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Abstract— We present adaptive admittance control of a
robotic manipulator, with uncertain dynamic parameters, op-
erating in a constrained task space. To provide compliance to
external forces, we generate a differentiable reference trajectory
that remains in the constrained task space. Then, adaptive
backstepping control, based on a time-varying asymmetric
Barrier Lyapunov Function (BLF), is designed to achieve
tracking of the reference trajectory while guaranteeing con-
straint satisfaction. The improved BLF-based control renders
the entire constrained task space positively invariant. Despite
transient perturbations by external forces and online parameter
adaptation, practical tracking of the reference trajectory is
achieved without transgression of the constrained task space.
In the absence of interaction forces, asymptotic tracking of the
desired trajectory is achieved.

I. INTRODUCTION

As robotics applications migrate from controlled factory
environments to unstructured human environments, the role
of interaction control is becoming increasingly important,
driven by the need for safe human-robot physical interac-
tions. Consider a rehabilitation robot that is required to guide
the motion of the patient’s arm, and simultaneously comply
with the forces exerted by the patient (Figure 1). Such
interaction tasks cannot be handled by pure motion control
that rejects forces exerted by the patient as disturbances.

Since the pioneering works on impedance and compliance
control [1], [2], there have been many contributions to this
area, including robust impedance control [3], and hybrid
force/motion impedance control [4]. In parallel, adaptive
control of robotic manipulators has advanced considerably in
recent decades to reduce dependency on a precise knowledge
of the dynamics of the robot and the environment. This has
led to works on adaptive impedance control [5], [6], [7],
adaptive admittance control [8], and approximation-based
impedance control [9], [10].

While adaptive control and interaction control of robot
manipulators have received much attention, position and
orientation constraints in the operating environment are
usually neglected in the control design. Violation of the
constraints may result in hazards or damage. While inter-
acting physically with humans, interactive forces can be
unpredictable. Therefore, constraints need to be enforced to
prevent endangerment to human safety as well as collision
with itself or the surroundings. For example, the motion of
a rehabilitation robot needs to be limited to avoid injuring
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the patient (Figure 1). As such, there is a need for rigorous
handling of constraints in adaptive interaction control.

Fig. 1. Constrained task space for a rehabilitation robot.

This paper considers an uncertain robotic manipulator
whose end-effector needs to track a desired trajectory
while complying with external forces. Furthermore, the end-
effector is to remain inside a constrained task space. A
promising approach to ensure constraint satisfaction is to
employ an asymmetric Barrier Lyapunov Function (BLF)
when designing the control [11], [12]. In this paper, we
design the asymmetric barrier limits to vary in time with
the desired trajectory, unlike [11], [12] which determine a
constant barrier limit according to the worst case bound of
the desired trajectory over time. A significant improvement
obtained with asymmetric time-varying barrier limits is that
the set of feasible initial positions is maximized to the
entire constrained task space. Furthermore, compliance with
external forces cannot be handled with the motion control
approach in [11], [12]. To tackle this problem, we shape
the reference trajectory based on the external force and the
constrained task space, and then track it with a control
designed with the time-varying asymmetric BLF.

The remainder of this paper is organized as follows. In
Section II, we present a model of the robot, and explain the
idea of using a BLF for constraint satisfaction. Following
that, in Section III, we present an adaptive admittance con-
trol, comprising a reference trajectory generation scheme and
an improved BLF-based adaptive backstepping control. The
simulation study in Section IV illustrates the performance of
the control, and Section V presents concluding remarks.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a robot manipulator described by:

M(q)q̈ + C(q, q̇)q̇ +G(q) + F (q̇) = τ + τe(t) (1)
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where M(q) ∈ R
n×n is a symmetric positive definite matrix,

C(q, q̇)q̇ ∈ R
n the Coriolis and centrifugal forces, G(q) ∈

R
n the gravitational forces, F (q̇) ∈ R

n the frictional forces,
q ∈ R

n the robot joint position, τ ∈ R
n the input torque,

and τe ∈ R
n the interaction torque from the environment (or

human). The terms M(q), C(q, q̇), F (q̇) and G(q) contain
uncertain dynamic parameters.

