
  

  

Abstract— An EMG controlled intelligent orthosis was 
developed to support the rollover movement of cancer bone 
metastasis patients. In this paper, the validation of the 
developed signal processing algorithm to recognize the rollover 
was focused. Firstly, the ElectroMechanicalDelay of the internal 
oblique muscle was measured as the about 65 (msec). Secondly, 
it was confirmed that the rollover movement was recognized 
about 65 (msec) before the movement started. Therefore, the 
developed Micro Macro Neural Network (MMNN) recognized 
the rollover movement using the EMG signal as quick as 
possible. Finally, the robustness of the developed MMNN was 
discussed by conducting the experiment to discriminate between 
the rollover and turning out. We proposed and developed the 
original algorithm in which the logical XOR operation was 
added to the MMNN, because the MMNN which learned the 
characteristics of the only rollover recognized the turning out 
movement as the rollover movement perfectly. When the 
proposed algorithm that combined the MMNN and XOR 
operator was used, the rollover and turning out movements 
were discriminated 83%. 

I. INTRODUCTION 
ANCER bone metastasis patients suffer from severe pain 
when they attempt movements such as rollover that 

include trunk twisting. Currently, there is a customized hard 
orthosis to restrict the range of trunk movement. However, 
the hard orthosis is not always used, because the hard orthosis 
strongly and constantly restrains movement and, therefore, 
puts a lot of physical pressure on patients. As a result of not 
using the hard orthosis, some patients become bedridden. In 
this research, we focused on the rollover movement as the 
movement including the trunk rotational movement, because 
it is a first step out of a bedridden condition – of course, it also 
is one of the major ADL (Activities of Daily Living). 

We have been developing an intelligent trunk orthosis to 
support rollover by restricting the trunk rotational ROM 
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(Range Of Motion) only when the rollover is conducted. The 
intelligent trunk orthosis realizes the patient’s rollover by 
himself or herself without the pain and the prevention of 
bedridden in the terminal care. 

As shown in Fig. 1, the intelligent orthosis is composed 
three core technologies; 1) the detection of patient’s intention 
on the rollover using the surface EMG signal [1], 2) the 
recognition of the rollover using an original neural network 
known as the MMNN [2] (See Section II), and 3) trunk 
rotational ROM restriction using the pneumatic rubber 
actuator [3]. So far, on the EMG signal processing, the 
MMNN was proposed [2] and methodology to design the 
structure of MMNN was developed [10]. The contribution of 
this paper is to evaluate the response performance and the 
robustness in recognizing the rollover under the simulated 
terminal care environment using the developed neural 
network. Ultimate goal of this paper is that the methodology 
to design the recognition and control system in the intelligent 
trunk orthosis is established. 
This paper is organized as follow: Section II introduces the 
concept of the intelligent trunk orthosis; Section III explains 
the timing of the muscle activation in the rollover movement, 
Section IV shows the timing of recognizing the rollover, 
Section V presents the discrimination between the rollover 
and turning out movements; finally, Section VI presents a 
summary and a look at future work. 
 

 
Fig. 1. Intelligent trunk orthosis to support rollover. Note that, in this 
orthosis, the rollover is recognized using the EMG signal and the original 
neural network. After that, rollover is supported by restricting trunk 
rotational movement using the pneumatic artificial rubber muscle 
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II. INTELLIGENT TRUNK ORTHOSIS 

A. Micro Macro Neural Network to Recognize Rollover 
Since the recognition of rollover is based on noisy and 

complex EMG signals, a highly robust system that is 
unaffected by the possible misalignment of electrodes or 
individual differences is necessary to recognize EMG signals 
accurately. A Neural Network (NN) is one of the learning 
machines that use EMG signals to recognize movement 
[4]-[9]. However, most related studies share the same 
problems, that is, the misrecognition and recognition reaction 
delay.  

