
Navigating Multiple Simple-Airplanes in 3D Workspace

Jamie Snape, Student Member, IEEE and Dinesh Manocha

Abstract—We present an algorithm for collision-free naviga-
tion of multiple flying robots in three-dimensional workspace.
Our approach extends the model of a simple car to a simple-
airplane, which has constraints on speed and steering angle
and includes a configuration variable for the altitude. We use
a locally optimal reciprocal collision avoidance scheme that
computes the trajectory without any collisions or oscillations
for each airplane independently. In addition, our algorithm
explicitly considers the kinematic and dynamic constraints of a
simple-airplane and uses the notion of variable reciprocity when
choosing velocities to ensure that simple-airplanes that are less
constrained take more responsibility for avoiding collisions. We
test our approach in two simulations and compute collision-free
and oscillation-free trajectories that satisfy the kinematic and
dynamic constraints of each simple-airplane.

I. INTRODUCTION

Autonomous aircrafts and unmanned aerial vehicles
(UAVs) are increasingly used for different applications
including mobile surveillance, environmental monitoring,
search and rescue, etc. As low-cost hardware and improved
sensor technology becomes available, multiple vehicles are
frequently used for tracking dynamic targets or providing
three-dimensional coverage [1], [2], [3], [4].
In this paper, we consider the problem of collision-free

navigation for multiple three-dimensional mobile robots fly-
ing in three-dimensional workspace amongst dynamic obsta-
cles. We use a simplified kinematic and dynamic model for
each robot based on the two-dimensional simple car model
[5], [6], [7], albeit without a reverse gear. Rather than fixing
the speed [8] or altitude [9], we allow both these variables
to vary continuously and refer to the resulting model as a
simple-airplane.
There is extensive work on collision-free navigation and

coordination amongst multiple robots. However, most of
the prior methods are limited to two-dimensional robots
moving in a plane or do not take into account the kinematic
and dynamic constraints on their motion. Moreover, some
methods focus on efficient task allocation or pre-compute
the entire path of each robot, rather than perform dynamic
collision avoidance and navigation.
Main results: We present a novel algorithm that computes

collision-free and oscillation-free motion and satisfies kine-
matic and dynamic constraints. Moreover, we compute the

This work was supported in part by ARO contract W911NF-04-1-0088;
NSF awards 0636208, 0917040, and 0904990; DARPA/RDECOM contract
WR91CRB-08-C-0137; and Intel.
J. Snape and D. Manocha are with the Department of Computer

Science, University of North Carolina at Chapel Hill, Chapel Hill, NC
27599, USA. Email: {snape, dm}@cs.unc.edu. Website (with videos):
http://gamma.cs.unc.edu/S-AIRPLANE/.

Fig. 1. A screenshot of a simulation of twelve simple-airplanes (smaller
white ellipses) navigating through a three-dimensional workspace containing
four dynamic obstacles (larger red spheres) which travel at a constant
velocity.

trajectory of each simple-airplane independently and assume
no centralized coordination.
Our approach extends the optimal reciprocal collision

avoidance (ORCA) algorithm [10] to three-dimensional
workspaces and uses that to perform local collision avoidance
for each simple-airplane. Instead of distributing the load
equally amongst the simple-airplanes for collision avoidance,
we introduce the notion of variable reciprocity between
different simple-airplanes. The basic idea is to allocate a
higher responsibility to a simple-airplane that has fewer
constraints in terms of choosing its velocity. We deal with
kinematic and dynamic constraints by sampling the ve-
locities from a reduced set of constraints. The remaining
kinematic constraints are satisfied by enumerating a set of
pre-computed curves that are defined by the configuration
transition equation of the simple-airplane.
We test our approach in two simulations and compute

collision-free and oscillation-free trajectories that satisfy the
kinematic and dynamic constraints of each simple-airplane,
even in the presence of dynamic obstacles.
Organization: The rest of this paper is organized as

follows. In Section II, we give a brief overview of related
work. We formally outline the model of a simple-airplane
and its kinematic and dynamic constraints in Section III.
In Section IV, we present the navigation algorithm that
uses a three-dimensional collision-avoidance scheme and
satisfies the constraints of a simple-airplane. We discuss our
implementation and highlight the results in Section V.

II. PREVIOUS WORK

In this section, we summarize previous work in the areas
of motion planning for cars and airplanes with kinematic and

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 3974



dynamic constraints as well as relevant work on navigating
multiple robots.