To track a desired trajectory in task space, the joint space
dynamics (1) are transformed into task space dynamics [13]:

Mx(x)ẍ+ Cx(x, ẋ)ẋ+Gx(x) + Fx(ẋ) = f + fe(t) (2)

via the forward kinematics and the Jacobian:

x = Ω(q), ẋ =
∂Ω
∂q

q̇ =: J(q)q̇ (3)

where x = [x1, x2, ..., xm]T is a vector of task variables, and
the coefficient matrices are defined as

Mx = J−TMJ−1, Gx = J−TG, Fx = J−TF

Cx = J−T (C −MJ−1J̇)J−1,

f = J−T τ, fe = J−T τe (4)

For simplicity, we consider only non-redundant (m = n)
non-singular manipulators with known Jacobian J in this
paper. Henceforth, we consider x ∈ R

n.
The following properties hold [13].
Property 1: The inertia matrix Mx is symmetric positive

definite.
Property 2: The matrix Ṁx − 2Cx is skew symmetric.
Property 3: The left-hand-side expression of (2) can be

linearly parameterized in terms of the robot system parame-
ters as follows:

Mx(x)φ1 +Cx(x, ẋ)φ2 +Gx(x)+Fx(ẋ) = ψ(φ1, φ2, x, ẋ)θ
(5)

for any φ1, φ2 ∈ R
m, where θ ∈ R

l are constant parameters
and ψ ∈ R

l is a known regressor function.
For ease of control design, denote η1 = x, η2 = ẋ, and

rewrite (2) into the following form suitable for backstepping:

η̇1 = η2

η̇2 = M−1
x (−Cxη2 −Gx − Fx + f + fe) (6)

The control objective is to ensure that the task variable x =
[x1, ..., xn]T tracks a desired trajectory xd = [xd1, ..., xdn]T

while complying with the external force fe(t). Additionally,
it is required to keep all closed loop signals bounded and
prevent the position constraints |xi(t)| < kci

, i = 1, ..., n,
from being violated ∀t > 0.

Assumption 1: There exists positive constants kdi
, i =

1, ..., n, such that |xdi
(t)| ≤ kdi

< kci
, i = 1, ..., n, ∀ t ≥ 0.

Assumption 2: There exists a positive constant Fe such
that ‖fe(t)‖ ≤ Fe ∀t ≥ 0.

To prevent the robot end-effector from transgressing the
constraints, we employ a Barrier Lyapunov Function [12],
whose value approaches infinity as its arguments approaches
some finite limits. The following lemma is used in subse-
quent analysis to show that the constrained task space is not
transgressed.

Lemma 1: Let Z := {ξ ∈ R
n : |ξi| < 1, i = 1, ..., n} ⊂

R
n and N := R

l × Z ⊂ R
l+n be open sets. Consider the

system

η̇ = h(t, η) (7)

where η := [w, ξ]T ∈ N , and h : R+ × N → R
l+n

is piecewise continuous in t and locally Lipschitz in η,
uniformly in t, on R+ × N . Let Zi := {ξi ∈ R : |ξi| <
1} ⊂ R. Suppose that there exist functions U : R

l → R+

and Vi : Zi → R+, i = 1, ..., n, continuously differentiable
and positive definite in their respective domains, such that

Vi(ξi) → ∞ as |ξi| → 1, i = 1, ..., n (8)

γ1(‖w‖) ≤ U(w) ≤ γ2(‖w‖) (9)

where γ1 and γ2 are class K∞ functions. Let V (η) :=∑n
i=1 Vi(ξi) +U(w), and ξ(0) ∈ Z . If the inequality holds:

V̇ =
∂V

∂η
h ≤ − μV + c (10)

in the set ξ ∈ Z , where μ and c are positive constants, then
ξ(t) ∈ Z ∀t ∈ [0,∞).

Proof: The conditions on h ensure the existence and
uniqueness of a maximal solution η(t) on the time interval
[0, τmax), according to [14, p.476 Theorem 54]. From the
fact that ξ(0) ∈ Z , we know that Vi(ξi(0)), i = 1, ..., n, and
thus V (η(0)), exist.

