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Abstract—1In this paper, we propose an optimization-based
framework for path planning for multiple robots in presence
of obstacles. The objective is to find multiple fixed length paths
for multiple robots that satisfy the following constraints: (i)
bounded curvature, (ii) obstacle avoidance, (iii) and collision
avoidance. First, we formulate a relaxation of the path planning
problem using polygonal approximations. We show that path
planning problem for multiple robots under various constraints
and missions, such as curvature and obstacle avoidance con-
straints as well as rendezvous and maximal total area coverage,
can be cast as a nonconvex optimization problem. Then,
we propose an alternative dual formulation that results in
no duality gap. We show that the alternative dual function
can be interpreted as minimum potential energy of a multi-
particle system with discontinuous spring-like forces. Finally,
we show that using the proposed duality-based framework, an
approximation of the minimal length path planning problem
(also known as Dubins’ problem) in presence of obstacles can
be solved efficiently using primal-dual interior-point methods.

I. INTRODUCTION

The path planning problem for a robot in an environment
with obstacles has been an active research area in robotics
and control communities in past two decades [1], [2]. The
major trends have been focused on nonholonomic kinematic
path planning problems. The primary challenge to plan a
collision-free path for robots is nonholonomic constrains that
limit steering and locomotion. This introduces restrictions
on the way they are able to change directions. The Dubins’
classical problem [3] has been the core of many of research
results in this area where it explains how to characterize
shortest bounded-curvature paths for a robot with given
initial and terminal points and tangents. There are several
results related to shortest paths among obstacles without
curvature constraints [4]-[9]. Canny and Reif showed that
the problem, among general polyhedral obstacles, is NP-
hard in the three-dimensional Euclidean space [10]. These
results partially motivated researchers to develop various ap-
proximate methods to solve the path planning problem [11],
[12], [15], [16]. There are several polynomial algorithms
for the two-dimensional case. The two-dimensional shortest
path problem has been formulated mainly in two different
settings: semi-algebraic obstacles [4], [13] and polygonal
obstacles [6], [7], [14]. Nevertheless, the existing algorithms
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are incomplete in the sense that they may not provide a
solution even if one exists.

In this paper, our goal is to propose a scalable
optimization-based framework for solving the bounded-
curvature path planning problem for multiple robots with
multiple missions in presence of moving obstacles. We
assume that motion trajectories of obstacles are known.
First, we consider the path planning problem for a single
robot. Then, we extend our results to handle multi-robot
path planning problems. Our approach is based on polygonal
approximation of a continuous curve in the plane [27]. A path
connecting the initial and final positions of a robot can be
approximated by finitely many waypoints. This approxima-
tion can be arbitrarily improved by increasing the number
of waypoints. In this setting, we can relax the bounded-
curvature and collision-free constraints by verifying the
constraints only at these waypoints. This relaxation results
in a finite-dimensional formulation of the path planning
problem as a nonconvex feasibility problem. Every feasible
solution to the relaxed problem is an approximate bounded-
curvature and collision-free path for the robot. Moreover,
we show that various task planning for multiple robots such
as rendezvous and maximal area coverage can be cast as
nonconvex optimization problems.

The difficulty of solving such nonconvex feasibility prob-
lems is twofold. First, since there are equality constraints
in these formulations, the problem is not directly amenable
to standard optimization algorithms such as interior-point
method. Second, even if we have an efficient algorithm to
handle equality constraints, finding a feasible initial point
is not easy. Indeed, any feasible solution is a solution of
the path planning problem and finding a feasible initial is
equivalent to solving the path planning problem. Therefore,
nonconvex feasibility optimization problems arising in vari-
ous task planning problems for multiple robots are inherently
difficult and cannot be tackled directly.

