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Abstract— We consider the task of monocular visual motion
estimation from video image sequences. We hypothesise that
performance on the task can be improved by incorporating an
understanding of physically likely and feasible object dynamics.
We test this hypothesis by incorporating a physical simulator
into a least-squares estimation procedure. We initialise a full
trajectory estimate using RANSAC followed by gradient de-
scent refinement. We present results for 2D image sequences
consisting of single ambiguous, visible or occluded balls, as well
as results for 3D computer-generated sequences of objects in
free-flight with added noise. Results suggest that restricting the
estimation to allow only motions that are feasible according
to the physics simulator can produce marked improvement
when the observed object motion is within the limits of the
physics simulator and its world model. Conversely, merely
penalising deviations from feasible physical dynamics produces
a consistent but incremental improvement over more common
dynamics models.

I. INTRODUCTION

In the field of cognitive robotics, the problem of vision
is intricately tangled with other cognitive problems, such as
control, interaction and manipulation. Practical solutions to
these problems arguably need to cut away from a primarily
image-centered approach and need to use frameworks suited
to a broader class of problems.

In our attempt to broaden the approach we tackle the
classic motion estimation problem, but expand on it in-
crementally. Specifically, we build software that attempts
to estimate dynamic parameters of moving objects from
image sequences, in addition to pose, kinematic or image
parameters. This software also takes into account the impact
of physical dynamics on estimated parameters by making
use of physical simulation. We make the prediction that
incorporating physical simulation in the motion estimation
procedure will improve the accuracy of motion estimation
with videos consisting of long sequences of images, partic-
ularly in the presence of occlusion, distractors, poor image
quality or multiple objects.

In the remainder of this section we discuss some related
work and describe our own approach. The following two
sections discuss motion estimation and physical dynamics
in detail, as applicable to this work. Finally we present
some results on 3D motion estimation of rigid objects
from simulated sequences of noisy poses and 2D motion
estimation of a single ball from colour histograms in real-
world videos.

All authors are at the School of Computer Science, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
{D.J.Duff,J.L.Wyatt,R.Stolkin}@cs.bham.ac.uk

A. Further Motivation

While our approach is primarily aimed as an iteration on
conventional solutions in robotics, the direction that we are
driving in has some justification in the abilities that humans
display. Specifically, in humans non-visual information is
important in visual tasks; very early in life objects start to
hold implications outside the visual and sensory array. If we
are to approximate these human capabilities we need to find
ways of making judgements about objects and their location
that make use of expectations about the way that objects
behave.

More practically, good quality motion estimation and
tracking of single or multiple objects in the presence of
occlusion, distractors, glare, and blur is important in a
number of areas. Robotic manipulation is one such area,
where a robot’s interaction with passive objects can lead
those objects to move in complicated ways, tumbling or
falling for instance. An understanding of how objects move
has potential to improve the robot’s estimation of object pose.
Moreover, there are synergies to be had between control,
planning, and visual estimation [1]. The kind of physics-
based motion estimation we are investigating will also find
application in trajectory estimation in analysis of sports
footage, object tracking in virtual reality, and motion capture.

B. Related Work

Work is being done elsewhere on employing 3D physical
dynamics while tracking human movements [2], [3], [4].
There, improvement obtained from dynamics models trained
from motion-capture data eclipses that obtained from using
a priori physics models. Our work differs from that work
primarily in that we are tackling the passive object problem,
focusing explicitly on scenarios in which objects display non-
intentional rather than active/intentional behaviour.

The computer graphics community is interested in a num-
ber of related problems – motion capture and motion synthe-
sis being the two most related (e.g. Popovic et al. 2000 [5]).
Motion estimation from image sequences has applications in
motion capture, and potentially uses a similar framework to
constrained motion synthesis. A recent example of this kind
of synthesis is the work of Bhat et al., 2002 [6] who estimate
the motion of free-flight objects from silhouettes.

There is also a large literature on general motion esti-
mation in long image sequences [7], [8], [9], often posed
simultaneously with the problem of structure estimation. Of
particular relevance is work that attempts to track objects
from image sequences by considering them as deformable
3D objects undergoing local forces calculated from images
[10], and earlier work that uses motion capture information to

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 1511



guide a simulation of arbitrary deformable 3D objects [11].
In our work we consider the motion estimation rather than
tracking problem, and we fit to image sequences rather than
motion capture data.