Integrating both sides of inequality (10), it can be shown
that V (η(t)) ≤ V (η(0))+c/μ, ∀t ∈ [0, τmax). From V (η) =∑n

i=1 Vi(ξi)+U(w) and the fact that Vi(ξi), i = 1, ..., n are
positive functions, it is clear that each Vi(ξi(t)) is bounded
∀t ∈ [0, τmax). Since Vi(ξi) → ∞ only if ξi → ±1, we
conclude, from the boundedness of Vi(ξi(t)), that |ξi(t)| < 1
∀t ∈ [0, τmax).

Therefore, there is a compact subset K ⊆ N such that the
maximal solution of (7) satisfies η(t) ∈ K ∀t ∈ [0, τmax).
As a direct consequence of [14, p.481 Proposition C.3.6],
we have that η(t) is defined ∀t ∈ [0,∞). It follows that
ξ(t) ∈ Z ∀t ∈ [0,∞).

The following lemma is useful in the stability analysis to
obtain the time-derivative of the BLF in the form of (10).

Lemma 2: For any positive constants ka and kb, the
following inequality holds for all |ξ| < 1:

log
1

1 − ξ2
<

ξ2

1 − ξ2
(11)

III. ADAPTIVE ADMITTANCE CONTROL WITH TASK

SPACE CONSTRAINT

Admittance control involves compliant motion generation
and control. The first part generates a reference trajectory,
deviating from the desired trajectory, so as to achieve a
target dynamic behavior of the end-effector with respect
to an external interaction force. The motion control part
ensures tracking of the online-generated reference trajectory
with disturbance rejection. To ensure that the end-effector
trajectory remains in the constrained task space for all time,
we first shape the behavior of the reference trajectory near
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the constraint boundaries, and then employ adaptive control
based on a time-varying asymmetric BLF.

A. Reference Trajectory Shaping

Denote ζi := x̄ri
− xdi

, where x̄ri
is an intermediate

variable. To compute the reference trajectory xr, we first
integrate the impedance equation

kmi
ζ̈i + kvi

ζ̇i + kki
ζi = fei

, i = 1, ..., n (12)

where ζi(0) = ζ̇i(0) = 0, and kmi
, kvi

, kki
are positive

constants selected to provide the desired admittance at the
end-effector. After solving for x̄ri

, we obtain xri
by a soft

saturation function (Figure 2), defined by

xri
=

⎧⎨
⎩

x̄ri
if |x̄ri

| ≤ βkci

−γi(1 − e(x̄ri
+βkci

)/γi) − βkci
if x̄ri

< −βkci

γi(1 − e(βkci
−x̄ri

)/γi) + βkci
if x̄ri

> βkci

(13)
for i = 1, ..., n, where γi := (1 − β)kci

, 0 � β < 1 is a
constant that is selected to satisfy

βkci
> kdi

≥ |xdi
(t)| ∀t ≥ 0 (14)

where kdi
is defined in Assumption 1. The soft saturation in

(13) ensures that xr(t) is twice differentiable and belongs to
the constrained task space.
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Fig. 2. The soft saturation (13) is differentiable near the corners.

Property 4: The reference trajectory xr(t) in (13) satisfies
|xri

(t)| < kci
(t) ∀ t ≥ 0, and there exist positive constants

Yi, Wi, i = 1, ..., n, such that |ẋri
(t)| < Yi, |ẍri

(t)| < Wi

∀t ≥ 0.
Lemma 3: In the absence of an external force, i.e. fe = 0,

xr(t) → xd(t) as t→ ∞.
Proof: When fe = 0, it follows from (12) that ζ(t) → 0
as t → ∞, i.e. x̄r(t) → xd(t) as t → ∞. Since |xdi

(t)| <
βkci

∀t ≥ 0, there exists a positive number T such that
|x̄ri

(t)| < βkci
∀t > T , i = 1, ..., n. As a result, from (13),

we have xr(t) → x̄r(t) as t→ ∞, and thus, xr(t) → xd(t)
as t→ ∞.

