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Abstract— The problem of coverage of known space by a
mobile robot has many applications. Of particular interest is
providing a solution that guarantees the complete coverage
of the free space by traversing an optimal path, in terms
of the distance travelled. In this paper we introduce a new
algorithm based on the Boustrophedon cellular decomposition.
The presented algorithm encodes the areas (cells) to be covered
as edges of the Reeb graph. The optimal solution to the Chinese
Postman Problem (CPP) is used to calculate an Euler tour,
which guarantees complete coverage of the available free space
while minimizing the path of the robot. In addition, we extend
the classical solution of the CPP to account for the entry point
of the robot for cell coverage by changing the weights of the
Reeb graph edges. Proof of correctness is provided together
with experimental results in different environments.

I. INTRODUCTION

The task of covering a bounded region of space is common
to many problems such as de-mining, vacuum cleaning, lawn
mowing and automated painting. One coverage application
that has proven to be extremely successful is the task of
robotic vacuum cleaning. The iRobot1 Roomba vacuum
cleaning robot uses a variety of different strategies, such
as random walk, wall-following, and the seed-spreader al-
gorithm [1], to achieve, probabilistically, coverage of the
whole floor space. The sale of more than two million robots
highlights the importance and impact of this application.
In the above described applications the problem of robotic
coverage of free space is defined as follows: the robot
has to pass an end effector, or a sensor, which in most
cases is the body of the mobile robot, over all available
free space. For example, during mine detection, the robot
has to ensure that every location that is not covered by
an obstacle is inspected and the position of the discovered
mines recorded. In such an application it is of paramount
importance to ensure completeness; no accessible area should
be left uncovered.

Depending on the target application, the proposed ap-
proaches can be characterized according to different re-
quirements. One important division is between algorithms
that require a map of the environment, which describes the
occupied and free space, and the algorithms that are capable
of covering an unknown environment. For unknown environ-
ments it is impossible to provide a criterion of optimality as
for any design choice a counter-example environment could
be constructed. Nevertheless, during coverage of unknown
environments it is important in terms of efficiency to avoid
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repeated coverage [2] as much as possible. For known
environments it is important to accomplish the coverage
task in minimum time. A subset of all coverage planning
schemas are said to be complete, meaning they guarantee
the entire free space will be covered by the provided plan.
Such schemas are often based on rigorous representations
of the free space such as exact cellular decompositions or
spanning trees on which coverage planning is simplified.
In this paper we present a new algorithm for the complete
coverage of an arbitrary known environment. Our algorithm
is using the Boustrophedon cellular decomposition to divide
the free space in cells; then, the solution to the Chinese
Postman Problem is used to calculate the order in which
the cells are going to be covered. We extend the classical
Boustrophedon decomposition by splitting some cells in half
along the direction of coverage. As a result the robot is
capable of covering each cell, or sub-cell, in such order
that no cell is traversed twice, and at the end the robot has
returned near the starting position. Further improvement in
performance is achieved by calculating the width of each
cell and estimating the position of the robot at the end
of the coverage cycle. As in most previous treatments of
coverage, the robot operates under the assumption of accurate
localization. Experimental results in different environments
illustrate the efficiency of our approach.

Related work would be discussed in the next section,
including a brief overview of the Boustrophedon cellular
decomposition that provides the basic component to our
approach, as well as related concepts from graph theory.
In Section III a detailed description of our algorithm is
presented, together with a sketch of the optimality proof.
Section IV demonstrates the experimental verification of
our approach in different classes of simulated environments.
Section V contains conclusions and directions of future work.

II. BACKGROUND

Choset and Pignon first introduced a rigorous extension to
the Seed Spreader algorithm [1] under the name of Boustro-
phedon Decomposition [3]. The work was further developed
by Acar et al. [4] with experimental verification and for
a variety of control Morse functions. The Boustrophedon
family of algorithms guarantees the complete coverage of an
unknown environment with no claims on the distance trav-
elled. Section II-A provides an outline of these algorithms
as they form one of the building blocks of our approach.

