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Abstract— This paper studies a distributed path planning
problem: how can a sensor network help to navigate a robot to
its desired goal in a distributed manner. We consider the case
where each sensor node is equipped with sophisticated sensors
capable of giving a map for its sensing region. We propose
a distributed sampling based planning framework (Distributed
PRM), where every sensor node creates a local roadmap in its
locally-sensed environment; these local roadmaps are “stitched”
together by passing messages among nodes and form a larger
implicit roadmap without having a global representation. Based
on the implicit roadmap, a feasible path is computed in a
distributed manner, and the robot moves along the path by
interacting with sensor nodes, each of which gives a portion of
the path within the local environment of the node. Preliminary
simulations show the proposed framework is able to solve path
planning problem with low communication overhead.

I. INTRODUCTION

Robot navigation is a fundamental problem in mobile

robot research, and the navigation problem in the context
of sensor networks has been studied in several recent works

[1], [2], [3], [4], [5], [6], [7], [8], [9]. While traditional
navigation relies on sensors on-board the robot to sense
the environment, sensor networks greatly extend the sensing

capability of the mobile robot, and make it possible for the
robot to move beyond its current sensing range, and respond

to distant events. This is particularly useful in navigating a
robot (or humans) across a hazardous environment [10]. In

such applications, sensor nodes can sense “dangers” (e.g.,
spots with excessive heat or radiation), and model danger

areas as obstacles (in classic path planning sense). However,
all existing works assume only simple sensors, such as
temperature sensors, are available, and hence the entire

sensing region of a sensor is either free or in danger (so we
call such sensing model as “binary” model). Moreover, they

either assume light-of-sight communication [5], which can
be blocked by physical obstacles (e.g. walls), or they do not

take into account physical obstacles in the planning phase,
and leave physical obstacle avoidance to the execution phase

and require replanning when the robot detects an obstacle in
the way [8]. This may result in quite lengthy and costly paths.

Clearly, such a sensing and navigation scheme is too

simple for more sophisticated applications. For example in
emergency rescue applications [11], a pre-deployed static

sensor network, such as overhead cameras, or a mobile
robotic sensor network, where each robot is equipped with
laser scanners, can be used to detect victims and guide fire-

fighters and rescue robots. These sensors provide much richer
information, e.g., a spatial map rather than a single reading.

At the same time, the navigation tasks in this case are usually
more constrained. For instance, collapsed walls may block

some areas, and a feasible path may run through a narrow

passage of some sort lying across sensed regions of multiple
sensors. In order to effectively navigate a rescue robot or a

fire-fighter through the rubble, these multiple sensors need to
cooperate with each other, take into account obstacles when

planning paths, and thereby plan a feasible and more efficient
path.

Such cooperation can be costly (in term of communica-
tion) due to the distributed nature of sensor networks. More
generally, building a centralized and global representation

of the environment can be time- and bandwidth-consuming,
therefore distributed approaches are intrinsically desirable

for better scalability and efficiency. This is true even in
systems with simple sensing, and our previous work [9]

and many others [4], [6], [7], [8] have studied how to
reduce communication costs therein. In our case, each node

perceives much more information, i.e., a local map around it,
and collecting such maps to build a centralized representation
would have huge communication burden.

In this paper, we propose a distributed planning frame-
work, Distributed PRM (D-PRM), to systematically incor-

porate a general spatial sensing model for each sensor. It
takes into account “obstacles” in determining feasible paths.

Each sensor creates a local roadmap (a patch) similar to the
classic sampling based techniques, such as PRM [12] and

RRT [13], but only in its locally-sensed environment1. Two
different patches of roadmap are “stitched” together with

a set of relay points, lying in the common region shared
by the two patches. Sensor nodes mutually negotiate the
connectivity of their patches by sending messages regarding

the status of their respective relay points. When two adjacent
nodes see a relay point free, it becomes a connecting point

for the two patches. To find the shortest path on distributed
roadmaps, a distributed (discrete) navigation field is created

across the sensor network, which maps each sample in local
roadmaps into distance to the desired goal, and the best path

is computed by gradient descent.
To the best of our knowledge, this is the first work to study

the distributed path planning in sensor networks with such

complex spatial sensing capability. It is worth pointing out
that there is another thread of research studying distributed

motion planning from the perspective of parallelism [15],
[16], [17], [18], which focuses on distributing computation

into different processors. All these works, however, assume
processors have access to either a shared or a private copy

of a global C-space representation, and therefore address a
different problem.