B. Adaptive Control with Time-Varying Asymmetric BLF

We design a control to track the reference trajectory xr(t)
while respecting the task space constraint |xi(t)| < kci

∀t >
0. Unlike [11], [12], which used time-invariant BLFs, we
employ a time-varying asymmetric BLF here to maximize
the set of feasible initial conditions, i.e. |xi(0)| < kci

, i =
1, ..., n. The additional steps in the design include a change

of error coordinates and a term in the stabilizing control that
suppresses the effects of the time-varying barrier limits.

Step 1 Denote error z = [z1, ..., zn]T = η1 − xr and v =
[v1, ..., vn]T = η2 − α, where α = [α1, α2]T is a stabilizing
function to be designed shortly. Consider the time-varying
asymmetric barrier function:

V1 =
1
2

n∑
i=1

(
p(zi) log

k2
bi

(t)
k2

bi
(t) − z2

i

+(1 − p(zi)) log
k2

ai
(t)

k2
ai

(t) − z2
i

)
(15)

where

kai
(t) := kci

+ xri
(t) (16)

kbi
(t) := kci

− xri
(t) (17)

p(•) :=
{

1, if • > 0
0, if • ≤ 0 (18)

for i = 1, ..., n. Due to Assumptions 1-2, there exist positive
constants kb1

, kb1 , ka1
and ka1 such that

0 < kb1
≤ kb1(t) ≤ kb1 , ∀ t ≥ 0

0 < ka1
≤ ka1(t) ≤ ka1 , ∀ t ≥ 0 (19)

By a change of error coordinates

ξai
=

zi

kai

, ξbi
=

zi

kbi

(20)

ξi =
{
ξai
, zi ≤ 0

ξbi
, zi > 0 (21)

for i = 1, ..., n, we can rewrite (15) as

V1 =
1
2

n∑
i=1

log
1

1 − ξ2i
(22)

The time derivative of V1 is given by

V̇1 =
n∑

i=1

[
p(zi)ξbi

kbi
(1 − ξ2bi

)

(
vi + αi − ẋdi

− zi
k̇bi

kbi

)

+
(1 − p(zi))ξai

kai
(1 − ξ2ai

)

(
vi + αi − ẋdi

− zi
k̇ai

kai

)]
(23)

Design the stabilizing functions αi, i = 1, ..., n as:

αi = −κzi
zi + ẋri

− zi

√√√√( k̇ai

kai

)2

+

(
k̇bi

kbi

)2

+ λ (24)

where λ and κzi
are positive constants. The last term of (24)

is designed to dominate the term −zik̇bi
/kbi

when zi > 0,
and the term −zik̇ai

/kai
when zi ≤ 0 in (23), since√√√√( k̇ai

kai

)2

+

(
k̇bi

kbi

)2

+ λ+ p
k̇bi

kbi

+ (1 − p)
k̇ai

kai

≥ 0 (25)

Then, the time derivative of V1 satisfies

V̇1 ≤−
n∑

i=1

(
p(zi)κzi

ξ2bi

1 − ξ2bi

+
(1 − p(zi))κzi

ξ2ai

1 − ξ2ai

)

+
n∑

i=1

(
p(zi)ξbi

vi

kbi
(1 − ξ2bi

)
+

(1 − p(zi))ξai
vi

kai
(1 − ξ2ai

)

)
(26)
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From (20)-(21) and the fact that kai
, kbi

> 0, we note that
ξi > 0 when zi > 0 and that ξi ≤ 0 when zi ≤ 0. Hence,
the first term on the right hand side of (26) is nonpositive in
the set ξ = [ξ1, ..., ξn]T ∈ Z , where

Z := {(ξ1, ..., ξn) ∈ R
n : |ξi| < 1, i = 1, ..., n} (27)

Step 2 The control τ will be designed in this step.
Consider the Lyapunov function candidate:

V2 = V1 +
1
2
vTMx(η1)v +

1
2
θ̃T Γ−1θ̃ (28)

where θ̃ := θ̂ − θ, Γ = ΓT > 0, and Mx(η1) is positive
definite from Property 1. Using Properties 2 and 3, we obtain
the time-derivative of V2 as

V̇2 = vT [−ψ(α̇, α, η1, η2)θ+ f + fe] + θ̃T Γ−1 ˙̂
θ+ V̇1 (29)

