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Abstract— This paper is concerned with path planning
for an autonomous flight vehicle operating in a steady,
uniform flow-field. We model the vehicle as a particle
that travels in the horizontal plane at a constant speed
relative to the ambient flow. The vehicle may turn in either
direction, subject to symmetric constraints on the turn rate
and the turn acceleration. The contribution of the paper is
a simple method for generating candidate minimum-time
paths from a given initial point and heading to a given
final point and heading.

I. INTRODUCTION

A variety of civilian and scientific applications for

autonomous vehicles are being pursued, including min-

ing [1], search and rescue [2], and surveillance and

reconnaissance [3]. Applications that are envisioned for

the future will place increasingly stringent demands on

vehicle performance. Autonomous flight vehicle appli-

cations, for example, may require effective operation

in confined or cluttered domains and/or in significant

winds. Commercial autopilots can be readily integrated

into modern flight vehicles and can easily accomplish

low-level control tasks, such as maintaining straight-

and-level or turning flight. Higher level guidance algo-

rithms provide turn rate inputs for the low-level control

loops to achieve convergence to desired paths, typi-

cally sequences of straight segments connecting user-

specified waypoints. Because a flight vehicle cannot

instantaneously change course, the guidance algorithm

may incorporate some transient maneuver (a “pre-turn,”

for example) to transition smoothly between straight

segments. This approach to path planning and guidance

does not account, however, for the effect of ambient

wind or for the limitations on turn rate and turn ac-

celeration.

Here we consider the problem of designing a path that

connects a given initial state (position and heading) to

a given final state in the same horizontal plane. The

procedure is informed by prior analysis of minimum
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time paths for constant-speed vehicles or, equivalently,

minimum length paths. The assumption of a steady,

uniform flow-field makes the algorithm suitable for un-

manned aerial vehicles (UAVs) flying in winds, as well

as for underwater vehicles — such as underwater gliders

— operating in ocean currents and unmanned surface

vehicles operating in riverine environments, provided the

flow-field varies slowly relative to the vehicle motion. To

ensure that following the path is feasible, we require the

path to be continuous, and also that the curvature is a

continuous function of the path parameter.

Dubins [4] studied minimum length paths with a

bound on the average curvature and proved that they may

be composed only of straight segments and circular arcs.

Moreover, minimum length paths comprise at most three

such segments. The problem was later re-formulated and

studied using Pontryagin’s minimum principle in [5],

and additional necessary conditions for optimality were

provided in [6].

More recently, the method was applied to a UAV with

a bounded turning rate flying in a steady, uniform wind

[7]. In that paper, minimum-time paths are designed in

the air relative frame: an inertial frame that translates

with the ambient flow. The desired final point in inertial

space corresponds to a point in the air relative frame,

a “virtual target,” that moves with the same speed as

the wind and in the opposite direction. The method

requires iterative solution of the Dubins problem in the

air relative frame, until the interception error converges

to zero. It was later established that there exists a unique

solution for almost every pair of initial and final states

(Theorem 3 in [8]).

An alternative solution to the path planning problem

is presented in the papers [9], [10], where analytical

solutions are found for a subset of candidate extremals,

exploiting the geometry of the problem, and recognizing

that maximum effort (“bang”) turns in the air relative

frame correspond to trochoidal curves in the inertial

frame [11]. The path planning method yields trajecto-

ries that are composed of straight lines and trochoidal

segments. The transition points where these segments

are smoothly joined together, however, correspond to

points where the path curvature is discontinuous. At

these points the vehicles would need to change the turn

rate instantaneously. While this is possible for some
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mobile robots, it is not feasible for fixed-wing flight

vehicles.