Butler et al. [5] achieved complete coverage of unknown
rectilinear environments using a square robot with contact
sensing. They performed an on-line decomposition where
each cell, in the shape of a rectangle, was formed such that
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it could be covered completely by back-and-forth motions
performed parallel to one of the walls of the environment.

A different approach was followed by Huang [6]: the
environment was subdivided in different regions aiming to
minimize the amount of rotations the robot has to perform.
The total path travelled was ignored. Yao proposed an im-
proved algorithm [7] that reduces the path travelled compared
to [6]. Illustrative examples were shown, but no proof of
optimality. More recently, Kang et al. [8] proposed a scheme
where a set of precalculated motion strategies are selected
in order to minimize repeat coverage. In all of the above the
claims are only supported by examples in simulation.

Gabriely and Rimon [9], [10] used a grid based approach
for planning a complete coverage path. The main requirement
is for the environment to be decomposable to a grid. For
known terrain, algorithms proposed by Zheng et al. guarantee
a performance of at most eight times the optimal cost [11].
This is achieved by superimposing a grid with each grid
cell having the size of four footprints of the robot. Our
approach eliminates the grid restrictions on the environment
and guarantees an optimal path.

Several researchers have worked on the problem of dis-
tributing a group of nodes (mobile sensors) such that they
achieve the maximum coverage of an area of interest. The
robots, after reaching their position, do not move unless there
are dynamic changes in the environment. In particular, Cortés
et al. proposed an approach which utilizes the centers of
the Voronoi cells [12], [13]. Using artificial potential fields,
Howard et al. control the robots to move away from each
other, thus increasing the covered area [14]. More recently,
Schwager et al. proposed a unifying scheme for multi-robot
coverage which combines the previous methods [15]. All
of the above are concerned with the sensor coverage at the
final position of the robots e.g. in surveillance operations
as opposed to the path-planning problem more common to
applications such as de-mining, vacuum cleaning, etc.

Other approaches used genetic algorithms [16] and land-
marks [17] to improve the speed of coverage. Easton and
Burdick [18] used a variant of the Chinese Postman Problem
to solve the problem of boundary coverage. For information
on several more algorithms on coverage see [19]. In addi-
tion, many authors have worked on the area of multi-robot
coverage; for an extensive survey please refer to [20].

A. Boustrophedon Cellular Decomposition

Our approach utilizes the concepts of Boustrophedon
Cellular Decomposition of unknown environments to opti-
mally schedule the order of coverage. To better describe our
algorithm, the following terms from single robot coverage
are used: slice, cell, sweep direction, and critical point [21],
[4]; see Fig. 1a. The Boustrophedon decomposition [3] is a
type of Morse decomposition where the slice is a line. The
robot follows the intersection of the slice and the area to be
covered, thus covering the area with vertical back and forth
motions. A cell is a region defined by the Boustrophedon
decomposition where slice connectivity does not change. In
other words, no obstacle breaks the connectivity of the slice
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Fig. 1. (a) Illustration of the terms borrowed from single robot coverage
with a single robot and one obstacle in the target environment. The robot is
performing coverage with simple back-and-forth motions. (b) Here a simple
Reeb graph is overlaid on top of a simple elliptical world with one obstacle.
P1-P4 are critical points which represent graph nodes. E1-E4 represent edges
which directly map to cells C1-C4.

inside each cell. Sweep direction refers to the direction in
which the slice is swept. Lastly, a critical point represents
a point on an obstacle which causes a change in the slice
connectivity. Thus, the free space is divided into regions
(cells) of constant slice connectivity, each of which can be
covered with a vertical back and forth motion.

Another concept used here is the Reeb graph [21], [4]. A
Reeb graph is a graph representation of the target environ-
ment where the nodes represent the critical points and the
edges represent the cells; see Fig. 1b. Due to the nature of
the Boustrophedon decomposition, all concave critical points
are connected to exactly one cell, i.e., a node of degree one
in the Reeb graph. Similarly, all convex critical points are
connected to exactly three cells, i.e. a node of degree three
in the Reeb graph.