Design the adaptive control law as

˙̂
θ = Γ(ψT v − σθ̂) (30)

f = −Kvv + ψθ̂ + g − fe (31)

τ = JT f (32)

where σ is a positive constant, Kv := diag(κv1 , ..., κvn
) > 0,

and g = [g1, ..., gn]T , with

gi := −
(

p(zi)ξbi

kbi
(1 − ξ2bi

)
+

(1 − p(zi))ξai

kai
(1 − ξ2ai

)

)
(33)

for i = 1, ..., n. The term g is used to cancel the coupling
term in (26). Note that leakage term in (30) provides ro-
bustness against unmodelled disturbances and noisy force
measurements.

Substituting (30) and (31) into (29), and using Lemma 2,
we can show that

V̇2 ≤ −μV2 + c (34)

in the set ξ ∈ Z , where Z is defined in (27), and

μ =min
{

2κz1 , ..., 2κzn
, 2
λmin(Kv − 1

2I)
λmax(Mx)

,
σ

λmax(Γ−1)

}

c =
σ

2
‖θ̃‖2 (35)

where λmin(•) and λmax(•) denote the minimum and max-
imum eigenvalues of (•), respectively.

Theorem 1: Consider the robot manipulator (1) under the
adaptive controller (24), (30)-(32), and Assumptions 1-2. If
the initial end-effector position lies in the constrained task
space, i.e.

|xi(0)| < kci
, i = 1, ..., n (36)

then the following properties hold.
i) The tracking error z = [z1, ..., zn]T satisfies

−Dzi
(t) ≤ zi(t) ≤ Dzi

(t), i = 1, ..., n ∀ t > 0 (37)

where

Dzi
(t) := kbi

(t)
√

1 − e−2(Vn(0)+c/μ) (38)

Dz1
(t) := kai

(t)
√

1 − e−2(Vn(0)+c/μ) (39)

ii) The end-effector position x(t) satisfies |xi(t)| < kci
(t),

i = 1, ..., n, ∀t > 0, i.e. the constraint is never violated.
iii) All closed loop signals are bounded.

Proof:

i) The closed loop system can be written as

ż = v − [p(zi) + (1 − p(zi))]κzi
zi

−zi

√√√√( k̇ai

kai

)2

+

(
k̇bi

kbi

)2

+ λ

v̇ = M−1
x (ψθ̃ −Kvv + g)

˙̃
θ = Γ(ψT v − σθ̂) (40)

where the right hand side is piecewise continuous in t
and locally Lipschitz in (z, v, θ̃), uniformly in t. Based
on the definitions of kai

and kbi
in (16)-(17), we rewrite

the initial conditions (36) as −kai
(0) < zi(0) < kbi

(0).
This is equivalent to

|ξi(0)| < 1, i = 1, ..., n (41)

as follows from (20)-(21). Then, from the fact that
V̇2 ≤ −μV2 + c in the set ξ ∈ Z , and that |ξi(0)| < 1,
we invoke Lemma 1 to establish that |ξi(t)| < 1,
i = 1, ..., n, ∀ t > 0.
From (21), consider zi(t) ≤ 0 for some t > 0, which
yields −1 < ξai

(t) ≤ 0. Since ξai
= zi/kai

for zi ≤ 0,
and kai

> 0, we obtain

−kai
(t) < zi(t) ≤ 0 (42)

for i = 1, ..., n. Similarly, considering zi(t) > 0 for
some t > 0 yields 0 < ξbi

(t) ≤ 1 and, in turn,

0 < zi(t) < kbi
(t) (43)

for i = 1, ..., n. Combining both cases, we conclude
that

−kai
(t) < zi(t) < kbi

(t), i = 1, 2, ∀ t > 0

Integrating both sides of inequality (34) yields
V2(η(t)) ≤ V2(η(0)) + c/μ, ∀t > 0. For i = 1, ..., n,
we have

Vn(0) + c/μ ≥

⎧⎪⎨
⎪⎩

1
2 log

k2
bi

(t)

k2
bi

(t)−z2
i (t)