C. Approach

Within this broader project, in order to motivate our work,
we make the specific prediction that it is possible to use
prior knowledge about physical dynamics to improve vision
tasks within existing task domains, particularly in motion
estimation, by exploiting restrictions on the range of feasible
motions and by giving weight to more feasible motions.
Indeed, it seems sensible to suggest that a strong and accurate
physics model will allow extrapolation and interpolation
where data from observations is missing or misleading.

We first test this on computer generated data by auto-
matically generating noisy three-dimensional trajectories of
rigid objects in free-flight, and of bouncing. We use a least-
squares estimation procedure that incorporates knowledge of
free-flight and simple collision dynamics to reconstruct the
generated trajectory from the input set of noisy poses.

Secondly, we evaluate the use of physical dynamics on real
two-dimensional image sequences of a ball moving through a
scene or stationary in it. We use a colour histogram matching
procedure to generate ball location hypotheses at each frame
and best-fit a trajectory to these hypotheses, again using a
least-squares cost function.

Before we present the results of these experiments we
discuss our estimation framework and inclusion of physics
in more detail.

II. MOTION ESTIMATION

The problem of visual motion estimation is related to,
but not the same as, the problem of visual tracking. Visual
tracking is the problem of maintaining an estimate of in-
stantaneous object location over time - this location can be
hand-initialised or the tracker can try and try to obtain its
own lock. On the other hand, visual motion estimation is the
problem of reconstructing a whole trajectory from an image
sequence. Here we tackle the motion estimation problem,
because its statement is simpler and it allows us to easily
incorporate object dynamics in an explicit fashion.

Clearly, the problems are related and solutions to one
can be adapted as solutions to the other. In particular, a
naive application of a motion estimation solution to an
object tracking problem would entail a growing problem
size over time. Object tracking solutions like mean-shift
and recursive filtering have the potential advantage that they
only need to store information about the current object state.
However, a motion estimation solution could be straightfor-
wardly adapted using moving horizon estimation techniques.
Conversely, when applied to the motion estimation task,
object tracking solutions can suffer from a sensitivity to
conditions at the start of the time sequence, to the extent
that track is often never obtained.

In object tracking, object dynamics are often incorporated
implicitly; for instance by making the assumption that an

object will not move far between frames, as with mean-
shift and related object trackers where the search for the
object in each image frame is initialised from the best
location(s) found in the previous frame [12], [13], [14], [15].
In this paper we call this assumption, when made explicitly,
“constant displacement dynamics” and use it as a base-case
that we compare our new physics-based methods to. Our
other base-case is the “constant velocity dynamics” in which
the velocity of objects is assumed not to deviate significantly
from frame to frame. Both dynamics are usable as a part of
any recursive estimation procedure.

We can assign a sum of squares cost to any trajectory,
based on the chosen forward dynamics. In the case of
translational dynamics we have:

dyncost({<Tt, T
′
t>}) =

K1

∑tf

t=ti
‖dynd(Tt, T

′
t ) − Tt+1‖2

K2

∑tf

t=ti

∥∥dynv(Tt, T
′
t ) − T ′

t+1

∥∥2
+

In the above equation dyncost represents the sum
of squares error in dynamics over a whole trajectory,
{< Tt, T

′
t >} (Tt being the pose coordinates of the object at

time t and T ′
t the first derivative of this - i.e. the velocity).

dynd and dynv are functions that represent the forward
dynamics of an object, by determining, in the first case, a
predicted displacement at timestep t + 1 given the object
state at time t, and, in the second case, a predicted velocity.
Rotational dynamics can be specified in a similar way.
Weights K1 and K2 determine the relative cost contribution
of velocity and displacement error.

The constant displacement forward dynamics therefore has
dynd(Tt, T

′
t ) = Tt and K2 = 0. i.e. the displacement is not

expected to change, and the velocity is not considered.
Similarly, a constant velocity forward dynamics (assuming

that each time step is one unit of time) has dynd(Tt, T
′
t ) =

Tt + T ′
t and dynv(Tt, T

′
t ) = T ′

t .
Given this framework, any forward dynamics can be

incorporated.
The dynamics cost is mirrored by the observation cost,

which is, again, a sum of squares cost based on the deviation
between predicted observations and actual observations:

obscost({< Tt, T
′
t >}, {Ot}) =

tf∑
t=ti

wt ‖obs(Tt) − Ot‖2

The obs function, given above, is any function that predicts
an observation from an object’s location, and Ot is the
observation at time t. In the case of our experiments below,
obs simply provides the location of an object given its
estimated state. {wt} are observation weights.

