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Abstract— In this paper we study the problem of passive
walking for a compass-gait biped with gait asymmetry. In
particular, we identify and classify bifurcations leading to chaos
caused by gait asymmetries due to unequal leg masses. We
present bifurcation diagrams showing step period versus the
ratio of leg masses at various walking slopes. The cell mapping
method is used to find stable limit cycles as the parameters are
varied. It is found that a variety of bifurcation diagrams can
be grouped into six stages that consist of three expanding and
three contracting stages. The analysis of each stage shows that
passive dynamic walking has multiple attractors depending on
initial conditions, and marginally stable limit cycles exhibit not
only period doubling, but also period remerging, disconnecting,
and disappearing. We also show that the rate of convergence
of period doubling sequences is in good agreement with the
Feigenbaum constant.

I. INTRODUCTION

Passive dynamic walking refers to the property that a

suitably-designed biped can exhibit stable walking down

a gentle slope without any actuation [13]. A number of

studies on passive dynamic walking have been done over the

years, but little is known about the effect of gait asymmetry

on passive dynamic walking. Although symmetric walking

is considered what we call normal walking, the study of

gait asymmetry could enhance our understanding of bipedal

locomotion in both robots and humans. For example, a better

understanding of asymmetric walking for people with pros-

thetic limbs, injuries, surgical procedures, or handicaps that

introduce asymmetries. In this paper, we study a compass-

gait biped with asymmetric leg masses. We investigated the

effect of gait asymmetry by computing bifurcation diagrams

showing step periods versus bifurcation parameters.

Goswami et al. [6], [7] examined bifurcations as a function

of ground slope in passive walking of a compass-gait biped.

Period doubling bifurcations leading to a chaotic regime were

observed as the slope increased. Garcia et al. [5] showed that

a simplified walking model exhibits the same bifurcations in

passive dynamic walking by plotting stance leg angles versus

slope angles. Howell and Baillieul [11] used a torso-driven,

as opposed to slope-driven, biped to study bifurcations and

chaotic attractors. Aoi and Tsuchiya [1] used open loop

sinusoidal inputs, similar to a central pattern generator, to

generate periodic motions. They plotted the phase of the

oscillator at each step as the constant angular velocity of the
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phase varies. Both torso-driven and oscillator-driven semi-

passive dynamic walking revealed period doubling bifurca-

tions and chaotic attractors.

All of the above work on bifurcations in passive or semi-

passive dynamic walking has used symmetric models with

two identical legs. In the following sections, we introduce a

compass-gait biped which has gait asymmetry caused by two

different leg masses and derive the equations of motion. We

then present a new concept of the composite hybrid system

that is prerequisite for the analysis of asymmetric walking

and we perform a simulation study to identify bifurcations

and chaos as leg mass and slope are varied.

II. MODEL DESCRIPTION

A. The asymmetric compass-gait biped

In order to investigate gait asymmetry we utilize the

compass-gait biped [6], [7] shown in Fig. 1. This two degrees

of freedom biped has a hip joint connecting two straight legs

and walks passively in the sagittal plane. There are no knees

or torso. A hip mass is at the hip joint and two leg masses are

at the centers of left and right legs. Asymmetry means the

two legs are different from each other. For example, one leg

is slightly longer or heavier than the other. In this paper, we

primarily focus on bipeds with equal leg length but different

leg masses. However, we have observed similar results to

those presented here for the compass-gait with unequal leg

lengths.

The movement of the compass-gait biped is divided into

the swing and the impact phases. The swing phase describes

that one leg is fixed on the ground as a pivot and the other

leg swings above the ground while walking. These legs are

called stance leg and swing leg, respectively. Since there is

no external force, the total energy of the biped is conserved.