We have designed and constructed a new neural network 
known as Micro Macro Neural Network (MMNN) to 
recognize slower movement such as the rollover accurately 
with quick response [10]. The MMNN is able to recognize the 
rollover more correctly and steadier using the long past 
time-series data of the EMG signal. Basically, we upgraded 
the traditional Time Delay Neural Network (TDNN), in 
which a delay is introduced in the network and past data (the 
data collected before the current measurement point) is set as 
the input signal of the network, to MMNN (Fig. 2). The 
MMNN can handle an increased amount of input data to the 
neural network without increasing the number of calculations. 
The MMNN is composed of the Micro Part, which detects a 
rapid change in the strength of the EMG signal, and the 
Macro Part, which detects the tendency of the EMG signal 
toward a continuing increase or continuing decrease, to 
improve the response time and accurate recognition of the 
rollover movement based on the EMG signal as input. 
Traditional TDNN is defined in our network as the Micro Part. 
As can be seen in Fig. 2, the data for -Tmicro < t < 0 is the Micro 
Part, and the data for –(Tmacro + Tmicro ) < t < -Tmicro is the 
Macro Part. In addition, the input data in the Macro Part is 
divided into several TARV (msec), and the average rectified 
value (ARV) of the EMG signal among the TARV values is 
defined as the input value of the Macro Part. 
 
 

Fig. 2. Micro Macro neural network. Note that MMNN is divided into the 
Micro Part and the Macro Part.  

The relations between each pair of units in both the Macro 
Part and the Micro Part are shown in (1), (2), and (3) above. 
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where m = 2 and 3, i = 1,…,nm, nm is the number of the mth 
layer unit, ωmij is the weight between the (m-1)th layer’s ith unit 
and the mth layer’s jth unit, xmi i is the output of the mth layer’s 
ith unit, θmi is the threshold in the mth layer’s ith unit, and u0 is 
the constant to decide the gradient of the sigmoid function. 

The output data of the Micro part and Macro part is defined 
as the input data of the Integrated Layer. In the Integrated 
layer, the output signal is calculated using also (1), (2) and 
(3). 

B. Rollover support mechanism by restricting trunk ROM 
We have also developed a mechanism using a pneumatic 

artificial rubber muscle (PARM) to restrict the range of the 
trunk twisting movement [3] – in our system, PARM, which 
is often used to support some movement actively [11] –[14], 
supports rollover passively. 

The length from the right acrominon to the left ASIS 
becomes longer when the trunk is twisted to the right. On the 
other hand, the relations between the distances are reversed 
when the trunk is twisted to the left. 

Therefore, the progress of the trunk twisting movement can 
be stopped when the change of the distances between the 
acrominon and ASIS is limited to less than a constant value.  

The PARMs are arranged on the lines that connect the right 
(left) acrominon to the left (right) ASIS. Additionally, the 
PARMs that connect the right (left) acrominon with the left 
(right) ASIS contract when the patient starts to rotate his 
trunk to the right (left). As a result, the ROM of the trunk is 
limited, based on the length of the intelligent orthosis and on 
the stiffness (and length) of the constricted PARM. The 
interface of the intelligent orthosis is normally soft and 
unrestraining, but it should become hard when the rollover 
movement is started. This change from soft to hard could be 
controlled by PARM that limits the distance from the 
acrominon to the ASIS. 

Depending on the types of the rollover movement, the 
contracted PARMs are different. We focused our attention on 
the differences in the motion during the first stage of rollover. 
Referring to the related work [15][16], we were able to divide 
rollover into three types: an Upper Limb Precedent Type 
(ULPT), Lower Limb Precedent Type (LLPT), and Lower 
Limb Flexion Type (LLFT). In the ULPT, the start of upper 
limb motion comes before that of pelvis rotation. In the LLPT, 
the start of pelvis rotation comes before that of upper limb 
motion, without using the reaction force of the lower limb. In 
the LLFT, the start of pelvis rotation comes before that of 
upper limb motion, with using the reaction force of the lower 
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limb (with the knee bent). 
For example, in case of turning over toward right side of 

the subject as shown in Figs. 3(a), 4(a) and 5(a), the length 
from the right acrominon to left ASIS in ULPT and that from 
left acrominon to right ASIS in LLPT and LLFT become 
longer. Therefore, the PARM arranged from the right 
acrominon to left ASIS in ULPT and that from left acrominon 
to right ASIS in LLPT and LLFT are contracted to restrict the 
trunk rotational movement in rollover movement. 

III. MEASUREMENT EXPERIMENT OF ELECTROMECHANICAL 
DELAY IN ROLLOVER MOVEMENT 

A. ElectroMechanical Delay (EMD) 
Generally, there is the time delay between the mechanical 

output, that is, the movement ventilation and force generation, 
and muscle discharge. This phenomenon is known as the 
ElectroMechanical Delay (EMD) [17][18].  

The EMD is about 20 – 100 (msec), which depends on the 
type of muscle contraction, the velocity of the contraction, the 
muscle length, the load to the muscle and so on. In the related 
studies, the EMD in the simple movement such as the knee 
extension was measured. However, the EMD in the rollover 
movement is not measured. 