Given a cost function made up of the weighted sum of
observation and dynamics costs, we can attempt to find a
trajectory {Tt, T

′
t} that minimises it - i.e. we attempt to

find the least squares in the cost terms. This can be carried
out by any general optimisation procedure. We employ
the RANSAC algorithm [16] to select inliers and initialise
solutions, and we use gradient descent refinement with finite
differences to subsequently refine the solution.
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The RANSAC procedure relies on an accurate dynamics
model to instantiate full trajectories from small randomly
sampled subsets of available observations. These trajectories
are used to select inliers and initialise the refinement compu-
tation. Without an accurate dynamics model, it is necessary
either to sample large observation sets (somewhat defeating
the purpose of RANSAC) or to frequently risk failing to find
a sufficiently accurate trajectory. The constant displacement
and constant velocity dynamics models described above do
need to make this trade-off.

III. INCORPORATING PHYSICAL DYNAMICS

Within the above cost-minimisation framework it is a sim-
ple extension to add more sophisticated physical dynamics
by providing a more sophisticated dyn function. We adapt
the commercial PhysX physics engine to this purpose, by
supplying it with a rough model of the environment and of
the object to be estimated. We call this dynamics a “locally
parametrised collision dynamics”. It is called “local” because
a dynamics cost is calculated locally between pairs of time-
points and summed together to provide a trajectory cost, as
discussed above.

We also implement a slightly different “globally
parametrised collision dynamics”. If we allow that no devi-
ation in the trajectory from the dynamics model is possible
then we may parametrise an object’s entire trajectory in terms
of the instantaneous motion parameters of the object at only
one time-point during that trajectory, since the dynamics
model deterministically specifies the motion parameters of
the remaining time-points. In this case, the cost function to
be minimised is simply the observation cost obscost, and
the parameters to be estimated are the velocity and pose
parameters at a single point during the trajectory. We call
this approach a “global” model because the model allows the
entire trajectory to be parametrised in terms of the motion
parameters of a single time-point.

IV. EXPERIMENTS

A. 3D Rigid Object Motion Estimation in Simulation

Our first experiment is intended to determine the worka-
bility of the proposed method.

1) Method: We assume in this experiment that the algo-
rithm takes as input 3D pose estimates at each time step,
as supplied by some arbitrary pose-estimation routine. We
test our algorithm on trajectories consisting of sequences
of poses generated by first simulating a trajectory and then
adding some noise. Noise is added from a normal distribution
with translation and rotation spread parameters σt and σr.
The latter is approximated from the former by observing
that a rotation is made up of a set of translations. Noise is
also added as outliers parametrised by the outlier rate (the
probability of any pose being an outlier, p) and sampled from
a uniform distribution. We generate trajectories consisting of
rigid objects in free-flight, under the influence of gravity, or
bouncing in a simple fashion. A generated trajectory, and the
same trajectory with added noise can be seen in fig. 1(a-b).
This experiment was implemented in Octave/Matlab and the
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Fig. 1. A single run of the 3D free-flight trajectory estimation algorithm
(RANSAC + refinement) on a bouncing rigid object. (a) Green: The veridical
(simulated) trajectory. (b) Red: The same trajectory with added normally
distributed noise (σt = 50cm) and outliers (p = 0.1). (c) Blue: The
trajectory fit to it using RANSAC and refinement.

simple physics models used were programmed by hand. All
collisions were assumed elastic and the object was consid-
ered a frictionless perfect sphere. A consequence of these
assumptions is that rotation occurs effectively independently
of translation. See table I(a) for object physical parameters.

In general, when calculating the distance between a pre-
dicted pose and an observed pose, we need some way of
comparing poses that takes into account both translational
and rotational error. We motivate this calculation by making
the assumption that we are interested in the integral sum
of squared error distance across all points in the object.
By integrating analytically, we obtain the pose error cost
|V |t2e + 2(1 − cosθe)ωT

e Iωe, where te is the translational
error, θe, ωe comprise the rotational error in angle-axis form,
|V | is the volume, and I is the inertial matrix of the object,
calculated assuming a constant unit density. Dividing by the
volume |V | and taking the square root obtains a scale-free
error in the original units.

In this experiment, the dynamics model used in estimation
is the same as that used to generate data initially. As a result,
we only need to make use of the “globally parametrised
dynamics model” mentioned above, since we know that the
dynamics model used is sufficient to model the data. In
the refinement phase we employ the Levenberg-Marquadt
procedure [17] to minimise the sum of squared errors,
initialised with a random guess. See table I(b-c) for the
parameters of the RANSAC and refinement algorithms.

