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Abstract— Generating accurate environment representations
can significantly improve the autonomy of mobile robots. In this
article we present a novel probabilistic technique for solving
the full SLAM problem by jointly solving the data registration
problem and the accurate reconstruction of the underlying
geometry. The key idea of this paper is to incorporate spatial
correlation models as prior knowledge on the map we seek to
construct. We formulate the mapping problem as a maximum a-
posteriori estimation comprising common probabilistic motion
and sensor models as well as two spatial correlation models
to guide the optimization. Instead of discarding data at an
early stage, our algorithm makes use of all data available in
the optimization process. When applied to SLAM, our method
generates maps that closely resemble the real environment. We
compare our approach to state-of-the-art algorithms, using both
real and synthetic data sets.

I. INTRODUCTION

A frequent issue in robot navigation is the concurrent

exploration of metric maps while maintaining an accurate

position estimate. If the robot were to have an a priori

map, then localization would be a relatively easy task.

Alternatively, if the robot were to have a precise, externally

referenced position estimate, then mapping would simplify

tremendously. However, problems in which the robot has no a

priori map and no external position reference are particularly

challenging. Such scenarios may arise for service robots

inside and outside of buildings, AUVs, mining applications,

or planetary surfaces. This problem has been referred to

as either concurrent localization and mapping (CLM) or

simultaneous localization and mapping (SLAM).

In this work we want to address the problem of recon-

structing a map based on range measurements collected by a

mobile platform. In recent years, building maps of physical

environments with mobile robots has been a central problem

in the robotics community. Research over the last decade

has led to impressive results. Several successful algorithms

emerged including Relaxation [1], SEIF [2], FastSLAM [3],

MLR [4], TJTF [5], and Stochastic Gradient Descent [6].

Nearly all state-of-the-art methods are probabilistic and most

of them are robust to noise and small variations of the

environment. Comprehensive surveys can be found in [7]

and more recently in [8].

A key limitation of almost all SLAM algorithms lies in

the necessity to select appropriate landmarks. By reducing

the sensor data to a representation by landmarks, a lot of the

Fig. 1. The map of building 079 in Freiburg optimized with landmark-based
SLAM (left) and by our algorithm using spatial correlation modells (right).
Our algorithm achieves a significantly more accurate map reconstruction.

originally retrieved information is usually discarded. Another

critical issue, which arises from using discrete landmarks in

SLAM, is the problem of data association. Before fusing

data into the map, new measurements are associated with

existing map landmarks. This step has been proven crucial

in practical SLAM implementations.

Due to the intrinsic limitations of sensor systems, spa-

tial sensor interpretation is fundamentally an undercon-

strained problem. However, typical environments where cur-

rent robots operate have some sort of structure hence mea-

surements of this structure will be correlated. We believe

that incorporating spatial correlation models as priors on

the environment enables a robot to recover better world

models. Creating an exact probabilistic model of all potential

environments is not feasible and probably not even well

defined; but in most cases, making basic assumptions is

reasonable. For example, assuming the existence of locally

smooth manifolds instead of randomly distributed surfaces

is a reasonable model. To our knowledge, no algorithm

for SLAM incorporates such knowledge in a probabilistic

formulation.

We propose a novel formulation of the SLAM problem

which incorporates spatial correlation models and does not
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rely on the notion of landmarks. We show that this formula-

tion is superior in cases where no salient landmark definition

is feasible. Empirically we find that our formulation produces

maps which closely resemble the environment.

II. RELATED WORK

The topic of mappinig with mobile robots has been ex-

tensively studied. Despite significant progress in this area,

it still poses great challenges. At present, we have robust

methods for mapping environments that are static, structured,

and of limited size. With the success of small-scale indoor

and outdoor mapping, researchers are extending solutions to

large scale environments [9], [10], [11] and 6 DoF poses

[12]. To compare the capabilities of mapping algorithms,

authors typically present generated maps, loop closures,

and convergence behavior. Only recently Wulf et al. [13]

presented a method to create ground truth pose data used

to evaluate outdoor SLAM algorithms. Performance metrics

demonstrating the accuracy of maps are practically non-

existent.