B. Graph Theory

Different algorithms from graph theory have been used in
robotics to guide exploration [22], mapping [23], [24], and
coverage [25] in the past. Edmonds and Johnson [26] present
an overview of different graph algorithms that are directly
applicable to the problem of optimal coverage of a known
environment.

An Euler tour is a circuit that covers every edge in a
graph exactly once. Euler demonstrated that a necessary and
sufficient condition for the existence of such a tour in a
graph is that all nodes of the graph have even degree – such
graphs are called Eulerian Graphs. A similar problem is the
Chinese Postman Problem (CPP): find a shortest tour that
traverses every edge at least once. If a graph is Eulerian
then all of its Euler tours are solutions to the CPP. For non-
Eulerian graphs, a standard approach to solving the CPP is to
double selected edges in the graph – i.e. given an edge e that
connects nodes Vi and Vj, add an edge f that also connects
nodes Vi and Vj – to make the resulting graph Eulerian
and to then choose one of the Euler tours as the solution.
Different strategies can be applied to determine which edges
to double. All of the new edges will by definition be part
of the Euler tour; hence, the challenge is to choose edges
such that the total cost – the sum of the individual costs
of all the edges – of this Euler tour be minimized. The
constraints and objective function of a linear programming
system that can be solved to choose the edges to double is
described in [26]. In addition, these edges can be chosen
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by utilizing algorithms from matching theory. The simplest
of these algorithms essentially determines the shortest paths
between every odd-node (i.e. nodes of odd degree) in the
original graph, the total costs of which are used to determine
which edges should be doubled. Consequently, an Euler tour
can be extracted from an Eulerian graph. A simple and
wildly inefficient algorithm was proposed [26]: let G be the
original graph. Repeatedly choose and remove edges whose
deletion would not disconnect G unless there is no other
choice until G is empty. The sequence of chosen edges
is the Euler tour. More efficient, but also more complex,
algorithms iteratively build disjoint non-Euler tours, which
they connect in a certain fashion. When there are no more
unvisited edges, the constructed sequence is an Euler tour.
For more information please refer to [26].

Next, the optimal coverage algorithm of an arbitrary
known environment is presented.

III. OPTIMAL COVERAGE ALGORITHM

The optimal coverage algorithm is divided in two parts:
first, an off-line analysis of the environment, construction
of the Boustrophedon Cellular Decomposition (BCD) and
the Reeb Graph (RB), formulating and solving of a linear
programing problem for the construction of an Euler tour;
and second, on-line coverage that uses the sequence of edges
in the Euler tour to guide the coverage from one cell to the
next. Each component will be discussed next

A. Construction of the Reeb Graph

The input to our algorithm is a bitmap representation of
the environment. This choice comes naturally as the testing
environment that we employ, Player/Stage, uses the same
representation. In addition, a bitmap representation provides
maximum flexibility in the modeling of the free/occupied
space, without any restrictions on the shape of the obstacles.
As can be seen in the experimental results section, different
environments, such as indoor office space, outdoor, sparsely
populated areas, as well as completely unstructured areas
were used to verify the performance of our approach.

A common assumption in most cellular decomposition
algorithms is that no two critical points change the slice
connectivity at the same time. This assumption is trivial to
enforce by a small rotation of the sweep direction. It is worth
noting that in this work we extend the notion of a critical
point to include critical regions; for example a whole wall
that changes the slice connectivity. See for example the left
and right walls in Fig. 3a. In a structured environment, such
as an office space, it is beneficial to perform coverage parallel
to the walls. The above mentioned extension allows it.

The first task is to sweep the bitmap. Without loss of
generality we assume a sweep direction along the x-axis and
record all the critical points/regions. During the sweep, the
location of the cells is also recorded. Finally, the critical
points and the cells are encoded in the Reeb Graph. The
resulting Reeb Graph G =< V,E > is used as input to the
next step of the algorithm that calculates an Euler tour.