1We have also implemented a distributed RRT (D-RRT), however, due
to space limitations we report only D-PRM. D-RRT implementation is rather
similar. Please see [14] for details.
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Fig. 1. Sensor model of nodes (a) and (b). Black represents Blocked,
white represents Free, and Gray represents Unknown. The circles represent
the respective sensor ranges.

The remainder of the paper is organized as follows. The
problem formulation is given in Section II, overview of the

proposed solution are given in Section III, details of proposed
algorithms are given in Section IV, and simulation results are

given in Section VI, followed by conclusions in Section VII.

II. PROBLEM FORMULATION

Consider a system with a sensor network and a robot.

The sensor network consists of a set of sensor nodes,
S = {s1, · · · , sn}. Sensor nodes know their own positions,

{x1, · · · , xn}, and two nodes can communicate if they are
within distance, dc, the communication range. The network
formed by sensor nodes is modeled as a proximity graph,

G(V, E), whose vertices, V = {1, · · · , i, · · · , n}, represent
sensor nodes, and an edge (i, j) represents the communica-

tion link between nodes i and j. The set of neighbors of
node i is denoted by N(i) =

{

j
∣

∣ ‖xj − xi‖ ≤ dc

}

;

A sensor node can sense obstacles and other potential
dangers within its sensing range, ds, and creates a map, Hi,

for its local physical environment, as shown in Fig.1. We
assume ds = dc for simplicity but can be easily extended
(see Section V for discussion). A point on the map is in one

of three different states: Free, Blocked, or Unknown, and we
denote the free portion of Hi as Hfree

i . The distributed rep-

resentation of the environment is H = {H1,H2, · · · ,Hn}.
Certainly two maps may overlap, and we call the overlapped

region of two maps as relay zone, RZ(i, j) = Hi

⋂

Hj . Note
that it is possible the same point in the overlap region has

different states in two maps, for example due to occlusion,
a point may be Free in Hi, but Unknown in Hj .

The robot, A, is assumed to be a point (circular) robot,

for which the workspace and the configuration space (C-
space) are identical, although our approach can be easily

extended to the more general C-space. The robot is mounted
with sensor and wireless communication devices that can

communicate with sensor nodes within dc. For simplicity,
we assume the robot knows its own location, xA, this can

be realized either by mounting the robot with devices such
as GPS, or by localization using the sensor network [19].

Thus, the distributed path planning problem is to find a

path, Π =
{

Π1, Π2, · · · , Πm

}

, for the robot to go from the
current position, xs, to a desired goal, xg , such that (i) Π
is a continuous path, i.e., Πk(1) = Πk+1(0), and (ii) each
path segment, Πk, is collision free inside a local environment

sensed by a sensor node.

Fig. 2. Messaging in distributed path planning.

III. OVERALL SOLUTION

The proposed distributed sampling based framework con-
sists of four different phases outlined as follows. Detailed

algorithms are given in Section IV. For conceptual simplicity
we present these phases as distinct and in a sequential order.

In practice, these phases may overlap or interleave, especially
when there are dynamic changes in the environment.

1) Perception and pre-processing. In this phase, the sensor

network gains knowledge of the system connectivity
and the environment. Sensor nodes broadcast their ba-

sic information (e.g., positions), establish connections
with their neighbors, and perceive their local environ-

ment by using sensors (e.g., cameras, laser, etc.). Pre-
processing of planning is also done in this phase. For
example, D-PRM creates a C-space roadmap, Ri =
(Vi, Ei), for the locally-sensed environment, where Vi

is the set of landmarks (random samples), and Ei is

the set of connections among landmarks. The set of
neighbors of a landmark, v, is denoted by Ni(v) =
{

u
∣

∣(u, v) ∈ Ei

}

. Note that each roadmap is local,
there is no sharing of roadmaps, and hence there is no

communication involved, as far as roadmap building is
concerned.

2) Task dissemination. When the robot wants to go some-

where, it sends out a request (in MSG TASK message)
to the sensor network asking for direction. A sensor

node that has the goal inside its sensed region then
initiates distributed planning, in the next phase.

