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Abstract— Building upon previous work that demonstrates
the effectiveness of WiFi localization information per se, in
this paper we contribute a mobile robot that autonomously
navigates in indoor environments using WiFi sensory data.
We model the world as a WiFi signature map with geometric
constraints and introduce a continuous perceptual model of
the environment generated from the discrete graph-based WiFi
signal strength sampling. We contribute our WiFi localization
algorithm which continuously uses the perceptual model to
update the robot location in conjunction with its odometry data.
We then briefly introduce a navigation approach that robustly
uses the WiFi location estimates. We present the results of
our exhaustive tests of the WiFi localization independently and
in conjunction with the navigation of our custom-built mobile
robot in extensive long autonomous runs.

I. INTRODUCTION

Successful localization and navigation is of utmost im-
portance for task-driven indoor mobile robots. In the past,
a variety of approaches to localization have been explored,
including using sonar [1], laser scanners [2] and vision [3].

With the increasing prevalence of wireless LAN, “WiFi,”
considerable work has been done on using signal strength
measurements from WiFi access points for localization.
Approaches based on wireless signal strength propagation
models have been proposed [4], but due to the complex inter-
actions of WiFi signals in particular in indoor environments,
data-driven signal map based methods have been found more
suitable [5]. Wifi-based localization has been shown to be
successful in different scenarios [6], [7], [8], [9] in terms
of its ability to support humans or robots to identify their
locations.

Our work is motivated by our indoor visitor companion
robot, CoBot (Fig. 1). CoBot is a custom built robot1 with
a four-wheel omni-directional drive.

We first present a WiFi signal strength based localization
algorithm that uses a parametric graph based representation
of the environment, similar to [8]. In our case, the graph
is composed of the discrete points for which we collect
the WiFi signal strengths, and the perceptual model as well
as the location hypotheses are constrained to lie strictly on
the graph. Our WiFi localization algorithm uses odometry
data and a particle filter to represent the location belief,
and proceeds in four phases to compute the new particles,

1Thanks to Mike Licitra, who designed and built the robot.

Fig. 1. CoBot, our mobile robot (aimed at being a visitor companion).

namely to predict based on the robot’s own actions, to
update based on the WiFi-sensed data, to constrain based
on physical constraints of the domain, and to resample
to account for sensory and model mismatches. We then
contribute a navigation algorithm that utilizes the location
and uncertainty estimates of our WiFi localization algorithm
to robustly navigate a robot autonomously in an indoor
environment.

We extensively evaluate our approach in one floor of a
university building with a series of interconnected hallways.
The resulting CoBot is able to localize itself accurately, avoid
static and dynamic obstacles, and navigate to any arbitrary
location on the map from any other arbitrary location. This
we show with experimental results from successful long
autonomous runs of the robot.

In summary, the contributions of this paper include:
• Discretely sampled WiFi - graph representation of the

robot environment
• Continuous perceptual model of the location of the robot

generated from the discrete samples
• WiFi localization algorithm using this perceptual model

and constraining the location hypotheses to the graph
• Navigation algorithm that uses location and uncertainty

estimates of the localization algorithm
• Extensive results of the combined approach tested on

an actual robot
The paper is organized as follows: Section II presents the

map representation and acquisition. Section III describes the
WiFi-based localization algorithm and corresponding exper-
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imental evaluations. Section IV introduces the overall nav-
igation approach. We then present our empirical evaluation
of the combined localization and navigation in Section V,
and Section VI concludes the paper.

II. MAP DEFINITION AND THE LEARNING PHASE

A. Map Definition

We denote the Map of the building as M, with M =
〈V,E,A,M,D〉 where V is a set of vertices, E a set of
edges to connect them, and A the set of WiFi access points
in the environment. M and D are matrices representing the
WiFi signal strength means and standard deviations across
the map. Each vertex v ∈ V corresponds to a unique
location in the building, and is defined by v = 〈l〉. Here
l = (x, y) denotes the cartesian coordinates of the vertex.
Edges e = 〈va, vb,Γ〉, e ∈ E indicate that there is a navigable
path between vertices va and vb. For every edge, the width
of the corridor in that section and the length of the edge are
represented as Γ = 〈width, length〉. Element Mij of M is
the mean WiFi signal strength (in dBm) of access point aj
as measured from vertex vi. Similarly, element Dij of D is
the observed standard deviation of the WiFi signal strength
of access point aj as measured from vertex vi.