B. Objective 
In the intelligent trunk orthosis, the rollover movement 

needs to be recognized by using the MMNN as quick as 
possible after the EMG signal is generated.  

The objective of this section is to measure the EMD in the 
rollover movement to estimate the time delay of the 
recognition after the rollover starts in the next section.  

So far, we have qualitatively analyzed the surface EMG 
signal as an input signal for the intelligent orthosis to 
recognize the rollover movement [1]. As a result, the EMG 
signal of the internal oblique muscle is selected as the input 
signal, because its signal is generated quicker and stronger 
than the EMG signals of other muscles. Therefore, the EMD 
of the internal oblique muscle in the rollover movement is 
measured. 

C. Experimental Methodology 
In this research, rollover movements were performed thirty 

times in advance by each of three young, healthy male 
subjects. The rollover is conducted to the right side of the 
subject as shown in Fig. 3. We gave the subjects a detailed 
account of our experimental objectives, explained that they 
were entitled to stop the experiment whenever they desired, 
and obtained their consent. 

The EMG electrodes (Biometrics inc., active electrode 
made by AgCl, electrode distance: 20 (mm), sampling 
frequency: 1(kHz)) were put on the right and left internal 
oblique muscles with considering to avoid innervation band. 

The acceleration sensor (ACL300, Biometrics inc., 
sampling frequency: 1(kHz)) were set at the position of the 
left acrominon and anterior superior iliac spine (ASIS). 

 
(a) Characteristic motion (b) Contraction of PARM 

Fig. 3  Upper limb precedent type (ULPT) 

 
(a) Characteristic motion (b) Contraction of PARM 

Fig. 4  Lower limb precedent type (LLPT) 

 
(a) Characteristic motion (b) Contraction of PARM 

Fig. 5  Lower limb flexion type (LLFT) 
 

The data of the EMG and acceleration was synchronized 
using DataLog (Biometrics inc., P3X8).  
As shown in Fig. 6, the EMD was defined and measured 

based on the following steps; 
1) The average and standard deviation of the EMG signal 

and acceleration data in the resting state were calculated as 
the μemg, μacc , σemg and σacc. 

2) The threshold of the EMG signal and acceleration data 
were defined as Themg and Thacc as follow based on the 
statistics of Gaussian distribution. 

 
emgemgemgTh σμ 3±=  (4) 

accaccaccTh σμ 3±=  (5) 
3) The time when the EMG data of right or left IO muscle 

and acceleration data of the acrominon or ASIS became 
larger than the thresholds multiple times between 20 (msec) 
was defined as the temg and tacc. 

4) The EMD was calculated as the difference between the 
time that the rollover started, tacc, and the time that the EMG 
to conduct the rollover, temg. 

 
emgacc ttEMD −=  (6) 

D. Result and Discussion 
An example of EMG and acceleration data is shown in Fig. 

7. The EMD of the internal oblique muscle in the rollover 
movement was 67.6±20.1 (msec). The variation of the EMD 
among the subjects was not confirmed.  

The required specification of the developed neural network 
to recognize the rollover movement is that the rollover 
movement is recognized about 65 (msec) before the rollover 
starts. 
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Fig. 6   Definition of the ElectroMechanicalDelay 
 

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

25 26 27 28 29 30 31 32

-150

-100

-50

0

50

100

150

200

250

300

EM
G

  m
V

1 2 6 7 83 4 5
time s

A
cc

el
er

at
io

n

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

25 26 27 28 29 30 31 32

-150

-100

-50

0

50

100

150

200

250

300

EM
G

  m
V

1 2 6 7 83 4 5
time s

A
cc

el
er

at
io

n

10

30

50

70

90

110

130

150

1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400

600

800

X
Y
Z
EMG

EM
G

  m
V

2.4 2.5 2.62.1 2.2 2.3
time s

A
cc

el
er

at
io

n

(a) Rollover movement (b) Start timing of rollover 
Fig. 7  EMG and acceleration data in rollover movement. Gray line is EMG 
and blue, red and green lines are X, Y and Z axis data of acceleration. 
 
 

IV. RECOGNITION OF ROLLOVER BY TDNN AND MMNN 

A. Objective 
Based on the EMD measured in the section III, the 

response characteristic of the developed MMNN in 
recognizing the rollover is evaluated by comparing with that 
of traditional TDNN. 