3) Distributed planning. This is the main phase. Here,
local roadmaps in different sensor nodes are “stitched”

together by sensor nodes sending MSG RELAY mes-
sages, thereby creating a distributed navigation field
throughout the roadmap, based on a cost function,

C(v). With the navigation field, each sensor node
knows the local segment of the path (to the goal)

from any point inside its local environment via gradient
descent.

4) Query and execution. The robot queries for the path
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Fig. 3. Distributed Roadmaps. Dark dots represent landmarks for node
i, white dots represent landmarks for node j, and gray squares represent
relay points. As shown in the insets, each relay point comprises two relay
landmarks, one each from the neighboring roadmaps.

from the sensor network (with MSG QUERY message),
and moves from one sensor node to another. A sensor

node receiving the query message returns the local
segment of the path to goal (in MSG PATH message)

based on its local navigation field. The robot moves
along the returned segment of the path, reaching next
sensor node and repeats the query/execution procedure

again until the desired goal is reached.

A. Notation Summary

• G = (V, E): proximity graph of the system;
• N(i): neighboring sensor nodes of a node i;
• Hi: local physical environment perceived by node i;
• Ri = (Vi, Ei): C-space roadmap for environment Hi;

• Ni(v): neighboring landmarks of v on Ri;
• Ci(u): cost to goal from a local landmark u ∈ Vi;
• πi(u): next landmark in the path from u to goal.

• RZ(i, j) = Hi ∩ Hj : relay zone (in physical space)
between node i and j;

• RS(i, j) = Ri ∩ Rj : relay set (in C-space) between
node i and j;

We use i, j, k to refer to sensor nodes in the sensor

network, and u, v, w for landmarks in a roadmap.

IV. ALGORITHMS

A. Preprocessing

a) Local environment perception: A sensor node senses
the environment with its own sensor. In our simulation,

each sensor node is assumed equipped with a laser range-
finder to sense the environment, and uses grid map as local

world representation, however other choices of sensors (e.g.
cameras) and world representation (e.g., continuous function)
are also possible, and our algorithms easily extend to these

cases as well.
b) Relay sets - the stitches: Ri defines local C-space

connectivity corresponding to Hi, and connectivity between
Ri and each of its neighbors, say Rj , is defined by a relay

set, RS(i, j), within RZ(i, j), the relay zone. As shown in
Fig.3, a relay set consists of relay points, and each relay

point comprises two relay landmarks, one each from the

Algorithm 1: Local PRM Planning of Sensor Node i

begin1

if qg ∈ Hi then /* sensed the goal? */2

Add qg into roadmap Ri;3

vg ← (qg); Ci(vg)← 0;4

U ← {vg};5

Update Field(U ); /* see sub-routine */6

endif7

if MSG RELAY:
`

j, {Cj(v), v ∈ RS(i, j)}
´

received then8

foreach v ∈ RS(i, j), s.t. Cj(v) < Ci(v) do9

Ci(v)← Cj(v);10

U ← U
S

{v};11

endfch12

Update Field(U );13

endif14

end15

Sub-Routine: Update Field(U )16

begin17

foreach u ∈ U do /* Loop until U = ∅ */18

foreach v ∈ Ni(u) and Ci(v) < Ci(u) + ‖v − u‖ do19

Ci(v)← Ci(u) + ‖v − u‖;20

πi(v) ← u;21

U ← U
S

{v};22

endfch23

U ← U\{u};24

endfch25

for k ∈ Ni do26

Vu ←
˘

v
˛

˛v ∈ RS(i, k), and Ci(v) is improved
¯

;27

Send MSG RELAY :
`

k, {Ck(v), v ∈ Vu}
´

to k;28

endfor29

end30

two neighboring roadmaps, Ri and Rj . The two landmarks

are at the same position but their status may differ in two
roadmaps. When the two landmarks are both Free, they
are implicitly “stitched” together (as in inset 1), and the

relay point becomes a connecting point between Ri and
Rj ; Otherwise, they are disconnected, as shown in inset 2,

where the dark dot is occluded by obstacles. The connectivity
of the relay set is determined by MSG RELAY messages

in the planning phase (detailed in the next section). To
simplify negotiation between neighbors, and hence reduce

the communication overhead, we choose relay sets to be
deterministic and symmetric ordered sets, i.e., RS(i, j) =
RS(j, i). More specifically, we choose RS(i, j) to be the set

of points evenly distributed on the line segment connecting
the two intersecting points of communication boundary cir-

cles, distance between two consecutive points is a predefined
resolution, dr. See Section V for further discussion of the

choice for relay sets.

