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Abstract— In this paper we present two task-allocation strate-
gies for a multi-robot transportation system. The first strategy
is based on a centralized planner that uses domain knowledge to
solve the assignment problem in linear time. In contrast in the
second strategy, individual robots make rule-based allocation
decisions using only locally obtainable information and single
value communication. Both methods are tested and analysed in
simulation experiments. We show that the rule-based method
performs well but the lack of information has to be paid for
with increased energy consumption.

I. INTRODUCTION

Mass transportation of goods is an essential feature of

the modern global economy. The port of Vancouver alone

handles 76.5 million metric tons annually [13]. Transporta-

tion is a natural task for autonomous mobile robots, and

future robots will perform more of these tasks: moving goods

around in warehouses [3], parts around factories, mail around

campuses, and shipping containers around the world. To

achive this we need systems that assign transportation tasks

to robots. Several versions of the problem can be stated,

e.g. with either fixed or time-varying item source and sink

locations, production rates, storage capacities and delivery

rewards.

In this paper we consider a multi-robot transportation

system with fixed, known source and sink locations and

constant reward for delivered items. Sources produce items

at variable rates, but cannot store more than one item at a

time. Fig. 1 shows an example of this case. The objective of

the robots is to transport pucks (the conventional abstract

unit of robot-transportable resource) from a source to a

corresponding unique sink. We desire that tasks are allocated

to robots such that the value of our system is maximized.

We use the amount of energy expended by the robots as

our cost metric and pucks transported as our work metric.

To reduce the total running cost, the task-allocation system

can deallocate a robot temporarily by sending it to a depot,

marked D in Fig.1. While at the depot the robot is on stand-

by and consumes negligible energy.

We propose and compare two practical task-allocation

methods: (1) based on a central, omniscient planner; and (2)

governed by a simple heuristic, using only locally sensed

information and minimal and infrequent communication be-

tween the robots. A challenge for both methods lies in
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Fig. 1. Screenshot of a Stage simulation with two tasks, transporting pucks
from A to A′ and from B to B′. D marks the robot depot for unassigned
robots. The thin (green) lines show the path planed by each robot. Robots
carrying a puck are displayed with a (yellow) diamond on top.

correctly dealing with interference, inherent to all multi-

mobile-robot systems. Below we show that interference can

create an unintended feedback loop in a naive solution,

leading to a drop in performance. We then suggest a simple

yet effective solution to this problem.

A. Related Work

Robot task allocation is a widely studied field. It can be

broadly classified into two classes: centralized planner based

systems and systems that rely on individual robots making

individual task allocation decisions. Planners are often based

on auction mechanisms in which robots bid for tasks, e.g.

Gerkey’s MURDOCH [2]. As we will show, the problem

we study does not require the sophistication of this class of

planners.

Local decision mechanisms are attractive because they are

redundant and by definition do not rely on a centralized

agency. Labella et al. [6] use a minimalistic rule originating

from modelling ant behaviour. Each robot’s probability to

leave the nest is increased by a small δ if it found food on

the last foraging trip and decreased by the same δ if the

robot returned empty handed. Liu et al. [8] present a similar
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Fig. 2. Overview of the robot system

central place foraging system but with the explicit goal to

minimize energy expenditure. The decision each robot makes

is based on two thresholds. One for the amount of time spent

resting and one for the time spent foraging. The thresholds

are adapted by certain cues. Colliding with other robots

makes a robot more likely to rest and successfully retrieving

food makes the robot more likely to keep foraging. In an

experiment with up to 12 Khepera robots Krieger et al. [5]

use a similar threshold based task-allocation mechanism to

keep the swarm’s energy reserve at a safe level. That paper

also provides an extensive list of references to studies about

task allocation in social insects. All three methods have been

shown to arbitrate between work and rest periods but it is

not clear how to select between two work tasks and resting.