The impact phase describes the instant when the swing

leg strikes the ground after passing the stance leg. When the

two legs are overlapped during the swing phase the swing

leg also scuffs the ground, but we ignore this touchdown in

simulation. Knees or nonzero feet are required to avoid the

scuffing in practice. We make the standard assumptions that

the impact is perfectly inelastic and that there is no slipping

at the stance foot/ground contact. In passive walking the loss

of kinetic energy at impact is compensated by the increment

of the potential energy gained from the change in ground

slope.

B. Dynamics

The equations of motion during the swing phase can be

derived from the Lagrangian dynamics. We choose the two
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Fig. 1. A compass-gait biped and its one complete cycle of bipedal walking

leg angles θ
L

and θ
R

as generalized coordinates for the

compass-gait biped. They are with respect to the vertical

to level ground. It is important to note that gait asymmetry

requires two distinct equations of motions, one with a left

stance leg and the other with a right stance leg. The dynamic

equations for the compass-gait biped with a left stance leg

are described by [16][
M11 M12

M21 M22

]
q̈ +

[
0 C12

C21 0

]
q̇ +

[
G1

G2

]
= 0, (1)

where q = [q
L
, q

R
]T = [θ

L
(t), θ

R
(t)]T , and

M11 = l2(4m
H

+ m
L

+ 4m
R
)/4,

M12 = M21 = −l2m
R

cos(q
L
− q

R
)/2,

M22 = l2m
R
/4,

C12 = −C21 = −l2m
R

sin(q
L
− q

R
)q̇

R
/2,

G1 = −gl(2m
H

+ m
L

+ 2m
R
) sin(q

L
)/2,

G2 = glm
R

sin(q
R
)/2.

The other dynamic equations with a right stance leg can be

derived in a similar way.

Impact dynamics are governed by conservation of angular

momentum. Two distinct impact maps are also required

because of the different masses of the impacting legs.

q̇+ = R
L
(q−)q̇−, (2)

where superscripts − and + denote variables just prior to

and just after impact, respectively. The impact map with a

left stance leg is described by [6]

R
L
(q−) =

[
r+
11 r+

12

r+
21 r+

22

]−1 [
r−11 r−12
r−21 0

]
, (3)

where

r+
11 = l2(4mH + 4mL + mR − 2mL cos(q−

L
− q−

R
))/4,

r+
12 = l2mL(1 − 2 cos(q−

L
− q−

R
))/4,

r+
21 = −l2mL cos(q−

L
− q−

R
)/2,

r+
22 = l2mL/4,

r−11 = l2(−mL + 2(2mH + mL + mR) cos(q−
L
− q−

R
))/4,

r−12 = −l2mR/4,

r−21 = −l2mL/4.

Another impact map with a right stance leg can be similarly

derived.

III. SIMULATION METHODS

A. The hybrid flow of composite hybrid systems

One walking step has two phases: a continuous swing

phase and a discontinuous impact phase. Let q
L
, q̇

L
, q

R
, q̇

R

be state variables denoted by x, then state equations of each

phase are given by ẋ = f(x) and x+ = h(x−), respectively.

f(·) and h(·) with a left stance leg can be derived from (1)

and (2).

One walking cycle in gait asymmetry consists of two steps

for each of left and right stance leg as shown in Fig. 1, and

thus its dynamics requires four state equations as follows{
ẋ = f

L
(x),

x+
L

= h
L
(x−

L
), (4){

ẋ = f
R
(x),

x+
R

= h
R
(x−

R
). (5)

The equations (4) with a left stance leg and (5) with a right

stance leg represent the composite hybrid system.