B. Learning Phase: Data Collection and Offline Processing

Matrices M and D are enumerated during the “Learning
Phase”, which needs to be performed once. The Learning
Phase starts with a manual definition of a “skeleton graph”
of the map, where the longest straight line segments in the
building are defined as the edges of the skeleton graph. Once
this is done, a path is planned to traverse every edge of
the skeleton graph. The robot then follows this path, and
along each edge, it stops at regularly inter-spaced sample
locations of a user-defined maximum spacing, and defines a
new vertex. Thus, each edge of the skeleton graph is split up
into multiple smaller edges. At each sample location (which
is also a vertex in the newly generated complete graph),
the robot collects WiFi signal strength readings for a pre-
determined (and user-defined) duration. During this process,
the robot uses odometry alone for estimating its localization,
and errors in localization are corrected manually using a
graphical user interface. Thus, the skeleton graph is used
to generate the complete graph, and the matrices M and D
are populated.

III. WIFI LOCALIZATION

Our WiFi Localization algorithm uses Monte Carlo Lo-
calization [10] with Bayesian filtering to maintain a set of
hypotheses of the robot location in real time. As part of
the Bayesian filter, we need a perceptual model which can
be used to calculate the probability of making a particular
signal strength measurement S at a location l, P (S|l).

A. Estimating the WiFi Signal Strength Map, And The Per-
ceptual Model

As described in Section II, the WiFi signal strength mean
and standard deviations of every access point are measured

from each vertex v ∈ V . Using this data, we model the
WiFi signal strength mean and standard deviation as being
piecewise linear along the graph, with Gaussian noise. Let
l be a location on the edge e (e = 〈vi, vj ,Γ〉) of the graph,
between vertices vi and vj . Let vi = 〈li〉, vj = 〈lj〉. Let
M l denote the vector of mean signal strengths of every
access point as seen from location l. The component M l

k

of vector M l is the mean WiFi signal strength of access
point ak (ak ∈ A) as seen from location l. Similarly, let
Dl denote the standard deviations of the signal strengths of
each access point as seen from location l, with Dl

k being
the standard deviation of the signal strength of access point
ak as seen from location l. Hence, the linearly interpolated
mean signal strengths vector M l = [M l

1 . . .M
l
|A|], and the

standard deviations vector Dl = [Dl
1 . . . d|A|] at location l

are given by:

M l
k =

‖l − lj‖Mik + ‖l − li‖Mjk

‖li − lj‖
(1)

Dl
k =

‖l − lj‖Dik + ‖l − li‖Djk

‖li − lj‖
(2)

During the operation of the robot, let S = [S1 . . . S|A|]
be a WiFi signal strength observation set, where Si is the
measured WiFi signal strength of access point i. Hence, the
probability of making this observation S from a location l,
ignoring unobserved access points (i.e. Si : Si = 0) is given
by:

P (S|l) =

i=|A|∏
i=1,Si 6=0

(
2ε√

2πdxi
exp

(Si −M l
i )

2

2(Dl
i)

2

)
(3)

Fig. 2 shows the mean signal strength of one access point
(a1) for different vertices vi = 〈li〉, li = (xi, yi) across the
map. Fig. 3 shows a sampling of the values of P (S|l) for
S = [−100,−59] from Access Points 1 and 2, for various
locations l across the map.

With this estimate of the perceptual model P (S|l) and the
motion model of the robot P (lt|lt−1, ut−1), the localization
belief of the robot can be recursively updated.
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Fig. 2. Mi1 (Mean signal strength of Access Point 1) for different vertices
vi = 〈li〉, li = (xi, yi) over the map
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Fig. 3. Probability P (S|l) of making a Signal Strength observation S =
[−100,−59], for different locations l = (x, y) on the map

B. Monte Carlo Localization

The recursive Bayesian update for a location belief B(lt)
for location l at time step t using sensor readings St and
odometry readings ut−1 [11] is given by:

B(lt) = ηP (St|lt)
∫
P (lt|lt−1, ut−1)B(lt−1)dlt−1 (4)

Here, η is a normalization constant, St the WiFi signal
strength observation at time step t, and ut−1 the odometry
data between time steps t−1 and t. The term P (lt|lt−1, ut−1)
is obtained from the motion model of the robot. The term
P (St|lt) is given by the perceptual model, eq. 3.