2) Results: The output of a sample estimation run can be
seen in fig. 1(c), where output of the estimation algorithm
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is compared against the noisy data that is input into the
algorithm (b), and is also compared to the ground-truth
trajectory before noise was added (c).

Fig. 2 shows the result of applying the estimation algo-
rithm in the presence of varying amounts of noise, with
or without a ground plane to induce bouncing and with or
without the RANSAC initialisation and data selection step.

With respect to estimating the translational component of
motion, these results show that the refinement algorithm fares
worse in the presence of bounces, though RANSAC is on the
whole resistant to the presence of bouncing, and is robust to
higher levels of outlier noise, which is expected. However,
with increasing normally distributed noise, the performance
of RANSAC becomes worse than that of refinement. Further,
we see that the presence of bounces and increasing normal
noise interact to worsen the performance of the refinement
algorithm, and the presence of bounces together with in-
creasing outlier rate interact to worsen the performance of
the RANSAC algorithm.

It can be seen that lengthening the sequence from 2 to
14 (hence increasing the number of rotations) results in a
higher rotational cost per-step for the refinement algorithm,
a trend reversed by the use of RANSAC. For even longer
sequences, the refinement algorithm seems able to benefit
from the larger data set.

3) Discussion: As well as being able to deal better with
long-tailed noise, it does seem that RANSAC is able to
mitigate the presumed local cost-minima introduced by rota-
tions and by bouncing balls. However, its faster deteriorating
performance in the presence of increasing normal noise is to
be expected given that RANSAC only passes a subset of
data points (the inliers) on to the refinement calculation, not
taking full advantage of the properties of normal noise.

The interaction between the presence of bounces and noise
suggests that noise exacerbates the effect of local minima.
Indeed, in the presence of an infinite number of observations
and no noise, simple bounces can induce no local minima in
the cost function.

We note that the assumption of the existence of a pose-
estimation routine that can provide 3D pose estimates is
clearly not universally valid, though it does allow us to
construct our algorithm in a feature-agnostic way. More
generally, the observation cost function can in theory be
based on any arbitrary least-squares likelihood cost.

B. 2D Ball Motion Estimation from Real Images

Having ascertained the practicability of the proposed
method, it is necessary to apply it to a real-world problem.
We apply it to the problem of tracking a ball as it moves
through a scene in a small number of video image sequences,
some frames of which can be seen in fig. 3.

1) Method: We model the ball’s appearance using a
normalised colour histogram, and for each video frame we
determine the points in the image that correspond to areas
that best match the ball according to the Bhattacharyya dis-
tance measure. This measure is in wide use in the literature
for tracking from colour histograms [12], [13], [14], [15]. We
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Fig. 2. Results of applying free-flight 3D motion estimation algorithms
to automatically generated noisy data. Fifty trajectories are generated and
fitted to for each condition. (a) The legend for each of four conditions.
A free-flight trajectory is considered as well as a trajectory in which a
ground plane induces bounces, and both a basic refinement and a RANSAC
algorithm is applied in each case. (b) RMS (root mean square) error
in the rotational component of the estimated trajectory found by the
motion estimation algorithms plotted against increasing sequence length.
(c) Translational RMS error in estimated trajectory found by the motion
estimation algorithms, plotted against increasing sequence length. In the
case of the bouncing object, the number of bounces varies from 1 to 4 with
sporadic increments as sequence length increases. (d) Translational RMS
error with increasing Gaussian noise. (e) Translational RMS error in the
motion estimation algorithms with increasing outlier rate (the probability of
each timestep being resampled from a uniform distribution). The error bars
span a 95% confidence interval. When they’re not being varied, the Gaussian
noise deviation is σt=10cm, the outlier rate p = 0.1 and trajectory length
30 time steps. RMS error is averaged over all samples and over the length
of the sequence so that these plots illustrate the average error per time step.
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then use these image points as observations and generate an
observation cost function from them. Observation cost terms
and RANSAC inlier thresholds are weighted according to
histogram match score for each observation. Each dynamics
displacement cost term is given the same weight as an equiv-
alent observation displacement cost term, which is a simple
transformation from image units to simulation units (with xm

pixels per metre we get weight x2
m). Velocity dynamics error

terms are weighted according to the heuristic that they can
be thought of as differences of virtual displacement random
variables, scaled by the frame rate (1/ts), producing weight
(1/2 · 1/ts)2. See table I(e) for calculated values.

