
Dynamic Modelling and Control of Variable Stiffness
Actuators
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Abstract— After briefly summarizing the mechanical design
of the two joint prototypes for the new DLR variable compliance
arm, the paper exemplifies the dynamic modelling of one of
the prototypes and proposes a generic variable stiffness joint
model for nonlinear control design. Based on this model, the
design of a simple, gain scheduled state feedback controller
for active vibration damping of the mechanically very weakly
damped joint is presented. Moreover, the computation of the
motor reference values out of the desired stiffness and position is
addressed. Finally, simulation and experimental results validate
the proposed methods.

I. INTRODUCTION

Variable Impedance Actuation (VIA) is considered by

many researchers as the next big design step towards robots
with increased mechanical robustness during impacts or in

contact with unknown environments. Furthermore, approach-

ing the performance of humans in terms of force and speed
at same arm weight is expected with this new technology.

Therefore, VIA actuation is a very active topic of ongoing

research [1], [2], [3], [4], [5], [6], [7], [8], [9]. Currently, a
hand-arm system with variable compliance is designed at

DLR, incorporating in a first, concept validation version,
several variable compliance joint designs for fingers and

arms. For the elbow and the shoulder, the focus is on energy

efficient and weight minimizing design, such that the mass
of the VIA joints do not considerably exceed the weight of

the DLR LWRIII [10] joints.

Although inspired by the human muscle actuation, most of
today VIA mechanisms differ from the human archetype by

having a very low, intrinsic damping. They are thus better

described by the term ”variable stiffness mechanism” (VSA).
The high compliance and low damping make the control

challenging. Regarding the control of VSA, literature mostly

deals with the problem of adjusting stiffness and position
of the actuator in a decoupled manner, by controlling the

position or the torque of the two motors of the joint [4], [5],

[2]. Moreover, in case of VSA structures with many degrees
of freedom (dof) and cable actuation, the decoupling of the

tendon control is a challenging issue, treated for example in
[11], [12].

Our approach to the control of the VSA arms starts from

the passivity based control framework developed for the
torque controlled light-weight robots [13] and is based on a

state feedback controller with variable gains. Some particular

aspects compared to the control of flexible joint robots with
fixed compliance [13], [14], [15] are summarized below:

• Due to the high compliance of the joint, a separate

torque sensor is not required any more, the torque can

be well estimated based on the motor and link position

and compliance properties [16].

• An active compliance control will be used only for
stiffness components which cannot be realized by the

mechanical springs. Examples are zero stiffness or the

joint coupling stiffness1 needed to achieve arbitrary
Cartesian stiffness matrices [17]. It is desired that the

mechanical joint compliance corresponds as close as

possible to the desired task compliance.
• The joints have very low intrinsic damping. While this

is useful for cyclic movements involving energy storage
(e.g. for running or throwing), the damping of the arm

for fast and precise positioning tasks has to be realized

by control. This is a challenging task in view of the
strong variation of inertia and stiffness. It turns out that

due to the very low stiffness, the passivity framework

has to be given up for high performance vibration
damping, which in this case requires an aggressive,

strongly model based strategy.

The above mentioned control aspect will be detailed in

Section IV after briefly summarizing the mechanical design
of the joints in Section II and presenting modelling aspects

in Section III. Finally, Section V provides simulation and

experimental results.

II. HARDWARE DESIGN CONCEPTS FOR THE DLR ARM

JOINTS

There are currently many design approaches for realizing

variable compliance actuators, ranging from pneumatic or
electro-mechanic antagonistic actuation to asymmetric im-

plementations in which one positioning motor is used to

move the joint and a second, smaller actuator is used to
adjust the stiffness. In our approach, which follows the latter

concept, the positioning motor is connected to the link via

a harmonic drive gear. Mechanical compliance is introduced
by a mechanism which forms a flexible rotational support

between the harmonic drive gear and the joint base (Fig. 1).
In case of a compliant deflection of the joint, the whole

harmonic drive gear rotates relatively to the base, but the

positioning motor is not moved. So the link side inertia is
altered only by the circular spline and some parts of the

variable stiffness device. The spring mechanism adds no

inertia to the drive train between the positioning motor and
the link. The link position is changed without moving the

elasticity mechanism.