On the other hand, a large class of nonconvex optimization
problems can be efficiently solved by primal-dual interior-
point methods only if one can find a dual formulation that
has no duality gap [17]-[26]. Duality provides a theoretical
foundation for many optimization algorithms to directly
solve optimization problems as well as to obtain a lower
bounds on the optimal value of the problem. However,
for noncovex optimization problems the traditional duality
theory leads to duality gaps and that most of the primal-dual
algorithms cannot be directly applied to solve the problem. In
Section III, we propose an alternative duality formulation that
results in no duality gap for a general class of optimization
problems. The main feature of the proposed algorithm (see
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Table 1) is that it initiates the search for an optimal solution
from small penalties and increases them incrementally until
the duality gap is zero.

In Section IV, we show that the alternative dual function
has an interesting dynamical system interpretation. We show
that the value of the alternative dual function can be viewed
as minimum of the potential energy of all spring-like forces
in a multi-particle system. Through this connection, we may
solve the alternative dual problem by using the method
developed in [27]. It is shown that each waypoint in the
optimization problem can be treated as a moving particle
in the plane. One can define interaction spring-like forces
between the particles such that: (i) the set of equilibria of
the system contains all feasible solutions of the optimization
problem, and (ii) the corresponding multi-particle system is
asymptotically stable. In [27], it is shown that by applying
some specific type of discontinuous spring-like forces, the
net force on each particle is equal to zero if and only if these
particles are representing a feasible path. In other words, for
every initial condition the trajectory of the system always
converges to a feasible path for the robot.

In Section V, we show that minimal length path planning
problem (also known as Dubins’ problem) in presence of
obstacles (possibly nonconvex) can be formulated in alter-
native duality framework. We show that the duality gap for
minimal path planning problem is zero and that it can be
solved efficiently using tools developed in Section III.

II. TASK PLANNING FOR MULTIPLE VEHICLES

In this section, we show that various task planning prob-
lems for multiple robots can be approximated by polygonal
curves and formulated as nonconvex optimization problems.
Let denote ||.|| to be the 2—dimensional Euclidean norm and
I, = {1,...,n} and D(c,7) = {x | ||z — ¢|]| < r}. Our
approach is based on discrete approximation of a continuous
curve of length L with maximum curvature Kp.x using
finite number of vertices. Consider a polygonal curve ¥ =
Tox1..-Z, represented by its ordered vertices xg, 21, ..., T, €
R? where T;T;11 is the line segment connecting x; to ;1.
Under some mild assumptions, for a given error bound € > 0,
one can always find points {zg,x1,...,2,}, for a large
number n > 0, such that

|[Length(x) — L] < e, (D

where
n

Length(x) = Z |zi — @il
i=1
Without loss of generality, we may assume that all points z;
are equidistant. Therefore, it follows that

L
l= |z —ziq|| = o 2)

for all ¢+ € Z,,. We can impose curvature constraint on Y
by imposing some norm constraints on the vertices [28]. If
we assume that [ < ﬁ, then we can impose the discrete
curvature constraint x; < Kmax through the following norm

p3 pn=2D

Fig. 1: Approximation of a smooth curve y by an equidistant
polygonal curve X = ToZ1...Zp,-

pp=A

constraints on the vertices

|lzic1 — ig1|| > 1WV/4 — K202 =1 3)

for all ¢ € Z,,_;. In the following subsections, we show
that one can formulate various task planning problems for
multiple robots as feasibility optimization problems.

A. Single-Vehicle Path Planning in Presence of Obstacles

The goal of this subsection is to find a fixed-length
bounded curvature trajectory for a robot with given initial
and final configurations in an environment with obstacles.
We assume that the Dubins robot is traveling with a constant
speed V and that can traverse a distance L in % time
unites. Suppose that there are M moving obstacle with
known motion patterns in the environments. At any time
instant ¢, each obstacle is assumed to be represented by a
disk D(c(t),7;(1)) = {o | v — ()] < r;(t)}. We
also assume that these disks are not overlapping for all
time. Let Kmax > 0 be the maximum allowable curvature
and A, B € R? the initial and final points. Then the path
planning problem consists of finding a curve x : [0, T] — R?
(parameterized by time) such that

i x(0)=A and x(T)=B.
(i) (t) < Kmax for all ¢ € [0,T].
t)