1) Representation of the Location Hypotheses: The mul-
tiple hypotheses of the robot location are sampled and repre-
sented by particles pi = 〈epi, di, oi, xi, yi, θi, wi, wci〉, pi ∈
P. The number of particles is |P|. Each particle pi has the
following properties:
• epi, the edge that the particle is associated with.
• di, the projected location of the particle on the edge.
• oi, the offset of the location of the particle from the

edge.
• xi, yi the Cartesian location of the particle on the map

with respect to a global reference frame.
• θi, the orientation of the particle with respect to the

global reference frame.
• wi, the normalized weight assigned to the particle.
• wci, the map constrained weight assigned to the parti-

cle. This weight is calculated in the Constrain step of
the Run-Time phase, as described in Section III-C.3.

The properties of the particle are graphically illustrated in
Fig. 4.

C. Particle Filter Implementation : Updating the Location
Hypotheses

The location hypotheses are updated iteratively when new
data is available. The four steps involved in the update are
the Predict step, the Update step, the Constrain step and
the Resample step. The Predict step is executed whenever
new odometry data from the robot is available, and updates

Fig. 4. Properties of a particle pi: Associated edge epi (epi = 〈va, vb,Γ〉),
Projected location di, Offset oi, Cartesian location (xi, yi), Orientation θi

the positions and orientations of the particles. The Update
step is executed every 500ms when new WiFi signal strength
data is available, and updates the weights of the particles.
The Constrain step is executed whenever the Predict step is
executed, and updates the weights and edge associations of
the particles based on map data and constraints. After every
Update iteration, the particles are re-sampled in the Resample
step.

1) Predict: Given new odometry data of the motion of
the robot, for each particle pi, its properties θi,xi,yi,di,oi
are updated using the motion model of the robot, where the
robot’s linear and angular motions are modeled as having
Gaussian error.

2) Update: To update the weights of the particles based
on the latest WiFi signal strength observation, the estimated
observation model as described in Section III-A is used. For
each particle pi, the observation probability for that location
P (S|l) is calculated using the location of that location in
equation 3.

3) Constrain: Following the Update step, the edge associ-
ation of each particle is re-evaluated, and the map constrained
weights computed as outlined by the pseudocode in Algo-
rithm 1. Here, the thresh term is a threshold term, which is
set to 0.1. Prior to renormalizing the particle weights, the sum
of the updated and constrained weights, wcsum is computed,
which is required for the next step, Resample.

4) Resample: After every Update step, the particles need
to be resampled. The number of particles to be resampled
N is calculated based on Sensor Resetting Localization
[12], subject to a maximum Nmax and minimum Nmin. In
addition to this, particles with weight less than a threshold
wcmin are also resampled. Algorithm 2 implements this. All
resampled particles are re-initialized to location xi, yi with
probability P (S|(xi, yi)), based on the latest WiFi signal
strength observation.

D. Inference of Location

For inferring the location of the robot based on the particle
set P, we perform K-Means clustering of the particles pi by
modifying the algorithm of [13] to take into account the
weights wci of the particles. The reported location of the
robot is then the location of the cluster with the largest
weight. During this inference step, we also estimate the
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Algorithm 1 ‘Constrain’ Algorithm

1: wcsum ← 0
2: for i = 1 to |P| do
3: Let pi = 〈epi, di, oi, xi, yi, θi, wi, wci〉
4: fr ← di/(length of edge epi)
5: if fr > 1− thresh or fr < thresh then
6: Find edge e best associated with pi
7: if e! = epi then
8: epi ← e
9: Calculate new di

10: oi ← 0
11: end if
12: end if
13: widthi ← width of edge epi
14: if |oi| > widthi then
15: wci ← wi ∗ exp(−(abs(oi)− widthi/2)2)
16: else
17: wci = wi

18: end if
19: wcsum ← wcsum + wci
20: end for

21: Renormalize weights wci such that
i=|P|∑
i=1

wci = 1

Algorithm 2 ‘Resample’ Algorithm

1: N ← 0
2: Sort Particles pi in increasing order of wci
3: for i = 1 to |P| do
4: Let pi = 〈epi, di, oi, xi, yi, θi, wi, wci〉
5: if wci < wcmin then
6: N ← N + 1
7: end if
8: end for
9: N ← N + |P| ∗min(Nmax

|P| ,max(Nmin

|P| , wcsum/κ))
10: for i = 1 to N do
11: Draw (xi, yi) with probability P (S|xi, yi)
12: wci ← P (S|xi, yi)
13: wi ← P (S|xi, yi)
14: oi ← 0
15: Find edge e best associated with pi
16: calculate di for particle pi on edge e
17: end for