1realizes in biological systems by biarticular muscles
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Harmonic Drive gear

circular spline (qc)

variable stiffness
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flex spline (qf )

wave generator (qw)

Fig. 1. Principle of variable stiffness joint mechanics in differential gear
setup. The circular spline of the harmonic drive gear is supported by the
mechanism.

Fig. 2. Variable impedance joint prototype. Two different implementations
of the compliance element have been integrated and tested.

Two different mechanical compliant joint concepts have
been derived from the previous considerations at DLR. Fig. 2

shows a joint testbed which can incorporate both compliant

joint principles and on which the experiments have been
conducted. A short overview of the principles is given next.

A. Variable Stiffness Joint Design

The concept of the Variable Stiffness Joint (VS-Joint)

as presented in [16] contains two motors of different size.
The high power motor changes the link position. The joint

stiffness is adjusted by a much smaller and lighter motor,

that changes the characteristic of the supporting mechanism
(Fig. 3). An unwinded schematic of the principle is shown in

Fig. 4. A compliant link deflection results in a displacement

of the cam disk and is counterbalanced by the roller pressed
on it in axial direction by a spring. This generates a centering

force resulting in the output torque of the link. To change
the stiffness preset, the smaller motor moves the spring base

axially w.r.t. to the cam disk and thus varies the spring

force. The joint prototype can be equipped with different
cam disks. This permits an easy adaption of the passive

joint behavior to the desired application by designing the

torque/deflection characteristic of the joint. The modelling

cam disk
(fixed to

circular spline)

cam rollers

connection to

linear bearing

roller slider

spring base slider

spindle

axis of rotation

stiffer
preset

translational

deflection

joint

deflection

Fig. 3. VS-Joint mechanism. The joint axis is in the vertical direction.
The cam disk rotates due to the compliant joint deflection. This results in
a vertical displacement of the roller slider. A stiffer joint preset is achieved
by moving the spring base downwards.

 

stiffness actuator

r

 
J

 
Jlinear bearing

roller

deflection

roller position

of undeflected link

Fig. 4. Unwinded schematic of the VS-Joint principle in centered (a)
and deflected (b) position. A deflection of the link results in a horizontal
movement of the cam disk and a vertical displacement of the roller. The
spring force generates a centering torque on the cam disk.

section will focus on this joint, while the controller structure

and the experimental results are given for both the VS and
the QA joint, which will be presented next.

B. Quasi Antagonistic (QA) Joint Mechanism

Like the VS-Joint, the QA joint consists of a link po-
sitioning motor with harmonic drive gear and the elastic

mechanism with the stiffness actuation motor [18]. Two
cam-roller systems, each supplied with a spring, operate

in an opposing setup. The main difference compared to a

classical antagonistic joint is that the two motors are not used
in a symmetrical configuration as agonist and antagonist.

Instead, one motor adjusts the link side position, while the

second motor produces a co-contraction of the two cam-roller
systems and thus operates stiffness adjustment (Fig. 5). This

arrangement reduces dynamic losses and allows stiffness

adjustment independent from the link speed by a stiffness
actuator that is optimized for this purpose. This special

form of antagonistic actuation is very advantageous for

configurations with pronounced agonist actuation, in which
the adjusting motor does not have to produce a holding

torque.

The cam-roller mechanism generates a nonlinear spring
characteristics. The shape of the cam faces can be adapted

to provide any desired progressive torque characteristic that

stores the same maximum potential energy in the linear
spring. Superposition of agonist and antagonist with different

offsets results in the desired variable stiffness. Fig. 7 shows

the realization of the QA joint compliance mechanism.
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(a)
motor 2

motor 1

(b)

motor 1

motor 2

Fig. 5. Variable Stiffness Actuator with nonlinear progressive springs in
antagonistic (a) and quasi antagonistic (b) realization. In the latter case,
Motor 1 moves the joint while Motor 2 is adjusting the stiffness.

cam bar

rocker arm

spring

stiffness actuator

connection to
circular cpline

Fig. 6. Cross section of the Quasi Antagonistic Joint design.