Fig. 2 illustrates the hybrid flow of a four-dimensional

composite hybrid system or asymmetric walking trajectories

of a compass-gait biped. ΣL and ΣR which are three-

dimensional and transversal to the flow φ(x, t) of continuous

solutions represent hyperplanes for left and right stance legs,

respectively. A trajectory starting at an initial condition x0 ∈
ΣL returns to ΣL at x−

L just before the right swing leg hits

the ground. After touchdown, the trajectory instantaneously

jumps to x+
L ∈ ΣR at which the second step starts. In a

similar fashion, the trajectory returns to ΣL again completing

one walking cycle at x+
R which will be an initial condition

for the next walking cycle. If a gait is symmetric walking,

ΣL and ΣR are equivalent.
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Fig. 2. The hybrid flow of a composite hybrid system. One walking
cycle is represented by two continuous trajectories and two discrete jumps
connecting two distinct hyperplanes.
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B. Poincaré Map Method

We let xi denote the state variable x on ΣL after complet-

ing i cycles. If we select the hyperplane ΣL as a Poincaré

section, then the Poincaré map P is a mapping from ΣL to

ΣR to ΣL again, and can be defined by

xi+1 = P (xi), (6)

where P : ΣL → ΣL [17]. P is obtained by using the state

variable xi numerically updated from (4) and (5) every other

hyperplane.

Limit cycles corresponding to walking gaits are deter-

mined by finding fixed points x∗ of P . The walking cycle

satisfying x∗ = P k(x∗) is a period-k motion, which means

xi+k = xi and the cycle forms a closed orbit. k is said to

be the periodicity of the limit cycle.

The stability of the limit cycle is determined using the

Jacobian of the Poincaré map near fixed points, which is

also numerically calculated [6], [10], [14]. The eigenvalues

of the linearization all of which are inside the unit circle

guarantee the orbit locally asymptotically stable.

C. Cell Mapping Method

The cell mapping method [12] is used to find limit cycles

of the composite hybrid system and their periodicities. A

feasible region F ⊂ ΣL containing an initial condition x0

as a starting point of cell mapping process is minced into

a large number of small cell cubes whose center is located

at x0. Va(·) indicates the value of the cell cube containing

its state variable. Before mapping, all Va(·) are initialized

to −1 indicating that the cell cubes are virgin cells except

for the cell cube containing x0. We set Va(x0) = 0. The

mapping process starts from x0 and proceed forward using

Poincaré map function such as

x0 → P (x0) → P 2(x0) → · · · → P i(x0). (7)

At each step in generating this sequence, we need to consider

the following:

1) If the cell cube containing a newly generated P i(x0) is

a virgin cell which means Va(P i(x0)) = −1, then we

set Va(P i(x0)) = i, and move forward next mapping.

2) In case a newly generated P i(x0) is out of F , the

original cell mapping method maps it into a sink cell

and terminates the sequence. However we ignore this

sequence and go on next mapping since the state

variable comes back into F as long as the flow is

stable.

3) Va(P i(x0)) ≥ 0 indicates that the current cell cube

has encountered one of the previous sequences, and the

current sequence has converged to a limit cycle. Now,

this process is terminated. Suppose that the number of

cycle at this moment is n, the periodicity k of the limit

cycle is given by

k = n − Va(Pn(x0)). (8)

When it comes to practical considerations, the accuracy

of convergence is improved by reducing the size of cell

cubes, but the smaller size of cell cubes yields the larger

computation time. As for the feasible region F , it is hard to

choose sufficiently bulky F such that x∗ ∈ F at first. If a

flow does not come back to F in an appropriate number of

cycles, x0 should be placed at the current state variable and

another mapping process resumes in a new F̃ ⊂ ΣL.

IV. BIFURCATION DIAGRAMS

Variations of both leg masses cause gait asymmetry, and

thus the mass ratio rm = m
R
/m

L
was used as a parameter.

rm = 1 means symmetric walking, that is, both legs are

equivalent. As parameters of state equations are varied,

bifurcations may occur in the qualitative structure of the

solutions [8]. In bipedal locomotion, the bifurcations can be

observed from the properties of walking cycles such as step

period, walking speed, double-support angles between two

legs, and so on.