Early work in SLAM assumed that a map used for mobile

robots could be modeled as a discrete set of landmarks.

Different kinds of representations or maps have been pro-

posed in robotics and in the artificial intelligence literature,

ranging from low-level metric maps such as landmark maps

[14] and occupancy grids [15], to topological graphs that

contain high-level qualitative information [16], and even

to multihierarchies of successively higher level abstractions

[17].

Traditionally, SLAM implementations based on Kalman

filter data fusion rely on simple geometric models for

defining landmarks. This limits landmark based algorithms

to environments suited to such models and tends to dis-

card much potentially useful data. Only more recently, the

work in [18] showed how to define landmarks composed

of raw sensed data. A key component of our approach is

recognizing that the typical landmark SLAM model assumes

unstructured environments, i. e. environments with randomly

independently distributed landmarks.

The occupancy grid framework, as proposed in [15] is

used in many practical SLAM implementations [19], [20]. It

employs a multidimensional (typically 2D or 3D) tessellation

of space into cells, where each cell stores a probabilistic

estimate of its occupancy state. For each grid cell, sensor

measurements are integrated using Bayes rule to diminish the

effect of sensor noise. This allows a variety of robotic tasks

to be addressed through operations performed directly on the

occupancy grid representation. The limited resolution of grid

maps is the source for several problems. As pointed out in

[21], a systematic error is introduced since the resolution of

sensors typically used for perception varies with distance.

Generally, the occupancy grid is modeled as a spatially

uncorrelated random field. The individual cell states can be

estimated as independent random variables. Again, a random

structure is assumed for this model.

The assumption of line-based environments [22] and or-

thogonality as a geometrical constraints [23] have already

been used by other researchers. Those approaches require

features to be reliably extracted from the data as a prepro-

cessing step which limits the performance of the subsequent

SLAM algorithm.

From the discussion above we can identify some limita-

tions of current SLAM approaches:

1) While much effort in robotic mapping is spent on large

scale environments, little attention is put on the true

accuracy of the resulting map.

2) Most map representations used in current SLAM ap-

proaches assume a random structure on the map or the

features in the map. In fact, this is rarely the case, as all

man-made environments are highly structured. In par-

ticular, the insides of buildings, a common workspace

for mobile robots, are constructed with a well known

methodology.

3) Information included in the sensor data is discarded at

an early stage of processing: landmark maps discard

much useful data while occupancy grid maps have

problems with the inherent limited resolution.

These limitations motivate our research.

III. FORMULATION OF THE SLAM PROBLEM

The following notation is adopted for a mathematical

formulation of SLAM:

• xt: A vector describing the position and orientation of

the robot at a time t.

• ut: The control vector that was applied at time t − 1
and carries information about the change of the robot’s

pose.

• z
i
t: The observations taken by the robot of the ith

feature.

• ct: A correspondence vector that contains a list of all

features observed at time t.

• m: A vector of map features m = {mi} representing

the environment around the robot.

The goal of SLAM is to simultaneously estimate both the

robot’s pose and a map of its environment. In probabilistic

SLAM this is often posed as Bayesian filtering formulation

[7] in which one seeks to calculate the posterior over the

robot’s pose x1:t along with the map m:

p (x1:t,m|u1:t, z1:t, c1:t) . (1)

Thrun et al. have shown in [11] that a closed form expression

of this full SLAM posterior over all quantities can be obtained

by recursively applying the Bayes rule and a subsequent

induction over t:

p (x1:t,m|u1:t, z1:t, c1:t) = (2)

η p (x0) p (m)
∏

t

[

p (xt|xt−1,ut)
∏

i

p
(
z

i
t|xt,m, ct

)

]

Here p (xt|xt−1,ut) is known as the motion model, which

describes state transitions of the robot’s pose in terms of

a probability distribution. The state transitions are assumed

to follow a Markov process and are independent of both

the observations and the map. The term p
(
z

i
t|xt,m, ct

)
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Fig. 2. The left figure shows the structure of traditional landmark based SLAM algorithms. Each observation z
i
t

is associated with a map feature mi. The
right figure shows our approach which incorporates correlations between features into a probabilistic estimate. Such correlations are modeled as locally
supported map priors.