Jones [4] proposes a probabilistic rule that is shown to

work for at least two tasks. The robots calculate the probabil-

ity of switching tasks based on a local estimate of the number

of robots performing the same task and on an estimate of the

available work load. This requires the robots to communicate

what task they are currently engaged in. Jones explicitly pro-

hibits an idle task. McFarlands’s Cue×Deficit-rule [9] allows

robots to select between two types of resource depending

on the robot’s deficit and encounter rate of a particular

resource. McFarland models situations in which the robot is

in need of both resources, e.g. needing water and food. In the

transportation problem considered in this paper a deficit of

a certain task is not meaningful McFarland’s method each

agent to encounter both resources occasionally in order to

update the cue estimates. This cannot be guaranteed in a

transportation problem.

Some work uses machine learning techniques to estimate

the utility of tasks. A recent example is Dahl’s vacancy

chain scheduling [1]. Reinforcement learning and ε-greedy

action selection is used to have robots choose between two

transportation tasks. The scenario is similar to ours but less

challenging due to the absence of fixed obstacles in the

world. Also energy is not considered in the performance

metric. The method we propose is significately less complex

then that proposed by Dahl and does not suffer from any

explicit trade-off between exploration and exploitation as Q-

learning does.

II. ROBOT SYSTEM

The robots used in this work are generic models of a dif-

ferential drive robot in the well-known simulator Stage [12].

Each robot is equipped with a 360◦ field of view laser

range finder providing 64 samples with a maximum range

of 5 meters. Each robot can localize itself with an abstract

localization device, modeling a GPS module or SLAM

implementation. To transport pucks each robot is capable of

sensing pucks, picking them up and dropping them off. The

cargo capacity is limited to one puck per robot. In order to

communicate with other robots or with the centralized plan-

ner the robots are equipped with a generic communication

device. We assume reliable communication, but as we will

show communication used by our task allocation policies is

(informally) minimal.

As energy expended by the robots is one of our perfor-

mance measures the energy model of the robots is important.

Two types of energy expenditure occur, (1) energy used for

computation and sensing is expended at a constant rate and

(2) energy used for locomotion is expended at a rate propor-

tional to the speed of the robot. The first energy model is

fairly accurate. The second model does not take acceleration

into account and is thus not fully realistic. Acceleration and

deceleration occur frequently in high interference situations,

therefore our energy model does not penalize interference

as much as one would expect. The actual energy rates are

modelled after a typical Pioneer 3DX robot. Robots in the

depot are in a stand-by mode and do not use any energy.

The robot control software is split in two parts, (1) a

common part that handles navigation, obstacle avoidance,

picking up and delivering pucks etc. and (2) a task allocation

part that decides which task to perform next. An overview

is shown in Fig. 2.

Path-planning is done using a wavefront planner (WP).

This widely used technique discretizes the world into a grid

and builds a gradient of shortest distances starting at the goal

location. The shortest path is then given by gradient decent

from the robot’s current position. (see [7] for details). In

our implementation we augment the map data with sensor

data from the past n time steps. This enables the planner to

incorporate knowledge about temporary changes in the world

such as congestion. Fig. 1 illustrates this feature, one robot

has planned a seemingly longer path around the south side

of the obstacle at (0,10). While four other robots planned

the shorter path along the often more congested north side

of the same obstacle. Emphasis was put on reliability of

the planner and not so much on interference reduction. For

example the introduction of simple traffic rules such as

“always stay on the right side of corridors” may reduce

interference noticeably. But as highways in any major city

during rush-hour evidence, interference cannot be avoided

as the number of agents increases. In fact to investigate our

task-allocation methods we want to explore the configuration

space under low and high interference conditions.

The planned trajectory is used by a sensor-based obstacle

avoidance routine to navigate the robot along the trajectory to

the goal. We use Minguez’s [10] Nearness Diagram (ND), an

extension of the Vector Field Histogram approach. Minguez’s

implementation is available on his homepage1.

The key contributions of this paper are the task-allocation

1http://webdiis.unizar.es/˜jminguez/code/sources_

ND_english.zip
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methods. We investigate and compare two methods, both

using the same navigation and control routines described

above.