K
(i)  x(t) N D(¢;(t),r;(t)) = 0 holds for all ¢t € [0,T]
and j € I

Note that x(t) is the curve curvature at time ¢. One can see
that x is a fixed length curve of length L = VT'. We refer to
the third condition as the obstacle avoidance constraint. The
second condition guarantees a bounded curvature curve. An
arbitrarily fine approximation of the path planning problem
can be obtained by using polygonal approximation of Y.
The obstacle avoidance constraint implies to find waypoints
Tg, ..., such that

Vi€L,, je€Iy |zi—ci(ts)ll >r;i(t:) 4

in which ¢; is the time instant at which the robot visits
waypoint z;. By incorporating obstacle avoidance constraints
(4) and curvature constraints (3), the path planning can be
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formulated as the following optimization problem

min 0 %)
stject to: zg=A, z,=D0B

lxi — x| =1, 1 €1,

lzic1 — zigall = m, 1€,

[z = ¢; ()| = r;(ta),

where x = (zf, 2T, .. ;2I)T and | and 7 are defined

in (2) and (3). It is straightforward to verify that (5) is a
nonconvex optimization problem. In the following, we extend
this formulation for multiple robots.

1€Ln_1, J €In.

B. Multi-Vehicle Path Planning in Presence of Obstacles

A similar formulation can be easily extended to multiple
robots. We assume that there are /N robots with constant
speeds Vj traveling distances Lj for all £ € Zy. The
initial and final points for each robot is given and are
denoted, respectively, by Ay and By for all k € ZIy.
The corresponding waypoints for robot k is represented by
(z§, 2%, ...,z ) where ny is the number of waypoints for
robot k. For each robot, the curvature constraint can be
guaranteed by imposing constraint (3) on the corresponding
waypoints. In order to avoid collision between these robots,
we must guarantee that any two robots , say p and g, are not
going to arrive at a waypoint simultaneously. In other words,
if there exist waypoints zfp and z?q for which

Ly
npVp

[I .
- m 1q § €time (6)
then the following constraint has to be imposed on the
corresponding waypoints

||-CCZD - x?q“ 2 €Epositions (7)

for some time-error €jme > 0 and position-error €posion >
0 due to discretization. All indices satisfying (6) can be
calculated before hand. We denote the index set of such pairs
of waypoints as ZD. - and x¥ = (afT, 24T, ... k)T
Therefore, the path planning problem for multiple robots in
the presence of moving obstacles can be formulated as the
following nonconvex feasibility problem

min 0 (8)

x1 .. xN

subject to: xlg = A, 2F =B,

Nk
laf —af || = I, i€T,,
gy — @il > s i €Tny 1
g = ¢t > ri(tf), i€ Tnpo1, 5 E€Tu
Vkeln
Hfffp - xgq | > eposiion; (ipsiq) € Tinttision
Vpq€In

As one can see, problem (8) contains [N copies of (5) for
each robots plus the collision avoidance constraints among
the robots. This is also a nonconvex feasibility problem.

C. Multi-Vehicle Path Planning with Rendezvous

We assume that there are /N robots traveling with con-
stant speeds that should rendezvous at a given time 0 <
Trendezvous < 1. For each robot k, we denote the index of the
waypoint corresponding to the rendezvous time Tiendezvous DY
ix. These points should satisfy the following inequality

Ly
g Vi

ik - Ti'endezvous S €time (9)

for all k € Zn and for some time-error €. > 0 due to
discretization. For each robot, the corresponding index satis-
fying (9) can be calculated. Then the rendezvous condition
is that at time Tiengezvous all TOboOts has to be in a €position
neighborhood of other robots, i.e.,

(10)

P q
||x¢p - xiq || < €position

for all p,q € Zy. Therefore, the path planning problem
for multiple robots with rendezvous can be formulated as
a nonconvex feasibility problem in the form of (8) in which
the collision avoidance constraints are replaced with the
rendezvous constraints (10).