III. MODELLING OF THE VSA JOINTS

The modelling of the VS-Joint is given as an example

before proposing a generic model structure. The kinematics

of the harmonic drive gear with reduction ratio n is given
by:

q̇c = αq̇f + βq̇w, (1)

with q̇c, q̇f , and q̇w being the velocities of the circular

spline, the flex spline, and the wave-generator, respectively
(Fig. 1), and with α = n/(n + 1) and β = 1/(n + 1).
For a representation independent of the reduction ratio, we

introduce θ = −1/nqw, i.e. θ represents the motor angle
transformed to the circular spline side of the gearbox, as

usual in the modelling of flexible joint robots2. We denote
furthermore the link angle by q and, since the link is attached

to the flexible spline, we have q = qf . With this new

notations, (1) becomes

q̇c = α(q̇ − θ̇). (2)

2The minus sign comes from the fact that the wave generator and the
flex spline rotate in opposite directions.

Fig. 7. Prototype of the QA variable compliance element.

The position r of the roller in the variable spring mechanism
(Fig. 4) is related to qc by the nonlinear function f1 represent-

ing the geometry of the cam-disk: r = f1(qc) := f(q − θ).
Furthermore, we denote by σ the position of the stiffness
adjusting motor. Using these variables, the potential energy

P and the kinetic energy T of the system can be expressed
as:

2P = k(σ − r)2 = k(σ − f(q − θ))2,

2T = α2Jc(q̇ − θ̇)2 + Jθθ̇
2 + Jq2 + Jr ṙ

2 + Jσσ̇2. (3)

The inertia values are denoted therein by Ji with the

subscript representing the related state variable, i.e. i ∈

(q, qc, θ, σ, r). In these equations, only the positions q, θ,

and σ and their derivatives are independent state variables.

By applying the Lagrangian formalism to (3) one obtains (4),
see next page.

The notations jr = df(q−θ)
d(q−θ) and Jrv = j2

rJr are used in

(4). Please note that Jrv is a state dependent, thus variable
inertia term caused by the nonlinear transformation of the

roller inertia from roller coordinate to the circular spline

coordinate. Accordingly, centrifugal terms, denoted by cθ and
cq are associated to the variation of this inertial term. The

control inputs are the torques of the joint actuator and of the

stiffness actuator τθ and τσ , respectively, while τext is the
external torque acting on the joint. Comparing this model

with that of the QA joint (not presented here for brevity)
and of other VSA joint prototypes [19], we think that a

reasonably general abstraction of a variable stiffness actuator

which can be used for the generic design of controllers for
VSA devices is given by

M(x)ẍ + c(x, ẋ) +
∂V (x)

∂x
=





τ1

τ2

τext



 , (5)

with the configuration vector x given by the two motor

positions and the link position, with M ∈ ℜ3x3 being a
variable inertia matrix, c the Coriolis and centrifugal vector,

V the potential energy of the elastic element and related

to the gravity forces, τ1 and τ2 the torques of the two
motors. The most relevant property of this structure is its

underactuation, meaning that the system has less control

inputs (2) than its configuration dimension (3). However, in
contrast to other underactuated systems, in this case V is

positive definite, implying that an unique equilibrium point
exists for each external torque and that the linearization

of the system around an equilibrium point is controllable.

The system belongs to the class of underactuated Euler-
Lagrange systems, for which an impedance controller has

been developed in [20], based only on measurement of motor

positions and ensuring the achievement of the desired link
position and stiffness. However, one topic only marginally

addressed in that work was the appropriate damping of the

transient behaviour. This aspect will be treated in the next
section, for a simplified, linearized model.

If the inertia of the roller, the circular spline, and the stiffness

adjuster are much lower than the motor and link inertia3,
the nonlinear terms in (4) can be ignored and the system

3In the case of the VS-Joint they are by two orders of magnitude lower.
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



Jθ + α2Jc + Jrv −α2Jc − Jrv 0
−α2Jc − Jrv Jq + α2Jc + Jrv 0

0 0 Jσ









θ̈
q̈
σ̈



+





cθ(θ − q, θ̇ − q̇)

cq(θ − q, θ̇ − q̇)
0



+k(σ−f(θ−q))





−jr

jr

1



 =





τθ

τext

τσ



 (4)

.

configuration is described by θ and q only. In this case, the
equation of the system reduces to

[

Jθ 0
0 Jq

] [

θ̈
q̈

]

+

[

τ
−τ

]

=

[

τθ

τext + g(q)

]

, (6)

with

τ = k(f(θ − q) − σ)jr (7)

and with g(q) representing the gravity torques. Here, the

position of the stiffness adjusting actuator σ is regarded as
an input.