A. Allocation Re-Planner

The allocation re-planner is a centralized planner that has

full knowledge of the world, the production rate of the

sources and the current robot task assignments. An optimal

assignment is achieved if the puck production rate of a

task equals the sum of the transport rate of all assigned

robots. Only under this condition is there no unused transport

capacity nor are pucks waiting at the source. The optimal

number of robots is thus given by

Ni =
ṗiTi

c
(1)

where the index i refers to the i-th task, ṗi is the production

rate of the task, Ti the round trip time the robot needs to

drive from the source to the sink and back, and c is the puck

carrying capacity of the robot (c = 1 in our case). It is fair

to assume that a central planner has accurate information

about the robot’s carrying capacity and the production rate

for each task. But knowledge of the round trip time is difficult

to obtain. The round trip time can be estimated from the

distance between source and sink and the speed of the robot.

The distance between source and sink maybe accurately

obtained from a path-planner e.g. the wavefront planner. The

actual speed of the robot is a function of the robots hardware,

the control software, as well as the interference between the

robot and other robots or fixed obstacles in the environment.

Modelling this interference and the resulting change in speed

is difficult. For example, in the environment in Fig. 1 task

A is subject to a higher degree of interference then task

B because of the narrow corridor between the obstacles

at (0,10) and (-8,14). Modelling interference is generally a

difficult endeavour. A simple model is proposed by Seth [11].

Given an interference factor Seth’s model uses this factor and

the number of agents to calculate the change in performance.

This approach has two limitations, (1) we do not know the

interference factor and (2) since this model calculates the

effect of interference on the average performance and not on

a sensori-motor level it is too high level for our purpose.

Instead of modelling interference we take the embodied

approach. A naive solution is to average over the actual

round trip time, as experienced by the robots, and base the

planners allocation on this time estimate. Unfortunately this

method has an undesired feedback loop. Randomly occurring

interference will increase the estimate of the round trip

time, causing the planner to allocate more robots to the task

and thus eventually increasing the interference. This in turn

results in even more allocated robots. Pointing out this effect

is a novel contribution of this paper.

What is needed, is a way to distinguish between the “true”

round trip time and delays caused by interference due to

randomly occurring congestion. As a simple measure for

interference we use the speed of the robot. We sum up the

time steps during which the robot’s speed is below a certain

threshold. The robots then report the experienced round trip

time corrected for the time wasted due to interference and

the time spent waiting at the source and sink T̂i.

Once a robot completes a task the planner may assign

it a new task using Eq. 1 and a low-pass filtered estimate

of the interference-corrected experienced round trip time.

Alternatively the robot might be sent to the depot if it is

no longer needed. The complexity of this planning step is

O(k) where k is the number of tasks. In the depot, robots

are waiting in a queue and only the head of the queue queries

the planner for a new assignment.

B. Allocation Heuristic

The allocation heuristic has no a priori access to any

information other than the location of sources and sinks.

Since the production rates are unknown, robots initially select

a task at random with equal probabilities. Every time a robot

returns from delivering a puck it faces one of three possible

situations:

1) robots are already waiting in a queue to pick up a puck

2) no robots are waiting and a puck is available for pick

up

3) no robots are waiting and no puck is available yet

Situation (1) can be evidence that the number of robots

assigned to the task is too high. It can also be a result

of an unfortunate spatial clustering of robots. Situation (2)

might indicate that the number of robots assigned to the

task is too low since the production rate appears to be

higher then the transportation rate. But again this could also

be a consequence of a brief congestion somewhere along

the transportation route. Situation (3) is, at least from this

particular robots point of view, the ideal case. On one hand

the absence of a robot waiting queue indicates that there are

not too many robots assigned to the task. On the other hand

pucks not already waiting indicates that the task has recently

been serviced by another robot.

The allocation heuristic is entirely based on these three

situation, which are easily identifiable by the robots. A robot

in situation (1) randomly chooses a maximum time it is

willing to wait in the queue according to

twait = max(tminwait , T̂i · r) (2)

where tminwait is a minimum waiting time, T̂i the corrected

round trip time and r is a uniform random number in the

interval [0,1]. If the robot is able to enter the loading bay

before the waiting time is up, it will continue with the current

task. Otherwise it stops performing any task and returns to

the depot.

A robot in situation (2) broadcasts a worker recruitment

message for the current task with a probability pb. The first

robot in the depot will respond to the allocation call by

starting to perform the task in need of an additional worker.