denotes an observation model, which models an observation

z
i
t from a known pose and a known map as a probability

distribution. Both models have been studied well for a variety

of robots and sensors. The two prior terms p (x0) and p (m)
characterize priors of the first robot pose and of the map

respectively. Usually p (x0) is used to anchor the initial pose

to a fixed location. The map prior p (m) is typically assumed

to be unknown and subsumed into the normalizer η. Finding

the most probable solution to the full SLAM problem is the

process of finding the set of poses x̂1:t and the map m̂ that

maximizes the posterior probability of Eq. (2):

x̂1:t, m̂ = argmax
x1:t,m

p (x1:t,m|u1:t, z1:t, c1:t) . (3)

A graphical model of this formulation is presented on the

left side of Fig. 2.

IV. SLAM WITH MAP PRIORS

In this contribution, we introduce prior expectations on

typical environments into SLAM by means of suitable a

priori distributions p(m). First we want to eliminate the

notion of landmarks. In the previous formulation we assumed

that the correspondences ct are known beforehand which

enables us to uniquely assign a landmark mi to each ob-

served feature. However, in practical SLAM implementations

correspondence assignment becomes a demanding task. In

general, correspondence between measurements taken at

different time instances are non-unique and the imposture

thereof is a main source of deteriorated results for many

SLAM implementations. In our formulation, we consider the

measurements directly without extraction of any landmarks.

Instead, we claim there are no existing immediate correspon-

dences between measurements. In fact, this claim is quite

reasonable for a number of situations. For example, a mobile

robot equipped with a lidar, which takes a finite number

of measurements while it is in motion, is very unlikely to

measure the exact same spot twice.

Here are the key modifications to the original SLAM

formulation:

1) Each observation z
i
t creates a new feature in the map.

2) We assume no correspondences between observations

and known features.

3) Instead of correspondences, we use correlation models

as a map prior p (m) to guide the estimation of the

robot’s pose and the map.

The new posterior for this formulation is:

p (x1:t,m|u1:t, z1:t) = (4)

η p (x0) p (m)
∏

t

[

p (xt|xt−1,ut)
∏

i

p
(
z

i
t|xt,m

)

]

A graphical model of this new formulation is presented in

the right side of Fig. 2.

Our modifications have some interesting implications.

First, the state space of our optimization problem will be

significantly larger than landmark based approaches because

of the one-to-one correspondence of measurements and map

features. It is important to realize that for the optimization

of Eq. (4) a good map prior is vital. The observation

model, the motion model, as well as the prior of the first

pose considered independently are explained best by the

measurements themselfs. Without any map prior the most

probable solution of Eq. (4) would be the measurement itself.

An optimization Eq. (4) will move points locally to comply

with the map prior model. This is fundamentally different

from ICP-style rigid alignment techniques where only the

robot pose is optimized. The point motion will be constraint

due to the dependence of measurement and pose. In fact,

a movement of a point will create a counter potential for

the point and for the corresponding pose to comply with

the measurement model. In other words, maximizing the

posterior probability Eq. (4) will lead to a set of poses and

map features that best explain the measurements as well as

the prior model.

V. PROBABILISTIC MODELS

The robot’s motion is represented using a common proba-

bilistic motion model where the robot is assumed to perform
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Fig. 3. The manifold model uses a fixed neighborhood Nε of points to
create a tangent line defined by a point oi and the normal ni. The potential
is then modeled as a Gaussian-type function over the projected distance d

to the tangent line.

a series of a rotation, a translation, and a second rotation [24].

Observations are modeled as a range measurement along a

beam, which originates at the local coordinate system of the

sensor [24]. The prior term p (x0) anchors the first pose at its

position (e. g. origin of the global coordinate system) which

is easily expressed by a Gaussian-type distribution using a

very small standard deviation.