A. Planning Under Kinematic and Dynamic Constraints
Some of the earliest work on simplified cars with kine-

matic constraints appears in Dubins seminal work [11]. The
Dubins car is restricted to forward motions with a fixed
constant speed within a bounded turning radius. The Reeds-
Shepp car [12] adds a reverse gear to the Dubins car.
This was further explored in [13], [14]. A general model
with variable speed in any direction subject to a maximum
steering angle is presented in [5], [6]. This has been termed a
simple car by [7] and forms the basis of our simple-airplane
model.
The Dubins airplane [8] extends the Dubins car into three

dimensions with the addition of a configuration variable
for altitude. While its speed parallel to the ground remains
constant, its rate of change of altitude may vary continuously.
Other models for airplanes, for instance [9], choose to fix
the altitude and allow the speed of the airplane to vary. It is
far less common to allow the altitude as well as the speed
to vary, particularly when navigating multiple airplanes or
agents amongst each other.

B. Navigating Multiple Robots
Research in multiple airplane coordination and navigation

has mainly concentrated on efficient task allocation, for
example in [15], or air traffic control management [16], [17],
rather than explicitly collision avoidance and local planning.
However, there exists a large amount of work on collision-
free navigation in a two-dimensional plane in the context of
multiple agents or robots.
Many approaches consider other robots as passive moving

obstacles [18], [19], [20], [21]. One of the most widely used
concepts is that of a velocity obstacle (VO) [22], [23], which
has also been used in part to navigate a single simulated
helicopter [24]. Several variations of the VO formulation
have also attempted to incorporate the reactive behavior of
other robots [10], [25], [26], [27], [28], [29], [30], some
of which take into account either kinematic or dynamic
constraints.
Other approaches use follow-the-leader behavior for nav-

igating the robots [31], [32], while there is a large body of
research on centrally coordinating the motions of multiple
robots, based on centralized methods [7].

III. THE SIMPLE-AIRPLANE
In this section, we introduce the simple-airplane based

on the simple car [5], [7] and Dubins airplane [8], define
its kinematic and dynamic constraints, and introduce the
notation used in the rest of the paper.

A. Kinematic Constraints
The simple-airplane, is a four-dimensional system with a

configuration q = (x, y, z, θ) in the configuration space C =
R3×S1, where x, y, and z are the coordinates of the origin of
the simple-airplane and θ is its orientation, or yaw, in the xy-
plane relative to the x-axis. It follows that the simple-airplane

Fig. 2. The simple car, on which the simple-airplane is based. The angle θ
is the orientation of the simple car, and the corresponding simple-airplane,
in the xy-plane relative to the x-axis, and φ is the steering angle. The
z-coordinate is fixed for a simple car, but allowed to vary for a simple-
airplane. Unlike the simple car, the simple-airplane does not have a reverse
gear.

is the simple car in R2×S1, illustrated in Fig. 2, augmented
with a configuration variable z for altitude. For simplicity,
we ignore pitch and roll rotations and other disturbances.
We denote the steering angle of the simple-airplane as

φ with action variable uφ, its speed (and action variable)
parallel to the xy-plane is us, and its speed parallel to the
z-axis, or climb rate, as uz . For clarity we assume that the
distance between the front and rear axles for the equivalent
simple car in two dimensions is equal to 1. Therefore, the
configuration transition equation q̇ of the simple-airplane is
given as

ẋ = us cos θ,

ẏ = us sin θ,

ż = uz,

θ̇ = us tanuφ.

Clearly, the system may control the speeds ẋ and ẏ and yaw
rate θ̇ independently from the climb rate ż.
The speed us ∈ [umin

s , umax
s ] and climb rate uz ∈

[−umax
z , umax

z ] are bounded, as is the steering angle uφ ∈
[−φmax,φmax] for φmax < π/2. Moreover, a simple-airplane
cannot stop or travel in reverse, hence umin

s > 0 (unless,
for instance, it represents a blimp or helicopter). We denote
this region of allowable actions u = (us, uz, uφ) as U . The
set V is defined to be the attainable velocities permitted by
choosing an action in U .

B. Dynamic Constraints
In addition to its kinematic constraints, the simple-airplane

cannot instantaneously increase or decrease its speed or the
climb rate arbitrarily fast, nor can it adjust its steering angle
discontinuously. Therefore, following the example of [33],
we add dynamic constraints u̇s ∈ [−as, as], u̇z ∈ [−az, az],
and u̇φ ∈ [−aφ, aφ]. We informally denote this second set
of constraints by U ′ and u̇ = (u̇s, u̇z, u̇φ) ∈ U ′. Similarly,
V ′ will be the accelerations that are permitted by U ′.