Continuous-curvature path planning was studied in

[12]. It was shown that extremal paths contain clothoidal

curves, i.e. curves which have linearly varying curvature,

and straight segments. Later it was shown that these ex-

tremal paths may be composed, in general, of an infinite

number of pieces [13]. In [14], a simple path planning

method is presented that exploits the geometrical sym-

metry of the optimal paths. The solutions can be found

analytically, and they may be composed of clothoids,

circular arcs, and straight segments, generalizing Du-

bins paths to the case where turn acceleration bounds

are present. Because of the anticipated complexity of

finding all extremal solutions, the search for optimal

trajectories is confined to a finite set. The proposed

paths are referred to as Simple Continuous-Curvature

(SCC) paths. The algorithm essentially finds the points

where the clothoids, circular arcs, and straight paths

may be smoothly joined together, forming a feasible,

continuous-curvature path. The difficulty of working

with clothoid curves, for which no explicit analytical

expression exists, is relaxed by the observation that the

resulting paths are symmetric with respect to a charac-

teristic line. Finding the points, where clothoid curves,

circles, and straight lines may be smoothly stitched

together, has been extensively studied in the past in the

context of highway engineering [15], [16], and computer

graphics [17]. Clothoid curves have the property that the

curvature changes linearly along the path, and so does

the lateral acceleration experienced by a car or train

traveling along such a curve. In highway engineering,

such curves are often referred to as transition spirals

[18].

Turn No Wind Uniform Wind
Constraint

None Straight line Zermelo’s problema

Rate Dubins path [4] Convected Dubins
path [9] [10]

Rate and Continuous-Curvature Continuous-Curvature
Acceleration Dubins [19] [14] Convected Dubins

(present work)

aZermelo’s problem also addresses the case where the external
flow is not uniform.

TABLE I

PATH PLANNING PROBLEMS FOR PLANAR KINEMATIC VEHICLES.

Table I summarizes the path planning problem types

in the absence or presence of ambient winds, and with

different control bounds. The complexity of the problem

increases from the top left to the bottom right. The

simplest situation is when there are no bounds on the

turn rate, that is, the desired heading/course can be

immediately achieved. In the absence of flow this corre-

sponds to a straight line between initial and final points.

This result is a special case of Zermelo’s problem, which

concerns optimal paths in flows. If there are bounds

on the maximum achievable turn rate, the problem is

referred to as Dubins’ problem, as discussed earlier; its

generalization to the case where winds are present is

discussed in [10].

In this paper we present a method to find continuous-

curvature paths in the presence of a steady, uniform

flow-field. Similar to the work described in [14], we

only consider a finite subset of all candidate extremals.

We focus our attention on the candidate extremals,

which are composed of an initial turn, followed by

a straight segment, then followed by a second turn.

The turns are composed of either three or two sub-

segments. In the first case, the first sub-segment is a

maximum acceleration turn, until the maximum allowed

turn rate is reached. The second sub-segment is a max-

imum rate turn. The third sub-segment is a maximum

deceleration turn, until the zero turn rate condition is

reached. In the second case the maximum turn rate is

not reached. Hence the intermediate (maximum turn-

rate) sub-segment vanishes. Our approach focuses on

identifying those switching points, where the straight

segments, maximum acceleration turns, and maximum

turn-rate turns can be stitched together to form a smooth,

continuous-curvature path. More specifically, we use the

continuity equations at the switching points (the velocity

vector must be continuous) to set up a numerical root-

finding problem to find the path parameter values where

such transitions occur.

The paper is organized as follows. In Section II we

present the vehicle model used for path planning. In

Section III we present the path planning algorithm that

is the main contribution of the paper. Section IV shows

simulation results, and Section V provides conclusions.

II. VEHICLE MODEL

We use a simple particle model for the UAV, described

by the equations

ẋ(t) = Va cosψ(t) + Vw (1)

ẏ(t) = Va sinψ(t) (2)

ψ̇(t) = αφ(t) (3)

φ̇(t) = u(t). (4)

Here [x(t), y(t)]T denotes the inertial position of the

aircraft in the horizontal plane, ψ(t) is the heading

angle measured from the x-axis, Va is the constant

airspeed, and Vw is the constant wind speed, which we

assume to be aligned with the inertial x-axis, without

loss of generality. We assume that Vw < Va to ensure

a feasible solution exists for arbitrary initial and final
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conditions. (If Vw ≥ Va, some regions of state space are

unreachable; see Lemma 3.2.1 in [20].)

