Then the
controller C'5 was activated, with the effect of a sudden
reduction of the norm of the force error, as shown in
figure 15. Since Cy = 0 at steady-state, the system is in
a configuration which satisfies the first order condition of
the primary problem (IIL.1). Figures 14 and 15 show that
when Cs is active the error F/(q) — Fy decreases, while
maintaining the task x — x4 = 0. This means that J7% is
a good approximation of the real Jacobian %
precisely, that JL(F(q) — Fy) is a descent direction for the
secondary function ||F(q) — Fy]|.

In an additional experiment, the system is driven toward an
arbitrary x4 using the controller (II.2). When at steady-
state, the desired tendon force Fy is changed periodically.
The experiment is shown in figures 16 and 17. As expected,
steps of the desired tendon force result in steps of the actual
forces in the same direction. Of course, since the desired
force is the same for all the tendons, and the primary task
is the position control of the head (see figure 17), steady
state errors are present in the response of the system. This
experiment demonstrates that the controller Cy is able to
regulate tendon tensions following Fy, without interfering
with the main orientation task.

, Oor, more

VI. CONCLUSIONS

This paper proposes a machine-learning approach for the
control of a human-like robotic neck, without any need of a-
priori modeling. The neck mechanical structure is innovative
and highly biologically inspired. The complexity of the
system makes it difficult to build an accurate kinematic
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Fig. 15. Top figure: norm of the force errors. Bottom figures: pitch and
roll desired and actual positions. The activation of the controller C reduces
the norm of the force errors, without affecting the main positioning task, at
steady-state.

Fig. 16. Top figures: contribution of controller C> for every joint. Bottom
figures: actual (green solid line) and desired (blue dashed line) forces on
every tendon. Step variations of the desired tendon forces are given to
evaluate the performances of the controller C'a.
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Fig. 17. Desired and actual pitch and roll positions. The step variations of
desired forces does not influence the pitch and roll positions at steady-state.

model for its control. Conversely, the presence of a rich
sensory system and the peculiarity of the structure has
suggested the implementation of a controller based on on-
line sensori-motor learning. Data gathered from absolute
position sensor, tendon tension sensors and motor encoders
have been used to learn a model of the system Jacobian,
J(q), useful to precisely control the neck in the operational
space (pitch and roll rotations) generating linear trajectories;
furthermore, a tensions-motors Jacobian, Jr(q) has been
learned in the same way, and employed to bound the tendons
tensions by acting in the null-space of the system Jacobian.
Learning occurs on-line, in a continuous and autonomous
way, without any separation between the training phase and
the execution phase. The controller performances have been
analyzed on the basis of the steady-state orientation error, the
profile of error convergence, the linearity of the operational
space trajectories and the regulation of the tendons tensions.
Results show that after some training (controlled movements
toward randomly distributed targets x4) good estimations
of J(q) and Jr(q) can be learned and efficiently used
for control. The proposed controller allows to achieve a
steady-state RMSE of 0.020° for the roll rotation and 0.018°
for the pitch rotation, with exponential error convergence;
trajectories in the task (roll/pitch) space are almost linear.
Moreover, tendons tensions are kept bounded within the
required limits.
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