B. Planning

In planning phase, a distributed navigation field is com-

puted over the local roadmaps. For each landmark u in Ri,
we define two functions: Ci(u) and πi(u), where Ci(u) is

the distance from u to the desired goal, and πi(u) is the next
landmark in the shortest path from u to the desired goal. Note

that (u, v) points in the negated gradient direction of Ci(u),

πi(u) = arg min
v∈Ni(u)

(

Ci(v) < Ci(u) + ‖v − u‖
)

.

The procedure of updating the navigation field is given

in sub-routine, Update F ield() (Line 16-25, Algorithm 1),
which is essentially a distributed Dijkstra algorithm. It main-

tains U as a list of landmarks with the smallest cost so far
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Algorithm 2: Robot Query for Paths

begin1

x← Robot current position;2

path← ∅, c←∞;3

Send MSG QUERY message with x;4

repeat5

Receive MSG PATH:(p, l), where p is the found path6

segment and l is the cost defined;
if l < c then7

path← p, c← l;8

endif9

until timeout ;10

Robot execute path p;11

Repeat from Line 3, until p(1) = xg ;12

end13

Algorithm 3: Sensor Respond to Query with Distributed PRM

begin1

Receive MSG QUERY :(x) from the robot;2

us ← {x};3

U ←
˘

v ∈ Vi

˛

˛‖us − v‖ < r, (us, v) collision free
¯

;4

Ci(us)← minv∈U

`

Ci(v) + ‖us − v‖
´

;5

πi(us)← argminv∈U

`

Ci(v) + ‖us − v‖
´

;6

l← Ci(us), Πi ← {us};7

while πi(us) 6= nil do8

Πi ← Πi

S

{πi(us)};9

us ← πi(us);10

endw11

Send MSG PATH:(Πi, l);12

end13

(often called open list in the literature), and examines all
adjacent landmarks of every u ∈ U . If the condition

v ∈ Ni(u) and
(

Ci(v) < Ci(u) + ‖v − u‖
)

in Line 19 holds, it means a shorter path has been found from
v to the goal, via u. Therefore, v is added into U . There are

two ways to trigger the navigation field update:

• A sensor node that has the desired goal within its sensed
region initiates the planning by adding the desired goal
as a landmark in the roadmap, and sets its distance to

goal as 0, then updates its navigation field (Line 2-7,
Algorithm 1).

• When a sensor node i receives an MSG RELAY message
from one of its neighbor, say j, it compares its own relay

set to those in the message, if some in the message give
any smaller cost (better path) for any relay points in the

set, these relay points are updated to the smaller cost,
and these newly-improved relay points are added into
U for update of the navigation field (Line 8-15).

After updating the navigation field, if the cost for any

relay point in a relay set, R(i, k), k ∈ N(i), has been
improved, it means a shorter path is found for the point,

and a MSG RELAY message is sent to notify node k (Line
26-29). The message contains a list of relay points and their

newly-improved costs.

C. Path Query

When the navigation field has been computed as in previ-

ous section, an MSG REQUEST message is sent to the robot,
indicating that the sensor network is ready to help navigate
it. To move toward the desired goal, the robot constantly

interacts with sensor nodes of the network, as shown in
Algorithms 2 and 3:

• The robot sends an MSG QUERY message to sensor

nodes around, and waits (Line 3-5 in Algorithm 2).

• A sensor node receives the message, and looks up
its navigation field, computes the segment of the best

(shortest) path, and sends the path segment back to the
robot in an MSG PATH message (Algorithm 3).

• The robot may receive multiple MSG PATH messages

from different sensor nodes. It decodes the segment in
each message, picks the best path, and moves along the

chosen path segment (Line 6-12 in Algorithm 2). When
it reaches the end of the segment, it approaches another

sensor node, and it sends out another query message.
The robot repeats such query-and-move procedure until

it reaches the desired goal.