D. Path Planning for Multiple Vehicles with Maximal Area
Coverage

The goal is to generate trajectories for multiple robots that
maximize coverage while satisfying hard constraints such
as collision avoidance and specifications on initial and final
positions. We assume that each robot is equipped with a
sensor which has a fixed sensing radius. Since trajectories
are fixed length, one way to maximize the overall coverage
is to minimize the intersection of field of view of waypoints.

We assume that J;f, the ™ waypoint of robot k, has field
of view D(z%,7F). In order to maximize the total coverage,
we minimize the intersection of all discs corresponding to
waypoints from different robots by imposing the following
constraints

o7 = a5l = 7 + 7]

(an

for all p,q € In,i €1y, and j €T, .

Therefore, the path planning problem for multiple robots
with maximal area coverage can be cast as a nonconvex
feasibility problem of the form (8) with additional coverage
maximization constraints (11).

The difficulty of solving the above mentioned feasibility
problems is twofold. First, since there are equality constraints
in all the formulations, these problems are not directly
amenable to an interior-point method. Second, even if we
have an efficient algorithm to handle equality constraints,
finding a feasible initial point is not easy. Indeed, any
feasible solution is a solution of the path planning problem
and finding a feasible initial is equivalent to solving (15).
Therefore, nonconvex feasibility optimization problems aris-
ing in various task planning problems for multiple robots
are inherently difficult and cannot be tackled directly. In
the following, we propose an alternative dual formulation
that helps to solve problem this class of problems as an
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unconstrained problem by using standard optimization tools
such primal-dual interior-point methods.

IIT. ALTERNATIVE DUALITY FOR GENERAL NONCONVEX
PROBLEMS

Duality provides a theoretical foundation for many opti-
mization algorithms to directly solve optimization problems
as well as to obtain a lower bound on the optimal value of
the problem. However, for noncovex optimization problems
the traditional duality theory leads to duality gaps and that
most of the primal-dual algorithms cannot be directly applied
to solve the problem. In this section, we introduce the
alternative duality formulation for the following class of
optimization problems that results in no duality gap,

min f(z)
subject to: h(z) =0,
g(z) <0
in which X' is a compact subset of R, f : R* — R a
differentiable function, and h(z) = (hi(2),...,hm(z))T
and g(z) = (g1(x), ..., g-(x))T. We assume that h; : R" —
R and g; : R®™ — R are continuous functions on X, but not

necessarily differentiable. Let define the set of feasible points
of (12) as follows F := {x € X | h(z) =0, g(z) < 0}.

12)

Definition 1: The alternative dual function for the primal
problem (12) is defined as

A, A) = min O(z, p, A) (13)

where

Oz, p, A) = +Z pi (@) + > N gf (@)
Jj=1

The alternative dual problem can be cast as

d* = A(p, N). 14

max Ay, A) (14)
We assume that (12) has a unique global minimizer denoted
by z*. The corresponding minimum value is denoted by p*,

p"=f(a") = gggf(x)-

In the following theorem, we show that the duality gap
between a primal problem (12) and its corresponding alter-
native dual problem (18) is zero, i.e., d* = p*.

Theorem 1: Suppose that x* is the unique global mini-
mizer of (12). Then, there exist finite vectors p* > 0 and
A* > 0 such that

f(z*) = mi;(l@(x,u,)\) forall p=p*, \= M\
EAS
Moreover, the duality gap is zero, i.e., p* = d*.
Proof: We refer to [27] for a proof. [ |

In general, the primal problem (12) can be a nonconvex
problem. Theorem 1 implies that for large enough dual
parameters p; and \; solving the unconstraint optimization
problem (13) results in finding the unique global minimum

of the primal problem (12). Using this result, we can develop
a suitable primal-dual algorithm that is amenable to interior-
point methods.