IV. CONTROL OF THE VS-JOINT

Several paradigms of how the compliance of VSA joints
has to be controlled are encountered in the literature. Our

approach, similar to the one in [2], [21] is to define the

desired stiffness along the desired (nominal) trajectory and
to compute the preset value σ of the stiffness actuator based

on these nominal values as well as on the torque of the rigid

body motion along the trajectory. If the joint is perturbed by
an external torque, the system should react with the intrinsic

passive characteristic of the spring, meaning for example that
increasing the torque increases also the stiffness. This is a

desired behaviour and should not be altered by the controller

by trying to regulate stiffness to a constant value in the
disturbed case. Therefore, the stiffness actuator should not

react in a first phase during an impact and its size can be

rather small. At a slower time scale appropriate collision
reaction strategies, including stiffness adjustment, can be

designed [22]. The very weakly damped system, however,

needs to be damped by the controller through the joint
motor4. Moreover, in order to provide a precise link side

motion, the high compliance has to be taken into account

when computing the desired motor angles.
A first, pragmatic approach to the control of the joint was a

gain scheduling controller for the linearized dynamics along

the nominal trajectory. In absence of external torques, the
linearized dynamics is

Jθ∆θ̈ + kφ∆φ = ∆τθ (8)

Jq∆q̈ − kφ∆φ +
∂g(q)

∂q
∆q = τext, (9)

with φ = θ − q and the instantaneous stiffness computed as

kφ = k

[

(

∂f(φ)

∂φ

)2

+ (f(φ) − σ)
∂2f(φ)

∂φ2

]

(10)

The feed-forward motor torque on the nominal trajectory is

τθff = Jθθ̈d + Jqq̈d + g(qd). (11)

In principle, a linear feedback controller with constant gains

can be designed for the linearized system, which enables

4Note that the stiffness adjusting motor can have only minor contribution
to vibration damping due to its low power.

a passivity based stability and convergence analysis for
the original nonlinear model, as described in [13]. The

states for the system are (∆θ, ∆θ̇, ∆q, ∆q̇) or, alternatively,

(∆θ, ∆θ̇, ∆τ, ∆τ̇ ). However, due to the strong variation of
kφ and of the link inertia when the actuator is used in a multi-

dof robot, the vibration damping performance of a constant

gain controller is very poor for stiffness values for which
it was not optimized. Consequently, for the VSA joints, the

controller gains (and thus the eigenvalues for the linearized

system) are scheduled depending on the stiffness kφ and the
link inertia Jq . The controller is

τθ = τθff + kpθ̃ + kd
˙̃
θ + ktτ̃ + ks

˙̃τ, (12)

with the gains kp, kd, kt, ks depending on Jθ, Jq, kφ, ∂g(q)
∂q

.

The error variables are θ̃ = ∆θd − ∆θ,
˙̃
θ = ∆θ̇d − ∆θ̇,

τ̃ = ∆τd − ∆τ , ˙̃τ = ∆τ̇d − ∆τ̇ . The desired torque for the

controller is

τd = Jq q̈d + g(qd). (13)

The gains are optimized in each controller step in order to:

• Provide the desired critical damping factors ξ for the
linearized system

argmin
kp,kd,kt,ks

∑

j

(ξj − 0.707)2. (14)

• Keep the control gains within practically feasible value
kimin ≤ ki ≤ kimax with i ∈ (p, d, s, t). The gains

have to be high enough to overcome friction and low
enough not to excite un-modelled dynamics and to avoid

actuator saturation.