B. Construction of the Euler Tour

The primary contribution of our algorithm is using the
solution to the CPP in order to find the optimal order, in
terms of distance travelled, in which the cells are covered.
Given the Reeb graph, the next task would be to calculate
an Euler tour. As mentioned in Sect. II-B, this can be
achieved by doubling selected edges of the Reeb Graph.
Consequently, when the robot covers one of these doubled
edges, it will split the cell into top and bottom sub-cells
and assign each sub-cell to one of the two doubled edges.
From [26], no edge would be duplicated more than once.
In addition, we bias the edge duplication in cells that are
wider in order to facilitate easier coverage2. An instance of
a linear programming problem described in Eq. 1 is created.
The solution to the LP represents the Euler tour that is the
routing of the robot.

xe is integer e ∈ E; wn is integer n ∈V ;
xe ≥ 0, e ∈ E; wn ≥ 0, n ∈V ;

∑
e∈E

anexe−2wn = bn, n ∈V ;

z = ∑
e∈E

cexe is minimized. (1)

where: xe is the number of added copies of edge e in the
solution. ∑e∈E anexe represents the number of added edges to
node n ∈V in the solution. Note that for the solution to be
an Eulerian graph, an odd number of edges has to be added
to nodes with odd degree and an even number of edges has
to be added to nodes with even degree. bn is 1 for nodes
with odd degree and 0 for nodes with even degree. wn is a
variable that will force ∑e∈E anexe to be odd for odd nodes
and even for even nodes. ane is 1 if node n meets edge e,
and 0 otherwise; ce is the cost of edge e.

The GLPK3 library was used to solve the above linear
programing problem. The solution is used to guide the robot
from cell to cell, and each cell is covered using a modified
version of the Boustrophedon Coverage.

C. Boustrophedon Coverage

The simple back-and-forth motion used for covering the
interior of a cell is well documented in the literature [21], [4],
[3], [19], and covering it is beyond the scope of this paper.
The novel contribution of our algorithm is the treatment of
the cells, which had their corresponding Reeb Graph edge
doubled in order to generate an Euler tour. These cells are
necessary to be traversed twice. The coverage algorithm is
modified to cover during the first traversal the top (or bottom)
half of the cell, and in the second traversal to cover the
bottom (or top) half of the cell correspondingly, see Fig.
2. The choice of which half to cover is dictated by the
position of the robot at the end of the previous coverage

2In the degenerate case of a narrow corridor, with width equal to the
size of the robot, if that is the only route, then the robot would have to
double the coverage of that area.

3http://www.gnu.org/software/glpk/
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(a) (b)

Fig. 2. Coverage of a single cell:, depending on the number of up-down
motions: (a) odd number, (b) even number.

task. Therefore, at the end of the coverage, the robot will
have covered the complete cell without duplicating any work.

It is worth noting that the robot is operating in a known
environment. As such, when the robot enters a cell to cover
it, it has the information on the length and the height of that
cell. Consequently, an informed decision can be made, if the
robot covers only the top half of the cell, where to stop each
downward motion; see Fig. 2. More formally, for a cell ci
with width wi and a slice width of ws there are going to be
k = wi/ws vertical motions to cover the ci. When the robot
begins a downward motion, it will cover only h j distance,
see Eq. 2.

h j = hi
j ∗

k− j−1
k

, j = 0 . . .k−1 (2)

where, hi
j, is the length of the slice at vertical motion j,

which is calculated by the height of cell ci at that point.
By varying the height of the coverage progressively, the

robot is capable of controlling the exit point from each cell,
thus minimizing the distance to the entry point to the next
cell.

D. Proof of Correctness

The correctness of the algorithm and the optimality follow
directly from the properties of the cellular decomposition and
the Euler tour used. By definition, the Reeb graph provides
a complete model of the environment. By ensuring that each
edge of the graph is traversed (covered) we guarantee that
all available free space has been covered. The Euler tour
resulting from the doubling of selected edges provides an
order in which the cell of the Reeb graph should be visited.
By definition, there is no edge of the Euler tour that is
traversed twice, which means that no area is covered twice.
Therefore, the proposed algorithm is optimal, as all free
space is covered exactly once.