“uncertainty” (σ) of the location hypothesis as the weighted
standard deviation of all the particles in the cluster with
the maximum weight. The “confidence” (c) of the location
estimate is estimated as the weight of the cluster with the
maximum weight.

E. Orientation Estimation

The orientation of the robot could be estimated using the
particle filter too, but this would increase the dimension of
the hypothesis space, and the number of particles would
correspondingly increase. Instead, we use a mixture of dead
reckoning with global wall orientation data, similar to the

method described in [14]. The property θi of each particle
pi is allowed to evolve using the robot’s motion model when
no wall is detected by the robot. When walls are detected
by the robot (using the LIDAR sensor), the property θi of
every particle pi is updated using global wall orientation
information and the location of the particle.

F. Experimental Evaluation
We evaluate the performance of our WiFi localization

algorithm based on a number of parameters.
1) Convergence: In this test, the robot was stopped at

20 randomly chosen locations on the map, and the particles
initialized with equal weights randomly distributed across
the map. Fig. 5 shows a plot of the mean uncertainty σ in
localization with time. It took a mean of 8s for the location
uncertainty to converge to less than 1m.
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Fig. 5. Uncertainty σ vs. t: Convergence of Location Estimates. Black,
solid: Mean of all trials. Grey, dotted: Individual trials.

2) Accuracy: In this test, the robot was again stopped at
20 randomly chosen locations on the map, and the particles
initialized with equal weights randomly distributed across
the map. The location estimates were allowed to converge
till the uncertainty of localization σ stopped decreasing. The
reported location estimates were then compared to the ground
truth. Table I sums up the results of this test.

Value Mean Minimum Maximum
Localization Error 0.7m 0.2m 1.6m
Localization Uncertainty 0.6m 0.2m 0.9m
Convergence Time 11s 7.4s 16.5s

TABLE I
ACCURACY OF WIFI LOCALIZATION

3) “Incidental” Observations: While the robot is per-
forming various tasks, it is reasonable to expect that it would
drop WiFi Signal Strength readings from some access points.
We wish to investigate the impact of dropped signals on
the localization accuracy in this experiment. To do so, the
robot is stopped at a fixed location on the map, and is
allowed to collect at least one signal strength measurement
from all WiFi access points in range. Next we selectively
and deliberately drop signal strength measurements from
all permutations of the access points to simulate dropped
signals. Fig. 6 shows the results of this test. A total of 15
access points were accessible from the location, and even
with 9 dropped signals (6 visible access points), the mean
error in localization is less than 2m.
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Fig. 6. Localization Error vs. Number of visible Access Points

IV. NAVIGATION

We desire the navigation algorithm of the robot to be
capable of producing smooth and uninterrupted robot motion.
In order to do so, we simplify the robot motion such that it
can be split up into the following action primitives:

1) MOVEDOWNCORRIDOR(d, vs, vf ) : Moves in a
straight line between start vertex vs and end vertex
vf , traveling a maximum distance d.

2) INTEGRATEDTURN(direction) : Takes the next avail-
able turn (as sensed by the LIDAR) in the desired
direction.

3) INPLACETURN(φ) : Turns the robot by φ radians in
place.

Algorithm 3 outlines the “Next Maximal Action” Naviga-
tion Algorithm which generates these action primitives from
the robot’s current location, given a destination location. It
internally calls the following subroutines:
• GetLocation(x,y,σ) : Returns current location (x,y) of

the robot, and the uncertainty of localization, σ.
• ComputePolicy(V ,E,vd,Dist,π) : Computes global pol-

icy π for destination vd
• ComputePath(Path,Policy,x,y) : Accepts the current lo-

cation (x,y) of the robot, and generates a path (Path)
to follow in order to reach destination vd based on the
given policy (Policy)

• PathProject(Path,x,y,vcurrent,ε) : Accepts the current
location (x,y) of the robot, and returns the vertex
vcurrent (vcurrent ∈Path) that is closest to the robot’s
location. Also returns the error of projection as ε

• Execute(a,actionFail) : Executes action primitive a
and sets failure indicator actionFail when execution
of a fails.