, 0 < zi < kbi

1
2 log

k2
ai

(t)

k2
ai

(t)−z2
i (t)

, −kai
< zi ≤ 0

Taking exponentials on both sides of the inequality, it
can be shown that

z2
i (t) ≤

{
k2

bi
(t)(1 − e−2(Vn(0)+c/μ)), 0 < zi < kbi

k2
ai

(t)(1 − e−2(Vn(0)+c/μ)), −kai
< zi ≤ 0

Taking square root of both sides of the inequality, we
obtain that zi(t) ≤ Dzi

(t) for positive zi(t), and that
zi(t) ≥ −Dzi

(t) for negative zi(t). Combining both
cases, it is obvious that −Dzi

(t) ≤ zi(t) ≤ Dzi
(t)

∀t ≥ 0, i = 1, ..., n.
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ii) Since xi(t) = zi(t) + xri
(t) and −kai

< zi(t) < kbi
,

for i = 1, ..., n, we infer that

−kai
(t) + xri

(t) < xi(t) < kbi
(t) + xri

(t) (44)

for all t > 0. From the definitions of kai
and kbi

in (16)
and (17) respectively, we conclude that |xi(t)| < kci

(t),
i = 1, ..., n, ∀t > 0.

iii) Since V2(t) ≤ V2(0)+c/μ, we know that θ̂(t) and z2(t)
are bounded ∀ t > 0. From (24), the stabilizing function
α(t) is bounded, since |ẋri

(t)| < Yi from Property 4,
−kai

< zi(t) < kbi
, |k̇bi

| = |k̇ai
| ≤ Yi, and kai

, kbi
are

bounded away from 0. This leads to the boundedness of
η2(t), since η2 = v+α. Since f is a continuous function
of bounded signals in the set |ξi| < 1, i = 1, ..., n, we
know that f(t) is bounded ∀ t > 0. Since the Jacobian
J is smooth and nonsingular, τ(t) is bounded ∀ t > 0.
Hence, all closed loop signals are bounded.

Remark 1: The set of feasible initial conditions (36) is
maximal in the sense that the robot end-effector is able
to start from anywhere in the constrained task space, i.e.
|xi(0)| < kci

, and remains in the same set ∀t > 0. In
other words, the proposed control renders the set |xi| < kci

positively invariant – a key improvement over [12].
Corollary 1: Consider the robot manipulator (1) under the

special case fe ≡ 0. Then the control law (24), (31)-(32), and

adaptation law ˙̂
θ = ΓψT v, with initial conditions (36), ensure

that the tracking error z(t) converges to zero asymptotically,
i.e., x(t) → xd(t) as t→ ∞.

Proof: Since fe ≡ 0 and σ = 0, we obtain, from (34):

V̇2 ≤ −
n∑

i=1

κzi

(
p(zi)ξ2bi

1 − ξ2bi

+
(1 − p(zi))ξ2ai

1 − ξ2ai

)
=: ρ

Since |ξi(t)| < 1, i = 1, ..., n, ∀t > 0, it can be shown that
limt→∞

∫ t

0
ρ(τ) dτ < ∞ and that ρ̇(t) is bounded. Then,

Barbalat’s Lemma [15] is used to show that ρ(t) → 0 as
t→ ∞. Thus, ξi(t) → 0 as t→ ∞. Since kai

(t), kbi
(t) are

bounded away from 0 ∀ t > 0, we have ξi = 0 ⇒ zi = 0,
and conclude that zi(t) → 0 as t → ∞, i = 1, ..., n. By
virtue of Lemma 3, we have xr(t) → xd(t) as t → ∞.
Therefore, x(t) → xd(t) as t→ ∞.

Remark 2: The adaptation law (30) has a leakage term,
which provides robustness to unmodelled disturbances and
noisy force measurements. The tradeoff for this robustness is
that only practical tracking of xr(t) is ensured. If the leakage
term is removed, then asymptotic tracking can be achieved.