VI. SPATIAL CORRELATION MODELS

The probability distribution p (m) in Eq. (4) represents

a prior distribution of all measured scenes. An exact proba-

bilistic model of this distribution is not feasible and probably

not even well defined. Hence we focus on partial models,

which represent properties of the surface structure. In our

approach, we use locally defined spatial correlation models

representing two properties: manifoldness fM (m) and the

orientation fO (m). The final prior p (m) is defined as:

p (m) =
1

η
fM (m) fO (m) . (5)

In order to make this expression a valid probability density

function, we introduce a constant factor η, which is the

integral over all other factors and, therefore, normalizes

p (m) to be a probability density function. In practice, this

factor can be safely ommited as the normalization does not

have an effect on the optimization of Eq. (4).

A. Manifold Model

The intuition of this correlation model is that map obser-

vations belong to structured surfaces in the robot’s environ-

ment. This means that for a 2D map the most probable sur-

face must be a compact, locally connected, one-dimensional

manifold, possibly with boundary, and embedded in R
2. The

first step towards defining a potential function which captures

this property is to compute a tangent line associated with

each map point mi. A tangent line is defined by a point

oi and normal ni. For each point, we choose a local neigh-

borhood Nε of variable diameter (typically ε = 10 . . . 50
points). The center oi is taken to be the centroid of Nε,

and the normal ni is determined using principal component

analysis [25]: the eigenvector with the smallest eigenvalue

corresponds to the normal ni. The projected distance di of

the point onto its tangent line is defined by the dot product:

di = (mi − oi) · ni. (6)

Now, we define a Gaussian-type manifold potential function

of the form:

fM (m) =
∏

i

exp

{

−
d2

i

2σM

}

, (7)

where σM is the variance of tangent line distances. Fig. 3

illustrates the properties of this correlation model. The data

points are drawn to their corresponding tangent lines. Hence

the most probable arrangement of map points regarding this

potential is when all points are located on a one-dimensional

manifold. It should be noted that the manifold potential

is a set of locally supported functions. The size of Nε

defines the region of influence. We allow ε to adapt locally

which makes less stringent the requirement that the data is

uniformly distributed over the surface. To select and adapt

the neighborhood size, we use a kernel density estimator [26]

and set ε proportional to the computed density.

B. Shape Model

The shape model addresses consistency of surface orienta-

tions. If two surface regions (cf. Fig. 4) belong to the same

physical surface, the orientation of edges representing the

same portion should have a consistent orientation. In other

words, we are looking for geometric relations (parallelism,

orthogonality) of adjacent surface regions since we assume

a predominantly rectilinear environment.

Fig. 4. The shape potential uses the orientation of adjacent surface regions.
The differences between two corresponding normals ni and n

∗

i
are modeled

as Gaussian-type functions over the normals differences.

A simple approach is to examine the normals of adjacent

surface regions. If the angle is close to one of 0◦, 90◦, 180◦,

or 270◦ the shape potential will draw the points towards a

rectilinearity case. Such a potential can be defined as follows:

Let mi and mi−1 be neighbors on the same surface region.

The normal on the surface region is defined by:

ni =
(mi−1 −mi)

⊥

||mi−1 −mi||
=

(
0 −1
1 0

)

︸ ︷︷ ︸

:=M⊥

(mi−1 −mi)

||mi−1 −mi||
. (8)

Now, let ni and n
∗

i be the normals on two corresponding

surface regions S and S∗ respectively (cf. Fig. 4). Then the

shape potential for the 0◦ case has the form of a quadratic

normal distribution:

f0◦ (m) = exp

{

−
1

2
(n∗

i − ni)
T

ΩO (n∗

i − ni)

}

(9)
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Here ΩO corresponds to a covariance matrix for the orienta-

tion of adjacent surface regions. In a similar way, we define

individual functions for the 90◦, the 180◦, and the 270◦ case.

We also allow for a small margin of 10◦ within we assign

paired regions to the categories. All other cases that do not

fall into one of the geometric relations will not contribute to

the shape potential.

VII. IMPLEMENTATION

In Eq. (4) we defined a novel probabilistic model for

the full SLAM problem; and in the previous sections, we

discussed the different components of this model. All map

features and robot poses are calculated simultaneously from

the maximum a-posteriori solution (MAP) of Eq. (4). Now

we want to focus on a practical implementation to calculate

this solution.