During coverage the border areas adjacent to obstacles
could be wider than a single pass but narrower than two.
In such cases the robot sensor would cover these areas
twice. In general, these areas, with the exception of “fractal-
like” counterexamples, are an order of magnitude smaller
compared to the interior area to be covered. Therefore, repeat
coverage of the boundaries does not affect the optimality.

It is worth noting that the structure of the Reeb graph
is exploited in order to provide a polynomial time solution

to the complete coverage, minimum distance, path planning
problem.

IV. EXPERIMENTAL RESULTS

Numerous experiments were conducted for a variety
of environments using the robotic simulation package
Player/Stage4. A simulated Pioneer robot was used to per-
form coverage of all the available free space. In particular,
three different classes of environments were used as test
cases. First, office like environments such as the one in Fig.
3a were used, inspired by the service robotics applications.
Second, open fields with sparse tree and rock like obstacles
were used, the target application being humanitarian de-
mining; see Fig. 3d. Finally, arbitrary environments with con-
vex and concave objects were used to ensure the performance
of the algorithm under arbitrary conditions; see Fig. 3g.

Figure 3a illustrates the application of our algorithm in an
indoor environment, such as an office building. The solution
presented in Fig. 3b guides the robot to cover each one of
the thirty eight cells and sub-cells, and return at the starting
position. Figure 3c shows the path of the robot as it covers
sub-cell 1 and cell 2. A similar structure is followed in the
rest of Fig. 3. Figure 3d shows a sparsely populated area.
The free space is subdivided in fifty four different cells;
Figure 3f shows the path of the robot while covering areas
1 to 5. Finally, Fig. 3g-i demonstrates the application of our
algorithm in an environment populated by arbitrary concave
and convex obstacles, where the resulting Euler tour results
in twenty one cells and sub-cells.

Figure 4 presents another example of an arbitrary en-
vironment. Figure 4a shows the Boustrophedon Cellular
Decomposition as dashed lines, together with the resulting
Euler tour. Figure 4(b-f) presents a sequence of screen-shots
of the Stage simulation environment with the robot together
with a limited trace. In Fig. 4(b) the robot is covering the
cell 11. In Fig. 4(c) the top sub-cell (13) is being covered.
The robot continues to the top sub-cell (16), see Fig. 4(d).
The cell 18 and then the cell 20 are covered in Fig. 4(e) and
(f) accordingly.

V. CONCLUSIONS

In this paper we presented a new algorithm for the
complete coverage of a known arbitrary environment. The
algorithm guides a mobile robot through a sequence of
areas to be covered without wasting energy and time by
moving through already covered areas. The solution to the
Chinese Postman Problem from graph theory is adapted for
the calculation of the cell ordering. The single cell coverage
used in the Boustrophedon Cellular Decomposition algorithm
is modified in order to eliminate repeat coverage by splitting
selected cells into two components.

Experiments using real hardware are scheduled for the
near future in order to further validate our approach. A
iRobot Create mobile robot will be used in combination with
an overhead camera for accurate localization. Furthermore,

4http://playerstage.sourceforge.net/
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Fig. 3. (a) An environment representative of an office space, with the Reeb graph (RG, solid lines) and the Boustrophedon Cellular Decomposition (BCD,
dashed lines). (b) the Euler tour for (a) with the order in which the cells are going to be visited marked. Doubled RG edges marked as dense dashed
lines. (c) A snapshot of coverage. (d) An open space with sparse obstacles in line, representing an open minefield with RG and BCD. (e) The Euler tour
for (d). (f) Coverage of (d). (g) An arbitrary environment populated with convex and concave obstacles with RG and BCD. (h) The Euler tour for (g). (i)
Coverage of (g).

we are planning to investigate the effect of rotations versus
the distance travelled in order to propose time optimal
strategies extending the current approach.

Automated coverage by mobile robots is an area with
many applications. With the expected increase in service
robots in private households as well as in public spaces,
improving coverage performance is essential. The presented
algorithm is a significant step in this direction.
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