C. Reduced Constraints and Pre-Computed Curves
We use a two-stage approach to compute a velocity that

satisfies these constraints, using a reduced set of constraints

3975



Ũ that are easier to calculate, and a set of curves Γ, that
may be pre-computed as a preprocess before navigation or
simulation commences. In the case of Ũ , we consider a
window of time τ and define the set of actions at time t+ τ
based on the state of the simple-airplane at time t as

Ũ(t+ τ) = U ∩ {u |u = u(t)⊕ τ · U ′}.

The region Ṽ to which this corresponds is shown in Fig. 5.
While Ũ depends on the time variable t and must be
calculated at each time step, the set Γ needs to be computed
only once. Each curve γ(u) in Γ corresponds to the path
taken when the simple-airplane performs action u for time τ ,
and we populate the set by uniformly sampling the range of
valid values for each of us, uz , and uφ. For each combination
of these three variables, we calculate the values ẋ, ẏ, ż, and
θ̇ by substituting directly into the configuration transition
equation, denoted q̇. The change in velocity ∆vγ of the
simple-airplane between the start and the end of the curve γ
is pre-calculated and used in the last stage of our algorithm.
We pre-calculate about 105 curves.

D. Reciprocity Factor
Intuitively, a simple-airplane that has a larger space of

attainable velocities Ṽ , and is therefore less constrained in
terms of deviating from its current path, plays a larger role in
terms of taking more responsibility for avoiding a collision
than a simple-airplane that has a small choice of possible
velocities. We refer to this property as variable reciprocity,
and define the reciprocity factor α ∈ [0, 1] as a measure of
the amount of responsibility a simple-airplane will take to
avoid another simple-airplane. A high value of α denotes
that a simple-airplane is less constrained and is able to take
a large amount of responsibility for avoiding a collision, a
low value represents the opposite. The sum of reciprocity
factors α for any two simple-airplanes should always equal
1.

E. Preferred Velocity
During each time step, we use the notion of preferred

velocity for each simple-airplane vpref . This velocity is
either directed towards the final goal position of the simple-
airplane or maybe computed using a static roadmap when
the environment consists of static obstacles. This velocity
may not satisfy the kinematic and dynamic constraints, but
is used as an initial guiding velocity in our algorithm for
calculating a velocity that indeed satisfies the constraints.

IV. NAVIGATION IN 3D WORKSPACE UNDER KINEMATIC
AND DYNAMIC CONSTRAINTS

In this section, we outline our approach for navigating
multiple simple-airplanes, by extending the concept of veloc-
ity obstacles (VO) [22] into three dimensions and performing
optimal reciprocal collision avoidance (ORCA) [10]. We
describe how to incorporate an initially reduced, but easily
calculated, set of kinematic and dynamic constraints when
choosing a velocity using ORCA, and how to deal with the

Fig. 3. A schematic overview of our approach for the navigation of
a simple-airplane amongst other simple-airplanes. Shaded actions indicate
steps that ensure that the velocities we calculate satisfy the kinematic and
dynamic constraints of a simple-airplane. The first stage consisting of the
second, third, and fourth shaded actions calculates and samples the reduced
set of constraints Ũ , with velocities Ṽ , and the second stage containing the
preprocessing and final shaded actions pre-calculates and enumerates curves
in Γ.

remainder of the constraints by enumerating a set of pre-
computed curves that are defined by the same constraints. We
also use variable reciprocity to ensure that simple-airplanes
that are less constrained take more responsibility for avoiding
collisions.

A. Overall Approach

The schematic diagram in Fig. 3 outlines our overall
approach. In the first stage, the simple-airplane acquires
its own position and velocity, and those of surrounding
simple-airplanes. It also estimates the kinematic and dynamic
constraints of the surrounding simple-airplanes based on their
prior motion.
Next, the set of velocities Ṽ , which correspond to a

reduced set of kinematic and dynamic constraints, are cal-
culated for each simple-airplane. Separately, the simple-

3976



(a) (b) (c)
Fig. 4. (a) Two simple-airplanes are bounded by spheres whose centers are pA and pB and radii are rA and rB , respectively. (b) The shaded area
represents the velocity obstacle VOτ

A|B for simple-airplane A induced by B in window of time τ on the xy-plane. The larger circle, with radius rA+ rB ,
is the Minkowski sum B ⊕ −A and the smaller circle, with radius (rA + rB)/τ indicates the amount of truncation due to restricting the size of the
window of time to τ . (c) In the xy-plane, the half-plane below the shaded line denoted ORCAτ,α