In the case that there are no robots in the depot, the allocation

message remains unanswered. Situation (3) does not require

the robot to alter the allocation, thus it simply continues

to perform the task. Because production rates may drop to

zero, a robot in situation (3) will only wait for a puck to
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be produced for a maximum duration. We choose the last

experienced round trip time to be the maximum waiting time

before returning to the depot.

Note at no point are the robots obtaining any information

about the tasks production rates, the number of assigned

robots per task or the number of unassigned robots. The

group allocation is entirely based on locally observed infor-

mation (apart from information about the work site location)

and a single value broadcast message, used infrequently.

III. EXPERIMENTS

All experiments reported in this paper were conducted

with 18 simulated robots in Stage [12], a sensori-motor level

multi-robot simulator. The robot controller was the same

during all experiments, just the task selection component was

varied. The simulation environment is shown in Fig. 1. Initial

starting positions of the robots, the location of source and

sink as well as the total sum of production rates were fixed.

We just altered the ratio of the production rate between the

two tasks. Performance was measured in two dimensions,

total number of pucks transported in a fixed amount of

time and total energy expenditure during this time. These

values are not directly convertible into a single performance

criterion. The result of any form of linear combination is

dependent on the weighting and is thus application dependent

and not suitable for a general comparison. Due to the

cost of interference, ratios like pucks transported per unit

energy, generally favour allocations where only one robot is

performing the task while the remaining robots are in stand-

by. So we report the results of our experiments in a energy-

work graph, similar to a precision-recall graph in machine

learning. Results closer to the upper left corner of a energy-

work graph should be considered better. Less energy is then

expended and more work performed. All experiments were

run for 2 simulated hours.

A. Constant Production Ratios

In a first set of experiments we kept the production rate

constant at 1:1, 2:1 and 10:1 respectively. Each configuration

was tested 20 times. Fig. 3 shows the results in energy-work

graphs for the re-planner and the heuristic allocation for a

selection of broadcast probabilities. We tested probabilities

with 0.1 increments, but due to space constraints only show

the most interesting ones.

In order to not only compare our two task-allocation

methods with each other and to allow the reader to see where

in the possible energy/work space our solutions lie, we also

characterize the possible energy/work space. To do so we

assigned a fixed number of robots to each task and kept this

assignment constant during the course of a 2 hour simulation

run. We repeated this process for all possible ways to assign

up to 18 robots to two tasks, where the unassigned robots

return to the depot, just like in the case of the other two

policies (a total of 189 experiments).

As mentioned earlier it is application dependent whether

we wish to minimize energy expenditure or maximize puck

transportation or find some middle ground. But in general we

wish to minimize wasting energy. Therefore control policies

that achieve the same number of pucks transported while

spending less energy have to be considered better policies.

From the fixed assignment we can see the line of good

performance, it is the left hand side of the fixed assignment

energy-work tuples. From Fig. 3 we conclude that the re-

planner performs very well, since its results are on the line

of good performance for all configurations tested.

The results from the allocation heuristic are subject to a

higher degree of variance. This is to be expected due to

the stochastic nature of the heuristic. Further we observe

that a low broadcast probability yields results closer to

the line of good performance. The reason is that a higher

probability causes a higher frequency of re-assignments and

these cost energy as the newly allocated robot travels to

the worksite. The key to the heuristic proposed is to trade-

off re-assignments and adaptation to the task configuration.

From the graphs it is apparent that this adaptation is more

difficult in the 2:1 case. The 1:1 case is easier, because of

the initial random task selection, the ratios of robots already

closely matches the production rates and “only” a reduction

of workers has to be achieved by the system. The cues

used by the heuristic are more pronounced in the 10:1 case,

because the ratios are so much more different.

Summarizing, the allocation heuristic performs remarkably

well considering that no information about the production

rates or the allocation of other robots is known to the

heuristic.