Remark 1 The passivity based analysis from [13] does unfor-
tunately not apply to this controller mainly for two reasons:

a) It was not possible to find controller gains with fixed kp

over the whole range, which to perform satisfactory. Constant
(or integrable) kp was a condition for easily finding a Lya-

punov function in [13]. b) For damping the very compliant,
weakly damped joint5, a high ks gain is required, which in

some cases does not fulfill the passivity condition regarding

damping from [15]. Therefore, for stability analysis, one has
to rely so far on the local statement of Lyapunov’s indirect

method.
Remark 2 Optimizing the control gains is generally diffi-

cult, because the large variation of the instantaneous stiffness

often requires gains which exceed the mentioned bounds.
We expect that similar problems would arise in practice

with more advanced, nonlinear controllers, such as nonlin-

ear passivity based approaches, back-stepping or feedback
linearization: One has to very carefully design the target

dynamics for obtaining practically feasible gains. One possi-

ble approach would be to use the eigenvalues of the simple

5For sake of simplicity, the (very low) intrinsic damping of the joint was
completely omitted in the modelling part.
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linearization based controller as linear target dynamics and
design nonlinear controllers to exactly fulfil it. This is a topic

for further work.

A. Setting the Desired Compliance and Link Angle

While the previous section is concerned with the problem
of damping the joint oscillations for situations in which a

smooth, vibration-free motion is the control objective, there

are two further relevant aspects for the control of the joint:

• The achievement of the desired link position in nominal

conditions (no external interaction), with the control
based only on motor position and torque feedback. It is

required to have a good positioning performance while

preserving the mechanical compliance properties of the
joint as much as possible - the total compliance would

be altered if the controller would use link position

feedback.

• Ensuring a specified joint compliance ktot along the
nominal trajectory. This compliance is specified by the

application. Note that due to the feedback of the motor

position θ and of the torque τ , the total stiffness is
composed of the controller stiffness kp (P-term) in

serial interconnection with the mechanical instantaneous

stiffness kφ and reduced by the torque feedback.

ktot =
kP kφ

kP + (kt + 1)kφ

(15)

This results from (8),(9),(12) at steady state. Given the
current torque and the specified ktot one has to chose

kφ in the feasible range (see Fig. 11) and compute

afterwards kp as

kp =
kφktot(kt + 1)

kφ − ktot

. (16)

Obviously, kp has to go down to zero if the desired

stiffness ktot approaches zero. The gravity compensa-
tion, however, cannot be done based on desired position

in this situation, but online gravity compensation as in

[13] has to be used.

For solving both position and stiffness preset, one can start

from the nominal torque of the rigid body dynamics along
the nominal trajectory

τd = Jθ q̈d + g(qd). (17)

For a given τd and a specified kφ, it is possible to compute
analytically the preset value σd for the stiffness actuators

of the DLR joints. The solution is visualized graphically in

Fig. 8 for the VS-Joint. In Appendix A, an analytical solution
is given for the QA joint. This solves the problem of stiffness

preset.

Using the preset σd and the torque τd, it is further possible to
compute analytically the deflection of the compliant element

φd. The dependency for the VS-Joint is visualized in Fig 9,

while, again, the analytical result for the QA joint is given
in the Appendix. It is then straight forward to compute the

desired motor position as

θd = qd + φd +
τd

kp

(kt + 1) (18)

d
τ

d
K

d
σ

Fig. 8. Torque/stiffness diagram for the VS-Joint, parameterized over the
stiffness preset σ. This diagram can be used for determining stiffness preset
which has to be commanded for reaching a specified desired stiffness, given
a nominal joint torque.
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Fig. 9. Deflection/torque diagram for the VIA joint, parameterized over
the stiffness preset σ. This diagram can be used for determining the motor
position which has to be commanded for reaching a specified link position.

in order to reach the desired link position despite of the

compliance of the joint and of the controller.
The controller structure is visualized in Fig. 10.

V. SIMULATIONS AND EXPERIMENTAL RESULTS

First, some simulations with the QA and the VS-Joint
are given to illustrate the topics addressed in the previous

section. Thereafter, experimental results are presented.

A. Simulations

Fig. 12, left column, shows the the behaviour of the VS-
Joint for a high stiffness (100% preset). On the plots, the

settling of the system for non-zero initial conditions as well

as a step position response are simulated. On the position plot
(a) one notices that the motor has to follow an oscillating

qJ

dk
G

G

WW k,, �

T

J
T

J

V

J

DLR VIA Joint

Fig. 10. Controller structure of the DLR variable impedance joints.
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feasible mechanical stiffness range

dW

Fig. 11. Torque/stiffness diagram for the QA joint. The available mechan-
ical stiffness range is exemplified for a torque τd , e.g. corresponding to the
gravity load of the robot in a given configuration.

motion during the transients in order to provide a smooth
link side motion. The strong effect of the elasticity can be

seen also on the velocity plots Fig. 12(b), by noticing the
strong difference between motor and link velocity. Fig. 12(c)

shows the spring torque, while Fig. 12(d) shows its spatial

derivative, the stiffness. One can see that the stiffness varies
by more than a factor of two during motion.