A|B
is the set of permitted velocities specified by optimal

reciprocal collision avoidance. The velocity obstacle VOτ
A|B is as defined in (b). The constant α is the reciprocity factor which informally represents the

amount of load the simple-airplane takes for collision avoidance.

airplane also calculates its preferred velocity vpref as defined
in Subsection III-D. Meanwhile, the VO for the simple-
airplane induced by the other simple-airplanes in a window
of time τ are constructed.
Using the sets Ṽ , the reciprocity factor α for the simple-

airplane with respect to each other simple-airplane may be
calculated, followed by the permitted velocities ORCA for
the simple-airplane defined by ORCA for a window of time
τ . The velocities ṽ∗ closest to vpref that lie within Ṽ ∩ORCA
are then selected by sampling Ṽ , and they are ranked by
shortest Euclidean distance, in the velocity space, from the
preferred velocity. More precisely, if a velocity ṽ∗

i is ranked
at position i then ‖ṽ∗

i − vpref‖2 ≤ ‖ṽ∗
j − vpref‖2 for all

j > i.
Finally, the remaining kinematic constraints that are not

used in the calculation of Ṽ are satisfied by enumerating
the set of pre-computed curves Γ, a subset of all valid paths
defined by those constraints. If the first ranked velocity ṽ∗

(or one within a small threshold) can be attained by taking
a path defined by a curve γ ∈ Γ, then that velocity is valid
and the simple-airplane takes that path. Otherwise it tests the
next ranked ṽ∗ against the curves Γ and so on, until a match
is found.

B. Velocity Obstacles
The concept of a velocity obstacle (VO) was originally

introduced for navigating a circular robot amongst multiple
moving obstacles in two dimensions by [22]. We extend that
notion to define a three-dimensional formulation for convex
polytopes in the following manner.
Let A be a simple-airplane and let B be an obstacle

moving in the space R3. We deem A and B to have collided
if their convex hulls intersect. This is a conservative and
sufficient condition, and we use it because it simplifies the
derivation. Referring to Fig. 4(a), let pA and pB denote
the current positions of the reference points of the convex
hulls of A and B, respectively, and let vB be the velocity
of moving obstacle B. It follows that the VO for simple-
airplane A induced by moving obstacle B for the window

of time τ , written VOτ
A|B , is the set of all velocities of A

that will cause a collision between A and B at some moment
before time τ , assuming that B maintains its velocity vB .
More precisely, let A ⊕ B = {a + b |a ∈ CH(A), b ∈

CH(B)} be the Minkowski sum of the convex hulls of two
simple-airplanesA and B, and let −A = {−a |a ∈ CH(A)}
denote the convex hull of A reflected in its reference point.
Moreover, let λτ (p,v) = {p + tv | t ∈ [0, τ ]} be a ray
starting at position p with direction v. It follows that

VOτ
A|B = {v |λτ (pA,v − vB) ∩B ⊕−A (= ∅}.

By definition, if the simple-airplane A selects a velocity
inside the region VOτ

A|B , shown in Fig. 4(b), then it may
potentially collide with moving obstacle B at some future
point in time before τ . If the velocity chosen is outside
VOτ

A|B , then we have a sufficient condition for no such
collision within the time interval [0, τ ]. The principle of
velocity obstacles may therefore be used to navigate a single
simple-airplane in the presence of multiple moving obstacles
without collisions by having it select a velocity during each
time step that is outside the union of all VO induced by
the dynamic obstacles [22], [27]. Note that choosing a
velocity on the boundary of the VO may result in the simple-
airplane and dynamic obstacle grazing each other, which is
undesirable for airplanes. Hence, this is explicitly avoided.
Unfortunately, the direct use of VO proves less than satis-

factory when navigating multiple simple-airplanes amongst
each other. Rather than passive moving obstacles, each of
the simple-airplanes is an active decision-making entity and
similarly adjusts its velocity with respect to the environment.
Hence, for any pair of simple-airplanes, when each chooses
a new velocity outside the VO of the other, their previous
velocities become valid with respect to the VO of the
new velocities. This causes undesirable oscillations that the
simple-airplanes may be unable to resolve [28].