IV. SIMULATION

In the simulation study, we consider, for simplicity, a two-
link frictionless robot moving in a horizontal plane subject
to a rectangular constraint in the task space. All units are
S.I. The robot dynamics are modeled by [16]

τ1 = m2l
2
2(q̈1 + q̈2) +m2l1l2c2(2q̈1 + q̈2) − τe1

+(m1 +m2)l21 q̈1 −m2l1l2s2q̇
2
2 − 2m2l1l2s2q̇1q̇2

τ2 = m2l
2
2(q̈1 + q̈2) +m2l1l2c2q̈1 +m2l1l2s2q̇

2
1 − τe2

(45)

where ci = cos(qi), si = sin(qi), sij = sin(qi + qj), and
cij = cos(qi + qj). The uncertain parameters are m1 and
m2, whose true values are 1.5kg and 1.0kg respectively. The
lengths of the links are l1 = l2 = 0.3m.

For the rectangular constraint region, x1(t) and x2(t) are
to satisfy

|x1(t)| < kc1 = 0.15, |x2(t)| < kc2 = 0.15, ∀ t ≥ 0

where the origin of the task variable x = [x1, x2]T is at
[0, 0.3]T m with respect to the position of the base joint.
Initially, the end-effector is at rest at the origin, i.e. x(0) =
[0, 0]T , q(0) = [0.5236, 2.0944]T . The design parameters are
λ = 1.0, Γ = 1.0I , Kv = 1.0I , Kz = 4.0I , β = 0.97,
σ = 0.01, kmi

= kvi
= 20, and kki

= 100, i = 1, 2.
The desired trajectory traces a circular path in the task

space, and is described by

xd1(t) = 0.14 cos(0.5t)
xd2(t) = 0.14 sin(0.5t) (46)

The external force fe = [fe1 , fe2 ]
T , as shown in Figure 3,

is described by

fei
(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 t < 10 or t ≥ 21
ai(1 − cosπt) 10 ≤ t < 11
2ai 11 ≤ t < 20
ai(1 + cosπt) 20 ≤ t < 21

(47)

where a1 = 1 and a2 = 2.
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Fig. 3. The external force fe has an onset at t = 10s and is
removed at t = 21s.

Figure 5 shows that despite the desired trajectory ap-
proaching close to the boundaries of the constrained region,
and despite the transients of online parameter estimation as
well as the effects of external forces, the robot end-effector
never transgresses the position constraints in task space, i.e.
|x1(t)| < 0.15 and |x2(t)| < 0.15 ∀ t > 0. Initial fluctuations
in the trajectories are caused by parametric uncertainty, but
these are quickly minimized such that close tracking of
xr(t) = xd(t) is achieved. Upon the onset of the external
force at t = 10s, x(t) deviates from xd(t) to track xr(t).
However, after the external force is removed at t = 21s,
tracking of xd(t) resumes.

Figure 6 shows that the tracking errors zi i = 1, 2,
converge to zero and never transgresses the asymmetric and
time-varying barriers, i.e. −kai

(t) < zi(t) < kbi
(t) ∀ t > 0.
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Fig. 4. The reference trajectory xr(t) (red), which deviates from
the desired trajectory xd(t) (blue), is obtained by saturating x̄r(t)
(thick grey). Vertical lines indicate onset and offset of external force.
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Fig. 5. The end-effector tracks the reference trajectory xr(t) within
the constrained task space. It deviates from the desired trajectory
xd(t) (dotted line) upon the onset of the external force (t=10s), and
rejoins xd(t) after the external force is removed (t=21s).

V. CONCLUSIONS

We have presented adaptive admittance control of un-
certain robot manipulator under task space constraint. To
provide compliance to external forces, a reference trajec-
tory has been shaped by solving an impedance equation
online, followed by a soft saturation. Subsequently, adaptive
control based on a time-varying asymmetric BLF has been
designed to track the reference trajectory while satisfying
the constraints. By incorporating both asymmetric and time-
varying barrier limits, we have maximized the set of feasible
initial positions. We have shown that practical tracking of
the reference trajectory is achieved without transgression of
the constrained task space. When the external forces vanish,
asymptotic tracking of the desired trajectory is guaranteed.
The performance of the proposed adaptive control has been
illustrated through a simulation.
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Fig. 6. The tracking errors converge to a neighborhood of zero and
never transgresses the time-varying barriers.
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