We performed numerical simulations for an asymmetric

compass-gait biped. All parameters except for rm were fixed

as follows: m
H

= 10 kg, mleg = m
L

+ m
R

= 10 kg,

l = 1 m. Although rm is varied, the total mass of the system

constantly maintains 20 kg since the sum of the two leg

masses were fixed. As for the cell mapping method, the size

of one side of a small cell cube was set to 10−8 and the

feasible region was a 100 by 100 by 100 cube.

We calculated walking periods that elapse between

Poincaré sections and the modulus of eigenvalues of the

Jacobian of Poincaré maps as a function of rm. Fig. 3 shows

the two diagrams plotted in logarithmic x-axis for a 2.04

degree slope. The upper diagram is for step periods, and

the lower diagram is for moduli of eigenvalues. Instead of

plotting one period of walking cycle, we divided it into two

periods of walking steps for left and right stance legs.

At ln rm = 0.0000 to 0.1432, a period-1 gait appears

although it shows a period-2 gait in the diagram. It is

because that we chose ΣL as a Poincaré section and thus

the trajectory hits ΣL every two steps. Two step periods

are equal at ln rm = 0, but they are different when ln rm

is out of zero, which exhibits the lame walk, thus one leg
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Fig. 3. A bifurcation diagram and its magnitudes of eigenvalues of the
Jacobian of Poincaré maps at a 2.04 degree slope
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TABLE I

SIX STAGES OF BIFURCATION DIAGRAMS

X 0.3

X 0.3

X 0.3

X 0.5

X 0.8

X 1.0

X 1.0

X 1.0

X 1.0

X 1.0

X 1.0

X 1.0

Stage
Slope

Bifurcation diagrams
Period vs. Mass ratio rm

A1
0.80

B1
1.90

C1
2.04

D1
2.10

E1
2.74

F1
3.00

Stage
Slope

Bifurcation diagrams
Period vs. Mass ratio rm

A2
3.50

B2
3.60

C2
3.74

D2
3.80

E2
4.70

F2
4.96

moves for longer time than the other leg does due to the gait

asymmetry. A period-2 gait appears when ln rm is greater

than 0.1432, and the periodicity is doubled as rm increases

until chaos appears. Note that changes of the periodicities

of both legs are exactly concurrent. As rm increases farther,

the chaotic attractors are suddenly contracted and expanded

making windows of chaos, which is called the interior crisis

[15], and then period remerging [2], also known as re-

doubling, occurs to make the trajectories back into a period-1

gait. These walking gaits are terminated at ln rm = 0.5412
after which the biped can no longer stably walk, and then

falls down. We did not plot unstable fixed points. When rm

decreases in the opposite direction, bifurcations symmetric

about ln rm = 0 occur. This symmetric property at 2.04

degree slope means that the walking gait is invariant even if

both leg masses are exchanged each other.

We continued to examine bifurcation diagrams by chang-

ing slopes. The lowest slope at which the stable passive dy-

namic walking exists was 0.03 degree, and the highest slope

was 5.20 degree. We obtained the stream of bifurcations

within these ranges, and each slope has its own bifurcation

diagram that can be classified as one of the several distinct

groups. The results were grouped into six stages as shown in

table I. The bottom right corner indicates the magnification

of the diagrams. In the following section, we describe the

features of each stage and consider the universality that holds

in all stages.

V. DISCUSSION

In symmetric walking gait, the period doubling bifurcation

leading to chaos was found and it resembles stage D in table

I. Our results on gait asymmetry in terms of walking slopes

show the same bifurcation. Stable period-1 gaits appears

from A1 to D2 at ln rm = 0 where a dotted line indicates

as the slope increases. Then, a stable period-2 gait appears

in E2 at ln rm = 0. It is still period-1 gait in a composite

hybrid system, but period-2 gait in symmetric walking since

there is only one Poincaré section. In this way, a period-4

gait appears in F2. As the slope increases, F2 moves to the

right-hand side, which causes period doubling bifurcations

at ln rm = 0. Finally, this process comes to an end at 5.20

degree without period remerging bifurcations.