Since maxima of Eq. (4) are unaffected by monotone

transformations, we can take the negative logarithm of this

expression to turn it into a sum and optimize this expression

instead:

x̂1:t, m̂ = argmin
x1:t,m

p (x1:t,m|u1:t, z1:t)

= argmin
x1:t,m

− log η − log p (x0)− log p (m)

−
∑

t

log p (xt|xt−1,ut)

−
∑

t

∑

i

log p
(
z

i
t|xt,mi

)

= argmin
x1:t,m

E (x0:t,m) (10)

Finding the most probable solution reduces now to finding

the global minimum of the function E (x0:t,m), which is

a sum of log-likelihoods. The term − log η is a constant

normalization factor and is not relevant for minimizing

E (x0:t,m).
Our algorithm consists of three main steps: first we use

the motion model and the observation model to calculate

an initial estimate for x1:t and m1:i respectively. Next, an

initialization is performed to improve this estimate. Finally,

we use a non-linear conjugate gradient variant to find the

parameters which minimize E (x0:t,m). An outline if this

algorithm is presented in Alg. 1.

A. Initialization

Unfortunately, the objective function E (x0:t,m) is highly

non-linear and thus finding the global minimum is known

to be difficult. For this reason, we use a scan alignment

algorithm prior to the optimization. In particular, we use the

well known iterative-closest-point (ICP) algorithm [27] to

create an initial alignment and, therefore, a better starting

point for our optimization. Our experiments show that this

starting point is usually sufficiently close to the global

minimum of E that the following optimization procedure

will converge into the correct solution. The details of the

ICP algorithm are omitted for brevity, but can be found in

contemporary texts [28].

Algorithm 1 Calculate x̂1:t, m̂

1: for all controls ut do

2: xt ← motion model (ut,xt−1)
3: for all observations z

i
t do

4: mi ← observation model
(
xt, z

i
t

)

5: end for

6: end for

7: x1:t,m← iterative closest point (x1:t,m)
8: repeat

9: create prior model p (m)
10: fix state variables x1:t

11: m← conjugate gradient iteration (x1:t,m)
12: fix state variables m1:i

13: x1:t ← conjugate gradient iteration (x1:t,m)
14: until convergence

B. Optimizing Using Conjugate Gradient

The most probable path and the most probable map

results from finding the global minimum of the function

E (x1:t,m). The minimization itself is a high dimensional

and sparse optimization problem. Therefore, the Nonlinear

Conjugate Gradient Method (CG) is used to find a good

solution. A detailed description of this a method can be found

in [29]. In our implementation we use a modified version of

CG which addresses the structure of our state space. Each

CG iteration consists of two sub-optimization steps. First,

we fix all pose state variables and optimize the map feature

positions. Next, the map features are fixed and the positions

are optimized. By splitting the optimization in two steps, we

loose the optimality of our solution; however, in practice,

this scheme lead to a better convergence than optimizing all

state variables simultaneously. Each sub-optimization step

employs a standard Newton-Raphson line search and the

Fletcher-Reeves formulation to linearly combine the negative

gradient of the function E (x0:t,m) with previous such

gradients. A detailed outline of this procedure is presented

in Alg. 1. The derivation of the gradients of E (x1:t,m) is

presented in the appendix.

VIII. EXPERIMENTAL RESULTS

A. Synthetic Data

To study the properties of our approach, we use synthetic

data created in a simulated environment [30]. The dataset

consists of 16 simulated 360◦ scans with 720 measurements

in each scan. The ground truth of the whole set and of

two details are presented on the left side of Fig. 5. This

ground truth was then distorted by adding Gaussian noise to

the measurements (range and bearing) and to the odometry

in order to create a realistic input for all algorithms. For

a comparison, we use a variant of the ICP algorithm [27],

which incrementally registers all scans and the state-of-the-

art Stochastic Gradient Descent (SG) optimizer by Olson et.

al [6]. The thickness of walls is a general indication of the

error distribution—a divergence of the robot pose typically

results in map distortions like bend/double walls while noise
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Fig. 5. Evaluation of our algorithm on a synthetic dataset. The first row shows the full dataset, whereas the second and third row depicts magnified
details. The ICP algorithm [27] yields a good pairwise alignment but results in an inconsistent map (middle). Olson’s Stochastic Gradient Descent [6]
algorithm produces a consistent map on the first glance, but the details reveal fuzzy surfaces (first detail) and small pose error residuals (second detail).
Our algorithm creates a globally consistent map and is able to eliminated measurement errors almost completely (right).