The model described by equations (1)-(4) was se-

lected to capture the fact that the turn rate of the vehicle

cannot change instantaneously. In equilibrium turning

flight, the heading rate of change can be expressed as a

function of bank angle φ(t), as

ψ̇(t) =
g

Va

tanφ(t).

In typical aircraft operations, where the bank angle is

small (φ(t) < 30◦), we can approximate the above rela-

tionship with the simple expression ψ̇(t) ≈ g/Vaφ(t) =
αφ(t). Hence in equations (1)-(4) one can identify φ(t)
with the aircraft bank angle. The rate of the bank

angle is the control input. The aircraft lateral dynam-

ics are primarily affected by the ailerons, which are

differentially operated control surfaces on the wings.

A small deflection of the ailerons results in a torque

about the aircraft longitudinal axis, and ultimately an

angular acceleration about the same axis. In addition

to the limitations imposed by the aircraft dynamics

and actuator limits, the rate of the bank angle is also

constrained by structural load limits on the wings. The

control signal is thus constrained to a compact set u ∈
[−ū, ū].

Anticipating bang-bang and singular solutions, we

constrain the control signal to the set u ∈ {−ū, 0, ū}.

For a turning segment of a given sense, there are two

cases to consider. In both cases, we denote by t̄ the total

time required to complete the given turn segment.

Case 1: The maximum bank angle is reached. In

this case the turn rate is saturated, and the aircraft will

continue its maximum constant rate turn for a certain

time. After that, the bank angle is decreased until the

aircraft reaches straight and level flight again. The turn

is initiated by a maximum bank angle rate turn:

φ(t) = ūt.

The maximum bank angle is reached at time

t1 = φ̄/ū > 0. The bank angle for the entire turn

can be written as

φ(t) =







ūt, t ∈ [0, t1]
ūt1, t ∈ [t1, t̄− t1]

−ū(t− t̄), t ∈ [t̄− t1, t̄].
(5)

The heading angle is then

ψ(t) =







αū t2

2
+ ψ0, t ∈ [0, t1]

αūt1t+ ψ0 + C1, t ∈ [t1, t̄− t1]

αū(tt̄− t2

2
) + ψ0 + C2, t ∈ [t̄− t1, t̄].

(6)
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Fig. 1. Bank angle and heading angle for two different cases of turns.
In Case 1 the maximum bank angle is reached, while in Case 2 the
maximum bank angle φ̄ is not reached.

The constants can be easily found from continuity con-

ditions at t = t1 and t = t̄− t1:

C1 = −αū
t2
1

2

C2 = −α
ū

2

(

2t2
1

+ t̄2 − 2t̄t1
)

.

At the end of the turn, t = t̄, the heading angle is given

by the following expression

ψ(t̄) = −αūt2
1

+ ψ0 + αūt1t̄. (7)

Case 2: The maximum bank angle is not reached. In

this case, the aircraft will initiate a maximum bank rate

turn, and before the maximum bank angle is reached, it

will start to come back to straight and level flight again.

The bank angle for the entire turn can be written as

φ(t) =

{

ūt, t ∈ [0, t̄/2]
−ū(t− t̄), t ∈ [t̄/2, t̄].

(8)

The heading angle is then

ψ(t) =

{

αū t2

2
+ ψ0, t ∈ [0, t̄/2]

αū(tt̄− t2

2
) + ψ0 + C, t ∈ [t̄/2, t̄].

(9)

The constant C can be easily found from the continuity

condition at t = t̄/2:

C = −αū
t̄2

4
.

The different cases are illustrated in Figure 1, where

the time histories for bank angle and heading angle are

shown for a Case 1 and a Case 2 turn.