We examine the effect on the quality of estimation of each
of a handful of different dynamics functions. Standing in for
the implicit and explicit dynamics found in the tracking lit-
erature, we have a constant displacement dynamics function
and a constant velocity dynamics function. We also have a
no-dynamics case where the best observation in each frame
is taken as-is; in object tracking this would be equivalent to
tracking-by-detection.

To demonstrate our experimental cases we have two
dynamics models employing the PhysX physics engine (in
which we model the floor and as many balls as are in the
scene). These cases are the locally parametrised collision
dynamics and globally parametrised collision dynamics. See
table I(d) for a list of parameters used in the simulation.

We use RANSAC with with Line Search refinement [17] to
estimate trajectories. See table I(f-g) for algorithmic parame-
ters. Note that in the case of globally parametrised dynamics
any time-point might be required to parametrise a trajectory,
since the RANSAC procedure will sample observations at
arbitrary time-points. As such, we need to be able to phys-
ically simulate backwards in time from such a time-point.
We achieve this by inverting object velocities and restitution
coefficient and running the simulator forward. However we
note that physical parameters such as friction and linear
damping are not invertible in the physics simulator. As
such, during RANSAC using collision-based dynamics, and
while doing gradient descent on the globally parametrised
cost function, the estimator can acquire trajectories that it
would not normally be capable of simulating. Conversely, as
discussed in section II, any locally parametrised dynamics
cost only requires a forward dynamics function.

Note that because we use normalised histograms to detect
the ball in the video images, the black bag in the video in fig.
3(d) provides a distractor while the ball is occluded. As an
artifact of the fact that a ball location is observed at every
frame in the image sequence, a mild distractor effect also
occurs whenever the ball is not sufficiently visible.

2) Results: Fig. 4 gives the estimation performance of
each of the five dynamics models. The constant displacement
and constant velocity dynamics fail very badly in many cases
because they are unable to select good inliers. As such we
also compare the performance of the refinement component
of each algorithm by initialising them all with the RANSAC
routine employing collision dynamics - see fig. 5.

Fig. 6 contains characteristic examples illustrating the be-

(a)

Frame 4 Frame 10 Frame 17

(b)

Frame 3 Frame 7 Frame 14

(c)

Frame 4 Frame 11 Frame 18

(d)

Frame 7 Frame 14 Frame 22

Fig. 3. Image sequences used to test 2D motion estimation. (a) A ball
bounces across the field of view with glare, blur. (b) A ball bounces across
the field of view, occluded by a stationary object mid-sequence. (c) A ball
rolls across the field of view, again occluded by a stationary object. (d)
A ball bounces across the field of view, with blur, glare, partial and full
occlusion, and in the presence of a strong distractor.

TABLE I
SIMULATOR AND ESTIMATOR PARAMETERS.

3D motion estimation in simple simulation
(a) Simulation Parameters

Ball Radius (cm) 50 Max. Sequence Length (cm) 1000

(b) Refinement parameters (c) RANSAC parameters
Maximum Iterations 100 Maximum Iterations 100

Finite Differences Step 10−3 Inlier Threshold (cm) 140

Stopping Tolerance 10−7 Minimum Inlier Count (tf − ti)/5ts

Motion estimation from colour histogram matches
(d) Simulation Paramaters

Coeff. Restitution 0.8 Linear Damping 0.2

Coeff. Static Friction 2.0 Ball Mass (measured) (g) 110.0

Coeff. Dynamic Friction 0.1 Radius (measured) (cm) 10.5

(e) Cost Paramaters
Dyn./Obs. Cost (cm−2) 1.2 · 105 Vel./Disp. Cost (s−2) 225

(f) Refinement paramaters (g) RANSAC paramaters
Maximum Iterations 400 Maximum Iterations 400

Finite Differences Step 10−5 Inlier Threshold (pixel dist.) 40

Stopping Tolerance 3 · 10−6 Minimum Inlier Count 15

haviour of constant displacement, constant velocity, and col-
lision dynamics on each video sequence. The two collision-
based dynamics perform better on every video except the
video where the ball rolls behind an occluder and out the
other side again, (c). In this video the constant velocity
dynamics performs better. In such a situation the constant
velocity dynamics is a sufficient model of object behaviour.
The collision-based dynamics fare worse because the ground
plane is slightly tilted with respect to the camera while the
provided dynamics model assumes that the ground plane is
perfectly parallel to the image x-axis.
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Fig. 4. Initialisation and refinement performance of 2D motion estimation
from colour histogram algorithms: Performance measured in RMS error in
pixel distance from labelled object location, averaged over all frames of each
of five algorithms on each of four image sequences. Shorter bars indicate
better performance and lower error. In these results, each dynamics model
is used both in the initialisation and refinement phases. (a-d) refer to the
same image sequences as shown in fig. 3.