B. Experimental Methodology 
The rollover movements were performed thirty times in 

advance by each of three young, healthy male subjects. EMG 
signals obtained from the right and left internal oblique (IO) 
muscle were selected as the input signals. The EMG signals 
were sampled at a rate of 1000 (Hz), rectified with a 
second-order, low-pass filter with a cut-off frequency of 20 
(Hz). The EMG signal is calculated in PC (operating 
frequency: 650 (MHz), BUS: PC104, and OS: QNX 6.2). 

Furthermore, by synchronizing the EMG data with the data 
of a 3D motion-capture system (VICON612, sampling 
frequency: 100(Hz) and accuracy: 1(mm)), the start of 
rollover movement was recognized. 

For the learning machine in this research, we selected the 
three-layer feed-forward type TDNN and MMNN and the 
back propagation method with momentum term, which is a 
standard neural network for recognizing time-series signals.  

The number of the input layer units, the hidden layer and 
the output layer of the traditional TDNN were 75, 38 and 1, 

respectively. On the other hand, the structure of the MMNN 
was TARV = 40 (sec), Nmacro = 40 and Nmiccro = 10 [3]. The 
number of hidden and output layers’ units was determined 
based on” the Rule of thumb.” 

As the learning data for every rollover type, 20% of the 
data (18 out of 90 rollovers – 30 for each of the three subjects) 
was randomly selected. The other 80% of the data was used as 
test data. Because the numbers of learning and test data were 
small, the k-fold cross validation estimation (k = 5) was used 
to prevent degradation of the accuracy based on the selection 
of learning data. 

The recognition results of the test data were evaluated 
according to the response by the indexes presented below. 

The response time, tresponse, is the time from the start of the 
rollover movement to the recognition of the rollover 
movement by the neural network. The time when the rollover 
starts was determined by the 3D motion-capture system. 

C. Result and Discussion 
The examples of the recognition result were shown in Fig. 

8. It was confirmed that the MMNN recognized the rollover 
quickly with the high accuracy. The average tresponse for 
MMNN was -65 (S.D. 55) (msec). The average tresponse for 
TDNN was -25 (S.D. 59) (msec). Therefore, by comparing 
with the EMD, it was confirmed that the recognition timing of 
MMNN was the almost same as the timing that the EMG was 
generated to start the rollover movement. On the other hand, 
the recognition time of TDNN was about 40 (ms) later than 
the timing that the EMG was generated to start the rollover 
movement. 

It was confirmed that original neural network algorithm 
with enough specification on the response time was 
developed. In addition, this response time of the MMNN is 
enough to compensate the actuation delay of the pneumatic 
rubber muscle due to the compressive property of the air, 
because the actuation delay is about 30 (msec). 

 

V. DISCRIMINATION OF ROLLOVER AND TURNING OUT 

A. Objective 
In section IV, it was confirmed that the developed MMNN 

had enough specification to recognize the rollover movement. 
However, the bone cancer metastasis patients conduct not 
only the rollover movement but also the turning out 
movement on the bed. The bone cancer metastasis patients 
who are not the osteoporosis patients don’t feel the pain when 
they conduct the turning out movement, which includes not 
the trunk rotational movement but the trunk anteflexion 
movement. Therefore, the pneumatic rubber muscle need not 
to contract when the turning out movement is performed. The 
objective of this section is to develop the signal processing 
method to discriminate between the rollover movement and 
the turning out movement. 
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TABLE I   Comparison of the recognition timing and EMD 
 timing of EMG generated or motion 

recognized before motion start  msec 
S.D. msec 

EMD 68 20 
TDNN 25 59 
MMNN 65 55 
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Fig. 8(a) Input signal to NN 
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Fig. 8 (b) Output signal from the TDNN 
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Fig. 8 (c) Output signal from the MMNN 

Fig. 8 Comparison between recognition of rollover by TDNN and MMNN. 
Note that output of TDNN shown in Fig. 8 (b) fails to recognize the rollover 
at 0-2 (msec) and 5-7 (msec); moreover, it does recognize the rollover after 
the movement starts. In contrast, as shown in Fig. 8 (c), MMNN recognizes 
the rollover correctly before the movement starts. EMG signal data is 
included for reference as Fig 8(a). 
 