The same plots are shown for a stiffness preset corresponding

to a low stiffness (10% preset) in the right column of Fig. 12.
One can observe that in both situations the motion is properly

damped, thus the main control objective has been reached.

The controller remains always stable, despite of the strong
nonlinearity in the stiffness. One can also notice that for the

low stiffness, the settling time is slower.

In Fig. 13 the simulation is repeated with the QA joint.
Also for this system, which has a very different stiffness

characteristics from the VS-Joint (compare Fig. 11 and

Fig. 8), the vibration damping has the desired performance.
As a comparison, Fig. 14 shows the behaviour of the system

when using only a PD controller on motor side, without

vibration damping. While the motor position is relatively
well controlled, the link side displays very strong oscillations

due the the very low damping of the spring.

B. Experimental results

The model has been validated by measurements on the

joint test-bed. Special care has been taken to confirm the
stiffness characteristics of the joint and to identify the friction

of the compliance mechanism. This friction, in contrast to

the gearbox friction, is very critical, since it leads to a dead
zone in the torque measurement and also to an uncertainty

in the positioning of the link for a given motor position.
For the VS-Joint, this friction turned out to be very low,

see Fig. 15. Friction measurements for the QA joint can be

seen in [18]. Therefore, it was easy to transfer the controller
developed in simulation to the real joint. Two main positive

implementation aspects came out:

• due to the high compliance and low friction, the torque
estimation based on the joint deflexion φ = θ − q is

very accurate. Therefore it seems that it is possible to

eliminate the torque sensor without loss of performance.
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Fig. 12. Simulation results for 1 dof VS-Joint with high stiffness preset
(left) and low stiffness preset (right).

• The feedback gain for the time derivative of torque,

which for rigid robots is sometimes critical, can be

chosen relatively high. This enables an effective vibra-
tion damping. However, this also implies a non-passive

controller.

Fig. 16 shows the performance of the positioning experi-

ments for a very low as well as for a very high stiffness

preset of the VS-Joint. The experiments confirm the results
and the control performance predicted by the simulation.

Finally, Fig. 17 compares the reaction of the QA joint to

a hard impact to the link with PD-control (upper) and state
feedback control (lower). The faster dissipation of the impact

energy in the latter case can be clearly observed.

VI. CONCLUSION

The paper addressed the modelling and control of two

DLR variable stiffness joint prototypes. We proposed a quite
general model structure which covers in our opinion a wide

range of VIA joint designs. Moreover, we addressed the

stiffness and position setting and the vibration damping
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Fig. 13. Simulation results for 1 dof QA joint with high stiffness preset
(left) and low stiffness preset (right).

control design. Due to generally weakly damped springs
and the high variation of instantaneous stiffness and inertia,

designing a practically feasible vibration damping can be
quite challenging, requiring non-passive controllers. Adding

variable mechanical damping can be an alternative solution,

at the cost of additional hardware complexity. However,
using a good dynamic model, control based vibration damp-

ing proved to be experimentally feasible. Future work will

address the design of controllers for which also global
convergence conclusions can be drawn.
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Fig. 14. Simulation results for 1 dof QA joint with high stiffness preset
and no vibration damping. One can observe the strong oscillations due to
the very low intrinsic damping of the joint.
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APPENDIX

For the QA joint, the joint torque and the instantaneous
stiffness are described by

τ = ae−bσ(ebφ − e−bφ) (19)

kφ = abe−bσ(ebφ + e−bφ), (20)

(21)

where a and b are positive constants [18]. Given a current

torque and a desired stiffness, one can solve the system of
equations for φ and σ:

φ =
1

b
tanh−1

(

kδ

bτ

)

(22)

σ = −
1

b
ln

τ

a (ebφ − e−bφ)
. (23)

(24)
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