B. Changing Production Ratios

TABLE I

AVERAGE NUMBER OF ROBOTS ASSIGNED BETWEEN TWO TASKS WITH

STEPWISE CHANGE OF PRODUCTION RATES FROM 3:1 TO 1:3

Ratio re-planner heuristic with broadcast probability
0.0 0.3 0.7 1.0

3:1 8.0 : 3.0 7.4 : 3.6 9.1 : 4.1 10.1 : 4.1 10.6 : 4.4

1:3 3.1 : 8.0 3.4 : 3.6 3.7 : 8.1 3.8 : 10.4 3.8 : 11.7

Next we investigate how the two policies perform in situ-

ations of changing production rates. Therefore we conducted

an experiment in which we set the production ratio to 3:1

for the first hour and then reversed it to 1:3 for the second

hour. Unlike in the constant rate situation, a fixed assignment

obviously does not show us the possible energy-work space.

So we restricted our analysis to comparing the re-planner

with the heuristic. The results are summarized in energy-

work graphs (Fig. 4) and the average robot assignment

numbers in Tab. I. The assignment numbers are the average

number of robots assigned to a task during a production rate

period. As to be expected, with zero broadcast probability the

heuristic just de-allocates robots once the production rate of

the first task drops. With broadcasting probability Pb = 0.3

we achieve enough recruitment so that the ratio of assigned

robots matches that of the re-planner. The number of as-

signed robots is generally higher, because of the overhead

of constant re-assignment. As the probability increases we
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Fig. 3. Energy-Work graphs for different production rate ratios and broadcasting probabilities. Energy expended is plotted on the x-axis and pucks
transported on the y-axis. The green circles mark results from fixed robot assignments to visualize the possible performance space. The performance of 20
trials of the re-planner is shown in red asterixes and the performance from 20 trials of the allocation heuristic is shown in black crosses.

observe an increase in overhead and thus higher assignment

numbers but the ratio is similar to that of the re-planner.

Disabled recruitment (Pb = 0.0) means fewer workers after

the ratio change and that results in fewer pucks transported

(Fig. 4(a)) and less energy spent. Using a broadcasting

probability of Pb = 1.0 does not yield more pucks transported

but results in more energy wasted on frequent re-allocation

(Fig. 4(c)), this coincides with our analysis of the assignment

numbers. More interesting is Fig. 4(b), which shows that

the work rate achieved by both policies is about the same
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Fig. 4. Stepwise change of production rates from 3:1 to 1:3

(broadcast probability of 0.3), but the heuristic requires more

energy. As in the first experiments, lack of information has

to be paid for with increased energy expenditure.

IV. DISCUSSION

For energy to be used in a performance analysis of sim-

ulation experiments an accurate model of the robots energy

consumption is required. Mainly this model must be able to

capture possible differences in energy requirements of the

sensori-motor activity caused by different control policies.

To test our methods under more realistic circumstances we

are currently working on real robot experiments. An issue not

addressed in this work and left for the future is refuelling.

Our current implementation can handle refuelling in principle

but more and especially longer experiments are required for

a thorough investigation.

The sources of the transportation task used throughout this

paper were only able to store one puck at a time. In the future

we plan to investigate systems in which pucks accumulate at

the source if the robots do not pick them up in time. Another

question left for the future is how does task priority, e.g.

expressed in terms of task-dependent rewards, influence the

allocation policies?

The paper introduced two task-allocation strategies for a

multi-robot transportation system. The computational com-

plexity of both strategies is small. In simulation experiments

we compared the strategies in form of energy-work graphs.

It is not possible to generally say which method performs

better because we lack a unifying metric. But we can

conclude that the re-planner’s performance is on the line of

good performance based on a comparison with exhaustive

search. The performance of the heuristic allocation is often

slightly below the line of good performance. Yet the heuristic

still performs well, considering that it uses no information

about the production rates nor about the task allocation of

other robots. This simple rule-based allocation policy yields

remarkable results entirely relying on local information and

minimalistic broadcasting.

EXPERIMENTAL DATA

In accordance with the Autonomy Lab’s policy on code

publication, the source code and analysis scripts of the

experiments are made available online at git://github.

com/rtv/autolab-fasr.git. The exact data that led

to the presented results can be accessed via the commit hash

ed47f9212cf3b72f6a083b48bc2d39a1b79006af.
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[1] T. S. Dahl, M. J. Matarić, and G. S. Sukhatme. Multi-robot task allo-
cation through vacancy chain scheduling. Robotics and Autonomous

Systems, 57(6):674–687, 2009.
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