 

B. Experimental Methodology 
The rollover movements and turning out movement were 

performed thirty times in advance by each of three young, 
healthy male subjects. The EMG signals were measured at the 
position of the right and left internal oblique muscles. The 
measurement conditions were the same as those shown in 
section IV B. In the learning step of the MMNN, the EMG 
signal of only rollover movements were used with the same 
condition as those in section IV B. In other word, 
performance of discriminating the turning out movement was 
evaluated by using the MMNN which learned the 
characteristics of the rollover movement. 

C. Result and Discussion 
1) Step 1: Normal signal processing; 
When the signal processing applied in section IV (Fig. 9) was 
used, the rollover was recognized accurately. However, the 

turning out movement was also recognized as the rollover 
movement in every trial, because the internal oblique muscles 
were activated in the turning out movement (Fig. 10). 
Therefore, it was confirmed that it was difficult to apply the 
MMNN which learnt the characteristic of the only rollover 
movements to discriminate between the rollover and turning 
out movements. 
2) Step 2: XOR operation added signal processing; 

In step 1, it was confirmed that the EMG signals of the 
right and left internal oblique muscles were generated at the 
almost same moment. Based on this characteristic of the 
turning out movement, we propose an original algorithm to 
discriminate between the rollover and turning out movements. 
As shown in Fig. 11 and TABLE II, the algorithm is based on 
the logical XOR operator as follow; 

-- If the MMNNs for both right and left IO muscles 
recognizes rollover, then turning out movement. 

-- If the MMNNs for neither right nor left IO muscles 
recognizes rollover, then non movement (stop). 

-- If the MMNNs for either right or left IO muscles 
recognizes rollover, then rollover movement and support 
based on the section II B. 
 
 
 

EMG
(right IO muscle)

EMG
(left IO muscle)

LPF + ARV LPF + ARV

Micro Macro NN
(rollover:1, stop:0)

Micro Macro NN
(rollover:1, stop:0)

 
Fig. 9 Signal processing using the MMNN which learnt the characteristic of 
the only rollover movement 
 

0

0 .0 5

0 .1

0 .1 5

0 .2

0 0 .5 1 1 .5 2 2 .5 3 3 .5

L e f t  IO
R ig h t  IOSitting up movement

time t sec
0 1 2 3

E
M

G
   

%
M

VC

0

0.1

0.2

 
Fig. 10 The EMG signals of IO muscles in turning out movement 
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EMG
(right IO muscle)

EMG
(left IO muscle)

LPF + ARV LPF + ARV

Micro Macro NN
(rollover:1, stop:0)

Micro Macro NN
(rollover:1, stop:0)

XOR operation

 
Fig. 11 Signal processing using the MMNN and logical XOR operation to 
discriminate between the rollover and turning out 
 
 

TABLE II    Discrimination between rollover and turning out movements 
Right IO muscle  

ON OFF 
 
 
ON 

 
 

TURNING OUT 

ROLLOVER 
(Pneumatic muscle 

contraction from right 
ASIS to left acrominon) 

 
 

Left 
IO 

muscle  
 
OFF 

ROLLOVER 
(Pneumatic muscle 

contraction from left 
ASIS to right acrominon) 

 
 

STOP, NO MOVE 

 
 
By applying the proposed algorithm, the 83 % turning out 
movements were recognized as the turning out. On the other 
hand, the recognition rate of the rollover was not decreased 
comparing with that using the MMNN which learnt the 
characteristic of the only rollover movement. 

VI. CONCLUSION 
We have been developing the intelligent trunk orthosis to 

support the rollover movement of the cancer bone metastasis 
patients. In this paper, the validation of the developed signal 
processing algorithm to recognize the rollover was focused. 
Firstly, the EMD of the internal oblique muscle was measured 
as the about 65 (msec). Secondly, it was confirmed that the 
rollover movement was recognized about 65 (msec) before 
the movement started. Therefore, the MMNN recognized the 
rollover movement using the EMG signal as quick as possible. 
Finally, the robustness of the developed MMNN was 
discussed by conducting the experiment to discriminate 
between the rollover and turning out. We proposed and 
developed the original algorithm in which the logical XOR 
operation was added to the MMNN to discriminate these two 
movements, because the MMNN which learned the 
characteristics of the only rollover was difficult to 

discriminate them. When the combination of the MMNN and 
XOR operator was used, the rollover and turning out 
movements were discriminated 83%. Therefore, we 
developed the signal processing algorithm to support the 
rollover movement of the bone cancer metastasis patients. 

In future, the more robust on- line recognition system will 
be developed and we will test the effectiveness of the total 
system in clinical tests with cancer patients in terminal care. 
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