Function Alternative-Duality-Search(P, x, ™2 A™Max)
w—0; A0
until g > p for all h;(x ) # 0,
and  \; > AP for all g;(x) £ 0,
or a global minimum of P is found;
for:=1,...,m
if h;(x) #0 and p; < p™®* then increase ji;;
for j=1,..
if g;(x) ;( () and Aj < AP then increase \j;
Solve the dual problem
Set x «— arg minye x O(x, i, \);
repeat;
return global minimum of P if found;

TABLE I: Implementation of the Alternative Duality Method

The main feature of the proposed algorithm in Table I
is that it initiates the search for an optimal solution from
small penalties and increases them incrementally until the
duality gap is zero. In the following section, we show that
there is an interesting connection between the alternative dual
formulation and elastic multi-particle systems [28].

IV. A DYNAMICAL SYSTEM INTERPRETATION OF
ALTERNATIVE DUALITY

In the Section II, we showed that various task planning
problems for multiple robots can be formulated as a non-
convex feasibility problem with different types of norm con-
straints on the waypoints. For the sake of simplicity, we focus
our attention on the following single-robot path planning
problem in presence of an obstacle which is characterized
as a disk D(c, r),

rr;in 0 (15)
subject to: x9 = A, x, =18

le; — a1l =1, 1€1,

lzic1 — zigall = m, i1 €2y 1

lx; —¢|| > 1€Tph_1

where x = (zd, 27, ... 21T and [ and 7 are defined in (2)
and (3). The following analysis can be directly extended to
the other path planning problems introduced in subsections
II-B, II-C, and II-D. In the following, we show that the
alternative dual formulation has an interesting dynamical
system interpretation. We show that the dual alternative
function for (15) can be interpreted as the total potential
energy of an elastic multi-particle system with discontinuous
spring-like forces. We consider the alternative dual function
for (15)

A(p, A, v) =min O(x, g, A, ) (16)
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where

o — iall -1
1
-1

@(X,,LL,)\,’}/) = Z 223
>

A max 0,5 = iy — i}

+ 3 i max {07 — ||z — ]}
i=1
A

<
Il
—_

S
|

a7

in which zg = and z, = B, and for all u =
(,ul, C ,/LH)T e R*, \ = ()\1, ey An_l)T S Rnil, and
v=(71,..- ,’yn_l)T € R*~1. Moreover, the alternative dual
problem can be defined as follows
max A(u, A7) (18)
subject to:  p =0, Ay >=0.

The waypoints z; € R? can be viewed as spatial position of
point mass particles moving on the plane. Let m; be the mass
of particle ¢ with position z;. We can apply a net force F; to
control the dynamics of the particle according to Newton’s
second law

where ¢ = 0,1,...,n. We define discontinuous spring-like
forces f;; among the particles as follows. For each ¢, the
spring-like force f;(; 1) is applied to impose the equidistance
constraints

|77 if z>1
- it z<l

the spring-like force f(;_1)(;+1) is employed to impose the
curvature constraint on the waypoints

0 if
f(i—l)(i+1)(z) = {

-\ if
and the spring-like force f;» is defined to impose the
obstacle avoidance constraint

fio(z) = { ) i

—Yi if
Finally, one can impose the following hard constraints

z>n

SIOCI)

z>r

L <r (22)

ro=A and z,=1B

on particles 0 and n by assuming that mg, m,, are arbitrarily
large. In other words, two heavy masses are concentrated at
points A and B and that their positions are fixed.

It is straightforward to verify that the alternative dual
function (16) is indeed equal to the total potential energy
of a multi-particle system with spring-like forces (20)-(22),
ie.,

O(x, i, \, ) = Zwi(ifl) ([l; — @i-1]]) (23)
i=1
n—1 n—1
+> Wi (lzios = zigall) + Y Wio ([l — cll)
=1 =1

where o
W;j(a) :/ fij(z)dz

and oy is a zero of spring-like function f;;.