Note also that the locally parametrised collision dynamics
does better than the globally parametrised collision dynamics
in those videos where observation data is useful in correcting
the subtle mismatches between the dynamics model and the
behaviour of objects in the real-world (a & c). Where there
are lots of distractors and occlusion (d), however, the global
collision dynamics is able to compensate more for the bad
data than local collision dynamics can.

In video (a) the constant displacement dynamics makes
a characteristic error of estimating the ball position near to
observed positions nearby in time, and the constant velocity
dynamics estimates the ball to be travelling through the floor.
The collision dynamics is able to compensate somewhat
by giving credence to the hypothesis that the ball may
have bounced. Video (b) shows both non-collision dynamics
unable to benefit from hypotheses involving the bouncing of
the ball behind the obstacle. Videos (c) and (d.i) show the
constant velocity dynamics succeeding but constant displace-
ment dynamics unable to initialise a trajectory that moves
a long distance between observations. Video (d.ii) shows
constant velocity dynamics unable to initialise a trajectory
that involves the ball changing direction while occluded.

Informal experiments suggest that the performance of the
algorithm is much more sensitive to the RANSAC inlier
threshold parameter than to tunable parameters in the physics
model such as the coefficient of restitution, but only with
these relatively simple scenarios.

3) Discussion: The data confirm our hypothesis that a
more sophisticated dynamics model, particularly involving
collisions, is able to substantially improve motion estimation,
particularly when observation data is absent or misleading,
by quickly finding good initial estimates, and by guiding the
search for trajectories away from distractors and towards fea-
sible trajectories. However, this improvement is contingent
on a good match between model and world.
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Fig. 5. Refinement only performance of 2D motion estimation from colour
histogram algorithms: Performance measured in RMS error in pixel distance
from labelled object location, averaged over all frames of each of five
algorithms on each of four image sequences. Shorter bars indicate better
performance and lower error. In these results, the collision-based dynamics
is used to select an initial set of inliers and to initialise the refinement
procedure which then uses each of the dynamics models listed in the legend.
(a-d) refer to the same image sequences as shown in fig. 3.

In these experiments, rough manual estimates of simula-
tion parameters such as restitution coefficients were sufficient
for good results. However preliminary experiments have
shown us that, to be useful generally, this approach requires
increasingly fine specification of these parameters when
dynamics are more sensitive, such as with ball-ball collisions.

V. SUMMARY AND FUTURE WORK

A. Summary

We present a motion estimation framework that allows the
incorporation of arbitrary dynamics models. We demonstrate
that the use of a dynamics as provided by an off-the-shelf
physics simulator is able to improve the accuracy of motion
estimation when the model and the world match well.

B. Future Work

There are open questions as to which simulation parame-
ters the estimation is sensitive to, which simplifications may
be made with little impact on performance, which model
aspects are already impacting accuracy by deviating from
real-world behaviour, and to what extent chaotic dynamics
can be handled by increasing the accuracy of simulation
parameters. We would like to test the proposal that allowing
refinement of parameters of the physics engine, or local
surface shape parameters, will lead to a more accurate
estimation procedure. It might be possible to use the provided
physics model to bootstrap the learning of a more generic
dynamics model or one more like those used by humans [18].

We are currently working on image sequences involving
two interacting identical balls, again in 2D, much like in
the work of Chang, et al. 2005 [19]. This work involves the
necessary addition of layers in the depth direction and a data
association framework. We predict that collision dynamics
will improve performance in a number of scenarios, for
instance, when an object collides with another and loses
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energy as a consequence, thereby disambiguating the nature
of the interaction.

There is also room for incorporating a more intelligent
way of handling observations, such as using the colour
histogram match score directly in the observation function;
better observations may obviate somewhat the effect of
intelligent dynamics.

Of course, it would be useful to extend this work to
3D and to arbitrary objects. Our next effort will be in
the area of robotic manipulation where we will adapt a
recursive filter such as a particle filter or an unscented
Kalman filter to use the physics engine in a probabilistic
forward dynamics model. Particular concerns are the non-
linearity of the physics model and potentially high number
of dimensions when considering velocity state parameters
and multiple objects.
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