III. PATH PLANNING

We present a simple path planning method to find

candidate time-optimal paths between initial and final

points in the plane. The motivation of the work is the

optimality analysis presented in [13], as well as the
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results presented in [14]. For simplicity of the discus-

sion, we restrict our attention to those paths for which

an initial turn is followed by a straight segment and a

second turn. (The restriction requires that the the initial

and final point are “sufficiently distant.”) As in [10], we

seek the solutions in terms of switching points, where

the initial and final turns may be smoothly connected

with a straight path. The point where the vehicle leaves

the initial turn on the straight segment will be denoted

as PA, and the point where it starts the final turn will be

denoted PB . The path parameters at these points will be

denoted as tA and tB . Consider two paths in the plane,

corresponding to the initial and final turns, and defined

by the equations

x1(t) =

∫ t

0

(Va cosψ1(τ) + Vw) dτ (10)

y1(t) =

∫ t

0

Va sinψ1(τ)dτ (11)

x2(t) =

∫ t

0

(Va cosψ2(τ) + Vw) dτ (12)

y2(t) =

∫ t

0

Va sinψ2(τ)dτ. (13)

Remark 3.1: There is a slight abuse of notation here

in using the same path parameter for the two paths.

The paths must satisfy the following conditions:

[x1(0), y1(0)]T = [x0, y0]
T

[x2(0), y2(0)]T = [xf , yf ]T .

Note that in this setting the second turn starts at path

parameter t = 0, and the parameter value tB < 0
corresponds to a configuration reached by integration in

reverse time. With no bounds on the turn acceleration,

equations (10)-(13) could be integrated to obtain closed-

form expressions for the paths corresponding to trochoid

curves [10]. The chief complication in the path planning

problem presented in this paper is that there are no

closed form solutions to the above integrals with the turn

rate signals given in Section II. In the air-relative frame,

the transition curves between straight segments and max-

imum turn rate segments are clothoid curves (Cornu spi-

rals); the corresponding spatial coordinates [x(t), y(t)]T

are special forms of the Fresnal-integrals [21], for which

no analytical expressions exist. Consequently, the points

[x1(tA), y1(tA)]T and [x2(tB), y2(tB)]T must be found

by numerical integration.

Since the path connecting points PA and PB is a

straight line, the heading angles have to satisfy the

continuity equation:

ψ1(tA) = ψ2(tB) + 2kπ, k ∈ Z, (14)

where Z is the set of real integers.

Consider the following four types of trajectories. Type

1 trajectories are those for which both the initial and final

turns are Case 1 turns, i.e. the maximum bank angle is

reached. Type 2 trajectories are those for which both the

initial and final turns are Case 2 turns, i.e. the maximum

bank angle is not reached. Type 3 (Type 4) trajectories

are those for which the first (second) turn is Case 1, and

the second (first) turn is Case 2. We present analysis

results for Type 1 and Type 2 paths; the other two types

can be computed in a similar fashion.

In both cases the objective is to find the straight path

that connects points PA and PB . At these two points

the following additional continuity equations must be

satisfied:

• The velocities at point PA and point PB must be

equal:

(ẋ1(tA), ẏ1(tA))T = (ẋ2(tB), ẏ2(tB))T . (15)

• The line segment joining points PA and PB must

be tangent with the velocity vectors at both points:

tan(α) =
y2(tB) − y1(tA)

x2(tB) − x1(tA)
(16)

tan(α) =
ẏ2(tB)

ẋ2(tB)
=
ẏ1(tA)

ẋ1(tA)
. (17)

A. Type 1 Extremals

In this case both the initial and final turns are Case 1

turns. Substituting t̄ = tA into equation (7), we get the

expression

ψ1(tA) = −αδ1ūt
2

1
+ ψ10

+ αδ1ūt1tA,

where we have introduced the variable δ1 ∈ {−1, 1} to

denote the direction of the turn (left or right, respec-

tively). Similarly,

ψ2(tB) = αδ2ūt
2

1
+ ψ20

+ αδ2ūt1tB .