Fig. 6. A comparison of our algorithm to sequential registration with the ICP algorithm (Besl et al. [27]) and Stochastic Gradient Descent (Olson et al.
[6]) on the fr079 dataset. The right side shows the full dataset and on the left side we present magnifications of two details.

5407



Fig. 7. Absolute pose and map feature errors for the synthetic dataset.

of the range sensor has a fixed mean and makes walls appear

fuzzy and blurred (see Fig. 5). We also assess the algorithm

performance by comparing the reconstructed trajectory and

the reconstructed map with the available ground truth (see

Fig. 7). On the one hand, ICP is able to align groups of scans

correctly, but it fails to create a globally consistent map.

This behavior is expected since ICP is a pairwise alignment

algorithm. On the other hand, SG produces a consistent map,

although some residual pose errors remain. Both ICP and SG

adjust robot poses only and therefore feature measurement

errors are not corrected. In contrast, our algorithm creates a

globally consistent map and is able to eliminate measurement

errors. Fig. 7 shows the absolute robot pose and map feature

errors and the following table presents the corresponding first

and second moments:

Pose error (m) Map error (m)

Algorithm mean var mean var

ICP 0.597 0.199 0.702 0.238

SG 0.088 0.115 0.115 0.005

Our algorithm 0.035 0.048 0.047 0.002

B. Real Data

In the second experiment we use data gathered by a real

robot. Here, we use the fr079 data set which is publicly

available at the Robotics Data Set Repository (Radish) [31].

It consists of 4791 scans from a Sick LMS lidar with

odometry pose estimate for each scan. For a comparison

we again use Olson’s Stochastic Gradient optimizer [6]. The

reconstruction of the full map is presented on the right side

of Fig. 6. Both SG and our algorithm result in a similar

map. One may notice that the walls appear thinner in the

map reconstructed by our algorithm, which quantitavely

shows our algorithm provides a sensible estimation of the

robot path. The details on the left side of Fig. 6 reveal a

significantly better registration of the data. Our algorithm

performs very well on straight walls since those features are

represented best by our correlation models. Some outliers

and smoothed corners are produced on sharp features since

our models are not well defined at corners.

IX. CONCLUSION

This paper has presented a novel approach for probabilistic

mapping. We used a map representation which stores all

observations as unique features in this map. Instead of assum-

ing correspondences between observations, we incorporated

two spatial correlation models as map priors to guide the

optimization. With this approach, we formulated the full

SLAM problem as a maximum a-posteriori estimation prob-

lem which we optimized using a nonlinear conjugate gradient

method. Finally, we demonstrated a practical algorithm that

has been evaluated on synthetic data and on a large dataset

available to the public.

In this particular research, we focused on using correlation

models to guide the optimization. This is fundamentally

different from the notion of landmarks and landmark corre-

spondences used in traditional SLAM implementations. The

next logical step is a combination of correlation models with

landmark correspondences and will be subject of our further

research.

A potential drawback of our approach is that the optimiza-

tion may get stuck in a local minimum, which is a universal

problem of non-convex optimizations. A sufficient initial-

ization, as presented earlier, usually leads to good results.

However, it remains unclear whether this is a substantial

shortcoming of our approach.