V. DISCUSSION

A. Sensing and communication

In our implementation, we assume the sensing region of a
sensor node is simply a disk (e.g., a laser scanner at a fixed

position), and the sensing range is equal to communication
range, i.e., ds = dc. In practice, this is not necessarily the

case, but other cases essentially reduce to this assumption,
mainly because we would like to ensure that the robot is able

to communicate with at least one sensor node at any time
along the path. When ds > dc, the actual sensing region

extends beyond the communication range. We ignore the
sensed region beyond the communication range, and treat
it as unknown (equivalent to setting ds to dc), just to make

sure the robot does not go beyond dc. When ds < dc, we
can simply increase the map size up to communication range,

and mark the margin between the communication range and
the sensing range as Unknown.

The proposed D-PRM is intrinsically robust to communi-
cation failure. If a node fails during the planning phase, it

is automatically excluded from consideration, since there is
no message in and out of the failed node; if a node fails

during execution phase, it will not respond to robot enquiry,
and the robot will choose amongst the paths sent by other

nodes, and continue with the best alternative path available.

B. Relay sets choices

There are two main ways of choosing relay sets: in a deter-

ministic manner, or in a probabilistic manner. For instance,
one choice would be to lay a grid of uniform resolution dr

in RZ(i, j) and the relay points correspond to the center
of grid cells. Another choice would be random samples in
RZ(i, j). The latter is more in line with the probabilistic phi-

losophy of sampling based framework, however, they carry
higher communication overhead, since messages will contain

position information of each sample, which is 8 bytes for
(x,y) compared to 2 bytes for an index for the deterministic

case. We chose to use the deterministic manner, and further
restricted the set of relay points to be on a line segment, as

shown in 3, to reduce the communication overhead. However,
when the environment gets more complicated, particularly
with narrow passages, a full-blown fine-resolution grid might

be needed in order to find the solution, or for the probabilistic
case, more sophisticated sampling techniques, such as bridge

test sampling in [20], can be used to reduce the number of
samples in relay zones while maintaining good connectivity

of the roadmap.
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(a) Scene. (b) Proximity graph. (c) Roadmap on selected nodes.

(d) Overall roadmap. (e) Incremental queries in Case 1. (f) Found path for Case 1.
Fig. 4. Simulation scene for Case 1 and Case 2.

(a) Scene. (b) Proximity graph. (c) Roadmap on selected nodes. (d) Found path for Case 3.
Fig. 5. Simulation scene for Case 3 and Case 4.

C. Communication Complexity

We focus on communication complexity in the distributed
planning phase, since this is the most time-consuming phase

in the proposed framework, and most of time is spent in
message exchange, particularly for MSG RELAY messages.
D-PRM planning (Algorithm 1) is based on the distributed

Dijkstra’s algorithm, whose communication complexity is
known to be O(|V |2) [21].

VI. SIMULATION RESULTS

We now present simulation results to show the effective-
ness of the proposed distributed sampling based planning
method. Our simulation is based on Player/Stage [22]. We

adapted the wsn (wireless sensor network) model that comes
with Player to transmit user data of different sizes. We

simulate one robot and multiple sensor nodes that form
a sensor network in different scenarios. Sensor nodes are

equipped with a laser scanner which can detect obstacles (in
surveillance application, sensors can be overhead cameras).

A brief video can be found as an attachment in the proceed-
ings.

In the first scenario, we have a relatively small office-like
environment with three rooms, as shown in Fig. 4(a). Six
sensor nodes with the associated proximity graph forming a

grid (Fig. 4(b)) help to navigate robot between rooms. Since
every room has only one door facing the corridor, the only

way to go from one room to another is through the corridor.
The coordinates of the lower-left and upper-right corners are

(−9,−4) and (9, 4), respectively. We have 2 cases in this

scenario, each corresponding to a different start/goal. In Case
1, the robot moves from Xs : (−7,−2) to Xg : (7,−2); and

in Case 2, the robot moves from Os : (7,−3) to Og : (7, 3),
as shown in Fig. 4(a).