We introduce five more stages of bifurcations exhibited in

passive dynamic walking. It is known that period doubling

gaits appear at the moment when the eigenvalues of the

Jacobian of the Poincaré map hit the boundary of the unit

circle. Thus, we examine each stage mainly focusing on the

stability of periodic gaits by using the lower diagram in Fig.

3. The vertical axis indicates the modulus of the eigenvalues

ranging from zero to one since only stable walking gaits were

plotted.

A. Stage A

Stage A exhibits no occurrence of bifurcations but quan-

titative changes in it. As the slope increases, the diagram

is expanding, and stable gaits take place in wider range of

rm. In case of A1 there are no changes in the periodicity of

stable gaits, but the stability of the system is getting worse

because the eigenvalues are approaching the boundary of the

unit circle as shown in Fig. 4 (a) and (b). The moduli of

the eigenvalues begin to swell around midpoints between

ln rm = 0 and each end at a 1.52 degree slope, and finally

Fig. 4 (c) shows that bubbles form at the place where the

peak of the hump touches one. A2 has also no changes in

bifurcations until increasing slopes make bubbles.

B. Stage B

Once bubbles have been formed, child bubbles are formed

in the bubbles and then grandchild bubbles are consecutively

formed in the child bubbles and go on spawning before

chaos while diagrams are expanding with increasing slopes.

In Fig. 4 (c), the most fragile regions are located at around

rm = 0.75 and rm = 1.31 where the first bubbles appeared

as a result of successions of two bifurcations, that is, period

doubling and remerging, which is called period bubbling in

[2]. Fig. 4 (d) shows that these bifurcations make the walking

gaits more stable as the the eigenvalues in the bubbles return

toward zeros. As the slope increases, new humps come out

from the stabilized eigenvalues in the bubbles and they are

rising again as shown in Fig. 4 (e), and finally yielding

child bubbles and period-4 gaits in Fig. 4 (f). In this way

consecutive period bubbling occurs from new born humps in

the stabilized child bubbles repeatedly.

It is observed that the first bubble in B1 has one child

bubble, but in B2, it has two child bubbles simultaneously
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(d) (e) (f)

(g) (h) (i)

(a) (c)(b)

Fig. 4. Transitions between stages: (a) 1.20◦ slope, (b) 1.52◦ slope, (c) 1.76◦ slope, (d) 1.84◦ slope, (e) 1.92◦ slope, (f) 1.98◦ slope, (g) 3.60◦ slope,
(h) 3.64◦ slope, and (i) 3.68◦ slope

formed in each branch of the first bubbles because two humps

of eigenvalues rise at the same time as shown in Fig. 4 (g),

(h), and (i).

C. Stage C

The bifurcation diagrams in gait asymmetry are still ex-

panding with increasing slope after chaos has appeared in the

bubbles as shown in Table I C1 and C2. Although walking

gaits are still stable in chaos, we are not able to analyze

the stability using eigenvalues since there are no more fixed

points on the Poincaré section. The Lyapunov exponent is

used to numerically analyze the chaotic attractor [9], but we

did not go further.

D. Stage D

The previous three stages have been expanding so far

with increasing slope. Here is the turning point at which

bifurcation diagrams begin to contract. The tips in bifurcation

diagram C1 and C2 indicate the borders where stable walking

gaits exist. If rm steps out of the borders, the gait is unstable

and the biped falls down. As the slope increases, D1 and D2

in Table I show that all tips disappear and the regions where

period remerging occurred vanish away instantly.