This paper focused on mapping in planar environments

with 2D maps and 3 DoF poses to be estimated. Nevertheless,

we believe that a similar approach is feasible for 3D maps

and 6 DoF poses.
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APPENDIX: LOG-POSTERIOR GRADIENTS

For notational brevity we write:

Θ(m) = const. − log p (m) . (11)

The gradients for the log-prior model can be derived by

calculating the partial derivatives of Θ(m) with respect to

mi:

∂ΘM (m)

∂mi

=
1

σM

· (mi − oi) , (12)

∂ΘO (m)

∂mi

= −ΩO (n∗

i − ni)
∂ni

∂mi

, (13)

with the derivative of a normal with respect to mi:

∂ni

∂mi

= M⊥

[

I

‖mi−1 −mi‖2
−

(mi−1 −mi) (mi−1 −mi)
T

‖mi−1 −mi‖
3

2

]

.
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[12] A. Nüchter, H. Surmann, K. Lingemann, J. Hertzberg, and S. Thrun,
“6d slam with application in autonomous mine mapping,” in Proceed-

ings IEEE 2004 International Conference Robotics and Automation

(ICRA 2004), New Orleans, USA, April 2004, pp. 1998 – 2003.

[13] O. Wulf, A. Nuchter, J. Hertzberg, and B. Wagner, “Ground truth
evaluation of large urban 6d slam,” Intelligent Robots and Systems,

2007. IROS 2007. IEEE/RSJ International Conference on, pp. 650–
657, 29 2007-Nov. 2 2007.

[14] M. Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte, and
M. Csorba, “A solution to the simultaneous localization and map build-
ing (slam) problem,” Robotics and Automation, IEEE Transactions on,
vol. 17, no. 3, pp. 229–241, Jun 2001.

[15] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[16] B. Kuipers and Y.-T. Byun, “A robot exploration and mapping strategy
based on a semantic hierarchy of spatial representations,” pp. 47–63,
1993.

[17] J.-A. Fernandez-Madrigal and J. Gonzalez, “Multihierarchical graph
search,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 24, no. 1, pp. 103–113, 2002.

[18] J. Nieto, T. Bailey, and E. Nebot, “Recursive scan-matching slam,”
Robotics and Autonomous Systems, vol. 55, no. 1, pp. 39–49, January
2007.

[19] D. Hähnel, W. Burgard, D. Fox, and S. Thrun, “A highly efficient
FastSLAM algorithm for generating cyclic maps of large-scale en-
vironments from raw laser range measurements,” in Proc. of the

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2003.

[20] G. Grisetti, G. D. Tipaldi, C. Stachniss, W. Burgard, and D. Nardi,
“Fast and accurate slam with rao-blackwellized particle filters,” Robot.

Auton. Syst., vol. 55, no. 1, pp. 30–38, 2007.

[21] M. Montemerlo and S. Thrun, “A multi-resolution pyramid for out-
door robot terrain perception,” in Proceedings of the AAAI National

Conference on Artificial Intelligence. San Jose, CA: AAAI, 2004.

[22] A. Garulli, A. Giannitrapani, A. Rossi, and A. Vicino, “Mobile
robot slam for line-based environment representation,” in 44th IEEE

European Control Conference on Decision and Control, 2005, pp.
2041–2046.

[23] A. Harati and R. Siegwart, “Orthogonal 3d-slam for indoor environ-
ments using right angle corners,” in 3rd European Conference on

Mobile Robotics, 2007.
[24] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,

2005.
[25] H. Hoppe, T. Derose, T. Duchamp, J. Mcdonald, and W. Stuetzle,

“Surface reconstruction from unorganized points,” Computer Graph-

ics, vol. 26, no. 2, pp. 71–78, 1992.
[26] E. Parzen, “On estimation of a probability density function and mode,”

The Annals of Mathematical Statistics, vol. 33, no. 3, pp. 1065–1076,
1962.

[27] P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes.”
IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), vol. 14, no. 2, pp. 239–256, 1992.
[28] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algo-

rithm,” in Third International Conference on 3D Digital Imaging and

Modeling (3DIM), June 2001.
[29] J. R. Shewchuk, “An introduction to the conjugate gradient method

without the agonizing pain,” August 1994. [Online]. Available: http:
//www.cs.cmu.edu/∼quake-papers/painless-conjugate-gradient.pdf

[30] B. Gerkey, R. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in 11th

International Conference on Advanced Robotics (ICAR 2003),
Coimbra, Portugal, jun 2003. [Online]. Available: citeseer.ist.psu.edu/
gerkey03playerstage.html

[31] A. Howard and N. Roy, “The robotics data set repository (radish),”
2003. [Online]. Available: http://radish.sourceforge.net/

5409