In Case 1, the robot tried to go from the leftmost room to

the rightmost one. Most existing distributed planning works,
in this case, will give the shortest path in the sensor network

(i.e., the dotted line in Fig. 4(b)), and replan the path when
the robot moves closer and detects the blocking walls, be-

cause they do not take physical obstacles into account during
planning. With our proposed method, each node senses its
local environment within the sensing region, then creates a

local roadmap. Fig 4(c) shows the sensing regions for sensors
1 and 5, and roadmaps therein. We emphasize that each node

maintains only its own roadmap. These local roadmaps are
“stitched” together and form an implicit roadmap, as in Fig

4(d). In order to compute a feasible path for the robot, a
navigation field is propagated over the implicit roadmap,

with the goal as the unique global minimum. Then, the robot
queries the sensor network for the path and moves along the
planned path (Fig 4(e) for Case 1), and the final path for

Case 1 is shown in Fig 4(f).
In the second scenario, we simulated a larger outdoor envi-

ronment, where polygonal shapes simulate high grounds, or

dangers (e.g., minefield), and the sensor network consists of
55 sensor nodes randomly dropped (Fig. 5(a)). The resulting

proximity graph is shown in Fig.5(b). The coordinates of
the lower-left and upper-right corners are (−15,−15) and

(15, 15), respectively. As indicated in Fig. 5(a), the robot
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moves from Xs : (−12,−12) to Xg : (12, 12) in Case 3,
and from Os : (−4,−6) to Og : (3,−10) in Case 4. Fig.5(c)

shows only selected local roadmaps for clarity. The final path
executed by the robot for Case 3 is shown in Fig.5(d).

Table I gives a summary of some important metrics
and parameters in the simulations, including size of the

communication network (|V | and |E|), size of roadmap
(Nlm, number of landmarks), total number of messages

(Nmsg), total number of collision checks (Ncc), planning
time (Tplan, duration between MSG TASK sent, and the

last MSG REQUEST received), and the traveling distance
of the robot along the path (Lpath). The results are averaged

over 12 runs, with the roadmap being regenerated in every
run.

Note that in Distributed PRM, planning involves all sensor

nodes in the network, so the size the roadmap and the total
number of messages are similar in the same environment
(e.g., Cases 1 and 2, or Cases 3 and 4). However, the

planning time depends on the distance between start and
goal. As message passing being a major part of the planning,

a shorter path indicates less intermediate sensor nodes need
to be involved in finding the path, and less message passing

before the MSG RELAY reaches the robot, hence a shorter
planning time. This means even when the robot starts moving

toward its goal, some sensor nodes might be still planning the
path. In our implementation, dr = dc/10, therefore there are
at most 21 relay points in a relay set. The average number of

messages is much smaller than the worst case bound given
in the Section V.

TABLE I

SIMULATION RESULTS

Case 1 Case 2 Case 3 Case 4
|V | 6 6 55 55
|E| 7 7 129 129

Nlm 149 139 996 1010
Nmsg 22 22 333 362

Ncc 13706 12283 207579 226095
Tplan 5.0 1.5 16.6 2.2
Lpath 24.5 9.6 43.0 16.7

VII. CONCLUSIONS

In this paper, we proposed a distributed sampling based
planning framework for robot navigation in sensor networks.

It is particularly applicable to networks where each sensor
node is equipped with sophisticated sensors capable of
giving a map for its sensing region. To keep communication

cost low, there is no global representation of C-space in
our framework. Instead, each sensor node creates a local

roadmap within its locally-sensed environment, and these
local roadmaps are “stitched” by a set of relay points, which

lie in the overlapping sensing regions of sensor nodes. When
the desired goal of the robot is specified, a navigation field is

propagated over the implicit roadmap, and gives directions
to the desired goal. The robot moves toward its goal by
constantly querying the sensor network for the directions.

Even though we focus on static sensor networks in this

paper, our navigation framework can be extended to mobile
sensor networks, where mobile nodes can sense the envi-

ronment while moving, and carry larger maps accumulated
along their trajectories. Another direction for future work

is to extend the framework to deal with a general robot

with non-trivial shape, the corresponding C-space being
three-dimensional, since the orientation of the robot matters.

Current one-dimensional choice of relay set is not sufficient,
and new mechanisms of choosing relay sets will need to
be explored. Besides, a more fundamental problem in this

case is collision checking. While collision checking for a
point robot can be simply done by one sensor node within

its local map, robots with shape may span multiple maps of
adjacent sensor nodes, and will requires cooperative collision

checking.
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