The right hand of (23) is the total potential energy of all
springs in the multi-particle system. Thus, the dual function
(16) is the minimum potential energy of all springs which
is parameterized by the magnitude of spring-like forces u,
A, and . In [28], it is shown that if the magnitude of the
spring-like forces are chosen appropriately, then the set of all
stable equilibria of the dynamical systems (19) is equal to
the set of all feasible solutions of nonconvex optimization
problem (15). In the following theorem, e;; = Ti—

llzi—=z;l”
eo = ﬁ, and all spring-like forces corresponding to
undefined indices are assumed to be zero.

Theorem 2: Consider the multi-particle dynamical system
(19) with net force

Fi= favi(llzi-1 — zill) eg—1y +
ficiny (Iwi = wiall) €sqigr) + Fi—2)i (lrice — zill)e—2y
+ fii+2) (| — ival)€iit2) + fio (i — c|)eio — v

where the spring-like forces are discontinuous and defined
as in (20)-(22) and v > 0 is a constant. Then for almost
all initial conditions, the trajectories of the multi-particle
dynamical system (19) asymptotically converge to an equi-
librium. Furthermore, a feasible solution of problem (15) is a
locally asymptotically stable equilibrium of the multi-particle
dynamical system (19) if all the corresponding spring-like
forces are equal to zero.

Proof: We refer to [27] for a proof. |

The importance of the result of Theorem 2 is that it
provides a reliable approximation method to solve feasibility
problem (15). We refer to [27] for further discussions on a
nonsmooth dynamical system approach to solve (15).

V. MINIMAL LENGTH PATH PLANNING IN PRESENCE OF
OBSTACLES

In this section, we extend our duality-based framework to
find an approximate solution for a minimal length path plan-
ning problem (also known as Dubins’ problem) in presence
of obstacles (possibly nonconvex). For simplicity of nota-
tions, we explain the problem for a single robot in presence
of an obstacle. The extension of the problem formulation
to multiple robots and obstacles under various missions is
straightforward. Our objective is to find a polygonal curve
X = ToT1..-T, with minimal length such that x satisfies: (1)
rg = A and x,, = B, (2) the obstacle avoidance constraints,
(3) and the curvature constraints. We assume that the obstacle
is defined as O = {z € R? ‘ g(z) > 0. We assume
that g(A) < 0 and g(B) < 0. We assume that O is a
bounded set, but it can be a nonconvex set. The minimal
length path planning in presence of obstacle O can be cast
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as the following optimization problem:

n
pt = m)in Z llw; — 251 (24)
i=1
subject to: ||wi—1 — i1l = n, i E€Th—1
g(x;) <0, 1€ Tn 1

where o = A, x, = B, and 7 is defined in (3). We can also
impose initial and terminal tangents by fixing the position of
waypoints ;1 = C and z,_; = D where CA and BD
are initial and final desired tangents. The alternative dual
function for (24) is given by

A(N,y) = min O(x,A,7) (25)
where
G(Xa Aafy) = Z ||1'2 - xi—l“
i=1

n—1

+ 37 x max {0, — a1 — i}

3 .
!
_

+ Yi max {07 Q(UCZ)} (26)

1

.
Il

where zo = A, x, = B, and A,y € R”~!. The alternative
dual problem can be defined as follows

d* = maxA(\,7)

subject to:

27
A=0, v=0

According to Theorem 1, for large enough dual parameters
the duality gap between the minimal length path planning
problem (24) and its corresponding dual problem (27) is zero.

VI. CONCLUSION

We proposed a framework to obtain an arbitrarily fine
relaxation of a path planning problem for multiple robots as
a nonconvex feasibility problem. We showed that rendezvous
and maximal area coverage problems for multiple robots can
also be cast as nonconvex feasibility problems using this
framework. Then, we proposed an alternative dual formula-
tion with no duality gap. This new dual formulation enables
us to tackle the resulting nonconvex optimization problems
by primal-dual interior point algorithms. We also showed that
the Dubins’ problem can be cast as a nonconvex optimization
problem and can be solved efficiently by using alternative
dual formulation. Our preliminary studies shows that the
alternative duality requires to incur smaller penalties in order
to achieve zero duality gap. This is practically important as
smaller function values results in well-conditioned primal-
dual algorithms.
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