V. EXPERIMENTAL RESULTS

Our WiFi localization and navigation algorithms were
tested using CoBot, deployed on the third floor of Wean
Hall at Carnegie Mellon University.

A. Parameters Of The Tests and Test Methodology

The graph representation of the map built during the
Learning Phase had 223 vertices and 222 edges. There
were a total of 106 unique WiFi access points. The particle
filter used 500 particles that were initialized with random
orientations and locations, and equal weights.

Algorithm 3 “Next Maximal Action” Navigation Algorithm

1: procedure NAVIGATE(V ,E,vd)
2: Dist,π,vcurrent,x,y,Path,pathProgress ← null
3: ε, σ, T ← 0
4: actionFail← false
5: COMPUTEPOLICY(V ,E,vd,Dist,π)
6: GETLOCATION(x,y,σ)
7: COMPUTEPATH(Path,π,x,y)
8: PATHPROJECT(Path,x,y,vcurrent,ε)
9: pathProgress ← Path(0)

10: while vcurrent 6= vd do
11: a ← next action primitive from π(vcurrent)
12: Compute Va for action primitive a
13: EXECUTE(a,actionFail)
14: GETLOCATION(x,y,σ)
15: PATHPROJECT(pathProgress,x,y,vcurrent,ε)
16: if ε > εmax or actionFail = true then
17: T ← 0
18: while σ > σmax and T < Tmax do
19: Halt Thalt seconds
20: T = T + Thalt
21: GETLOCATION(x,y,σ)
22: end while
23: COMPUTEPATH(Path,π,x,y)
24: PATHPROJECT(Path,x,y,vcurrent,ε)
25: pathProgress ← Path(0)
26: else
27: pathProgress ← pathProgress + Va
28: end if
29: end while
30: end procedure

In order to test the localization and navigation system, we
ran a series of experiments, each of which were conducted
as follows. At the start of each experiment, a list of 12
random locations over the map were generated such that no
two successive locations were from the same corridor, and
the robot had to autonomously navigate to these locations
sequentially.

B. Results

Each experiment lasted for an average of 28 minutes, and
covered an average distance of 818 meters. In total, this
experiment was repeated 8 times, adding up to over 3.5
hours of robot navigation time, and a total path length of
over 6.5 km. Out of these runs, for 2 of these runs, while
the robot navigated between these locations, its true location
was manually recorded periodically to use as ground truth
for comparison with the localization estimates.

Fig. 7 shows a trace of the path followed by the robot
during one of the experiments. This trace was reconstructed
using the localization estimate of the WiFi localization algo-
rithm. Fig. 8 shows the evolution of the robot’s uncertainty
σ over the first ten minutes of this experiment. During all
the 8 experiments, the robot encountered a total of 33 action
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Fig. 7. Trace of the path traversed by the robot
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failures, but autonomously recovered from all of them. Fig. 9
shows a cumulative histogram of the location accuracy of
the robot for the 2 experiments with the manually annotated
ground truth data. The robot’s localization error is a mean
of 1.2m, and the error is less than 1.8m for greater than
80% of the time. It is worth noting that while the robot is in
motion, the localization has more errors compared to when
the robot was stopped (Section III-F). This can be attributed
to odometry errors, latency in signal strength readings, and
unobserved signal strengths. Fig. 10 shows a histogram of
the robot’s speed during the experiment. The largest peak
around 0.57m/s corresponds to the straight line speed (the
variations being due to obstacle avoidance), and the smaller
peak around 0.3m/s is the turning speed of the robot.

VI. CONCLUSION

In this paper, we introduced an algorithm using WiFi
signal strength measurements for the localization of an
indoor mobile robot on a map as represented by a graph. The
data collected during the Learning Phase of the algorithm
was used to generate a perceptual model for the robot’s
location hypotheses, which along with odometry data and
map constraints constituted our localization algorithm. We
introduced our “Next Maximal Action” navigation algorithm,
and demonstrated the simultaneous functioning of the lo-
calization and the navigation algorithms through extensive
testing: a total traversed distance of over 6.5km and a total
robot navigation time in excess of 3.5 hours.
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