E. Stage E

In stage E, shrinking bifurcation diagrams are discon-

nected at a certain rm and separated into two parts: the

survivor and the vanisher. After D1, the regions where

period-2 gaits exist are disconnected at around rm = 1.104
at a 2.60 degree slope as shown in Fig. 5 (c) yielding a

disconnected diagram like E1. The survivor is the middle part

that consists of period-1 and period-2 gaits, and the vanishers

are both extremities which include chaos. The disconnecting

bifurcation occurs when a dominant eigenvalue hits the

boundary of the unit circle. Fig. 5 shows that another peak

stemmed from the mountainside of eigenvalues reaches one

causing disconnection. E2 also has a left part as the survivor

and a right part as the vanisher.

F. Stage F

In this stage, the vanisher dwindles away at the edge be-

tween the survivor and the vanisher with increasing slope. In

the end the vanisher completely disappears, but the survivor

is shrunken relatively a little bit as shown in F1 and F2. After

that, bifurcation diagrams begin to expand again as the slope

increases.

It is notable in E2 and F2 that bifurcation diagrams

are not symmetric about ln rm = 0. If we assume that

exchanging leg masses does not change walking gaits, then

the asymmetric diagrams imply the existence of multiple

attractors. Simulation work confirmed this inference. In F2,

an initial condition

x1(0) = [12.2043, −66.4059, −22.1243, −7.8939][deg]

at rm = 1.005 converges to a stable period-1 gait, but another

(a) 2.30° slope (b) 2.50° slope (c) 2.60° slope

rm = 1.104

Fig. 5. Transitions from stage D to E
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TABLE II

FEIGENBAUM CONSTANTS IN PASSIVE WALKING

Stage rm at P-16 rm at P-32 rm at P-64 δ

C2
3.74

1.094313 1.094794 1.094897 4.669903

D2
3.80

1.088440 1.088787 1.088861 4.689189

E2
4.70

1.026028 1.026130 1.026152 4.636364

F2
4.96

0.993703 0.993721 0.993802 4.500000

initial condition

x2(0) = [14.5004, −67.8733, −24.4204, −0.3884][deg]

at the same rm converges to a stable period-4 gait.

The expansion and contraction of bifurcation diagrams

were observed again after F2, but we were not able to classify

them as six stages.

G. Universality

In previous subsections, we have been focusing on the

features of each stage. We are here concerned with the

universality that holds true for all stages. Feigenbaum was

the first to discover that ’the rate of convergence’ of the

period doubling sequences was the same between different

maps [9]. Let bn be the parameter value at which period-2n

motions appear. Then

δ = lim
n→∞

bn+1 − bn

bn+2 − bn+1
(9)

is universal with δ = 4.6692016091029 · · · [4]. We numer-

ically calculated periodicities in each stage of C2, D2, E2,

F2 up to period-64 gaits, and the rates of convergence are

shown in table II. We note that there is period remerging

in stage F2. Therefore we may conclude that the rate of

convergence of period doubling sequences in each stage is

in good agreement with the Feigenbaum delta constant.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We have proposed the concept of the composite hybrid

system in order to exploit the effect of gait asymmetry in

bipedal locomotion. The ground slope and the mass ratio

of right leg to left leg are used as bifurcation parameters,

and the consecutive and repeatable types of bifurcations

are calculated and grouped into six stages. The first three

of them are expanding stages and the other three of them

are contracting stages. The transition between stages is

closely relevant to the stability of the limit cycles. We

have discovered multiple attractors and the fact that passive

dynamic walking exhibits four types of bifurcations: not only

period doubling, but also period remerging, disconnecting,

and disappearing. Furthermore, the same six stages appear in

gait asymmetry even if we use another bifurcation parameter

such as the length ratio of right leg to left leg instead of the

mass ratio.

B. Future Work

We are developing control laws to compensate for dis-

parities in masses and to generate balanced and symmetric

walking gaits from gait asymmetries. Ephanov and Hurmuzlu

[3] have generated normal gaits of planar five link biped

with gait asymmetries via swing phase control. One of the

challenging issues of our model is to implement impulsive

control strategies. Two different hybrid systems converge to

different attractors, which can be moved to the same places

by the control effort at impact phase.
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