Notice that the sign of the terms has changed because

of integration in reverse time, and because of the as-

sumptions t1 > 0 and tB < 0. From the continuity

equation (14), we get the expression

tB = tA
δ1
δ2

+
ψ10

− ψ20

αδ2ūt1
− t1

δ1 + δ2
δ2

+
2kπ

αδ2ūt1
. (18)

Using equations (15)-(17) one may obtain the following

equation

ẏ1(tA)(x2(tB) − x1(tA)) = ẋ1(tA)(y2(tB) − y1(tA)).

Substituting equation (18) into the above expression, one

obtains a single equation for tA. This equation must be

solved numerically. In this work, we use the bisection

algorithm to obtain the root tA. Once tA is known, tB
may be found using equation (18).
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B. Type 2 Extremals

Substituting t = tA into equation (9), we get the

expression

ψ1(tA) = αδ1ū
t2A
4

+ ψ10
.

Similarly,

ψ2(tB) = αδ2ū
t2B
4

+ ψ20
.

From the continuity equation (14), we get the expression

tB = −

√

∣

∣

∣

∣

4(ψ10
− ψ20

+ 2kπ)

αδ2ū
+
δ1
δ2
t2A

∣

∣

∣

∣

. (19)

As for Type 1 extremals, one may then obtain a single

equation for the root tA, which can be solved using the

bisection algorithm, for example.

Remark 3.2: There are an infinite number of solutions

for the above root-finding algorithm. These solutions

correspond to those paths for which the air-relative

velocity vector describes multiples of a full revolution

before eventually joining the straight segment. Since

those trochoidal segments for which the velocity vector

describes more than two full revolutions cannot be opti-

mal (see Lemma 3.2.2 in [20]), one can limit the num-

ber of possible solutions to a small set. Appropriately

selected initial estimates for the root-finding algorithm

will ensure that all roots in a given range are found. The

minimum-time solution is selected among the candidates

simply by comparing the total time required to complete

each of the paths.

IV. RESULTS

The path planning method has been implemented for

Type 1 and Type 2 trajectories. In the simulations, we

used the parameter values Va = 20 m/s, Vw = 5 m/s,
ū = 0.3 rad/s, α = 0.4905 1/s, and φ̄ = 30◦.

Figure 2(a) shows the results of the path planning

algorithm for a Type 1 path. The candidate time-optimal

path is composed of a right turn followed by a straight

path, then followed by a left turn. Both the initial and

final turns are composed of three distinct segments: a

maximum acceleration turn until the maximum bank

angle is reached, a maximum bank angle segment, and

a maximum acceleration turn bringing the aircraft back

to straight and level flight. Figure 2(b) shows the time

histories of the bank angle and the heading angle during

the complete maneuver.

Similarly, Figure 3(a) shows an example where the

candidate time-optimal path is a Type 2 trajectory. The

turns are composed of segments where the maximum

bank angle is not reached (see Figure 3(b)). Figure 4

shows all four candidate extremals. In this particular

example all four extremals are Type 1 trajectories.

50 0 50 100 150 200 250 300 350

50

100

150

200

250

300

350

Start

End

x
N

y
E

P
A

P
B

(a) Type 1 path.
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(b) Time histories of φ(t) and ψ(t) for the above Type 1 maneuver.

Fig. 2. A Type 1 maneuver. In this case both the initial and final
turns are saturated, i.e. the maximum bank angle is reached.

V. CONCLUSIONS

This paper describes a path planning algorithm that

generates candidate time-optimal paths between initial

and final points in the horizontal plane with prescribed

headings. The algorithm accounts for a steady, uniform

ambient flow and accommodates bounds on turn rate and

turn acceleration. Thus, the method generates smooth

(continuous curvature) paths for flight vehicles that

cannot change their turn rate instantaneously.

The method is immediately applicable for unmanned

aerial vehicles flying in winds or for underwater ve-

hicles in ocean currents. Our future work will focus

on implementing the path-planning algorithm onboard

underwater gliders and validating the paths’ feasibility

in experiments.
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Fig. 3. A Type 2 maneuver. Both the initial and final turns are
completed without reaching the maximum bank angle.
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