C. Optimal Reciprocal Collision Avoidance
To incorporate the reactive behavior of simple-airplanes

with respect to each other and avoid oscillations, we use the

3977



(a) (b)

Fig. 5. The set of velocities Ṽ , corresponding to the reduced set of kinematic and dynamic constraints Ũ from which velocities are sampled, is highlighted
by the shaded area. The xy-plane is shown in (a) and the xz-plane is shown in (b). The velocity at time t is v(t) with speed us(t), climb rate uz(t),
and steering angle uφ(t). The concentric circles in (a) and vertical lines in (b) represent the absolute maximum and minimum speeds, and the maximum
and minimum speeds attained by accelerating or decelerating from us(t) at the maximum rate for τ time. The horizontal lines in (b) correspond to the
analogous values for climb rate, and the rays directed from the center of the circles in (a) are the equivalent values for steering angle.

optimal reciprocal collision avoidance (ORCA) algorithm
introduced in [10]. The set of permitted velocities for ORCA
are defined geometrically as follows.
Let simple-airplanes A and B have velocities vA and vB ,

respectively, and let the velocity obstacle of A induced by
B for the window of time τ be VOτ

A|B . Moreover, let the
relative velocity vA−vB be in VOτ

A|B , from which it follows
that A and B will collide at some point in time before τ if
they maintain their current velocities. Let w be the vector
from vA − vB to the closest point of the boundary of the
velocity obstacle ∂VOτ

A|B, as indicated in Fig. 4(c), such
that

w = ( argmin
v∈∂VOτ

A|B

‖v − (vA − vB)‖2)− (vA − vB),

and let n be the outward normal of ∂VOτ
A|B at the point

(vA − vB) +w. It follows that w is the smallest change to
the relative velocity vA − vB that will provide a sufficient
condition for no collision during the window of time τ .
In order to allow the two simple-airplanes to share the
responsibility for avoiding a collision, we let A adjust its
velocity by αw, for the given reciprocity factor α ∈ [0, 1],
as defined in Section III, with the assumption that B takes
care of the remaining fraction 1 − α. It follows that the
set of permitted velocities for a simple-airplane A induced
by simple-airplane B for the window of time τ , denoted
ORCAτ,α

A|B is the half-space in the direction of n starting at
the point vA + αw. Formally, the definition is

ORCAτ,α
A|B = {v | (v − (vA + αw)) · n ≥ 0}.

The value of α = 1
2
used by [10] prescribes that A and B

take equal responsibility. It is important to note that while
VOτ

A|B contains velocities that will cause a collision in the
window of time τ , the velocities within ORCAτ,α

A|B are those
which are collision-free for time τ .

D. Kinematic and Dynamic Constraints
The velocities reachable during a window of time τ are

restricted by the kinematic and dynamic constraints of the

simple-airplane. Recalling the definition in Subsection III-C,
we initially consider a reduced set of kinematic and dynamic
constraints Ũ with velocities Ṽ when choosing from the
set of permitted velocities in ORCAτ,α

A|B (see Fig. 5). The
attainable velocities that are permitted by optimal reciprocal
collision avoidance are therefore ṼA ∩ORCAτ,α

A|B .
Before taking velocity samples from ṼA ∩ORCAτ,α

A|B , we
first need to choose a value for the reciprocity factor α. This
is based on the relative volumes in velocity space of the
regions ṼA and ṼB of the simple-airplanes A and B. The
larger the volume of the region for each airplane, the less
constrained it is when choosing its next velocity. Hence,

α = vol ṼA / (vol ṼA + vol ṼB).

In the unlikely event that both vol ṼA and vol ṼB are zero,
then both of the simple-airplanes are entirely constrained.
This renders any calculation of ṼA∩ORCAτ,α

A|B meaningless
as there is only one velocity that each simple-airplane can
take regardless of the value of α. Therefore, this does not
affect our definition of the reciprocity factor α. Since α is
completely defined by ṼA and ṼB , the notation for the attain-
able velocities permitted by the optimal reciprocal collision
avoidance strategy may be simplified to ṼA ∩ORCAτ

A|B .

E. Local Planning
After choosing the velocities ṽ∗ from ŨA∩ORCAτ

A|B and
ranking them with respect to the least Euclidean distance
from the preferred velocity vpref , the final task is to satisfy
the remaining kinematic constraints not in ŨA. We use the
set of pre-computed curves Γ, defined in Subsection III-C,
and enumerate each curve γ ∈ Γ comparing the velocity
v(t)+∆vγ obtained at the end of the curve with our highest
ranked velocity ṽ∗. If there exists a curve γ that allows ṽ∗,
or a velocity sufficiently close to ṽ∗ in velocity space, to be
attained, then the velocity is valid and the simple-airplane
chooses that path to make collision-free progress towards its
goal. If not, we select the next ranked velocity and repeat
the process, continuing until we find a valid combination of
velocity ṽ∗ and path γ.

3978



(a) (b)

dynamic
obstacle

dynamic
obstacle

Fig. 6. The traces of the simulated simple-airplanes in the sphere scenario (a) and the dynamic obstacle scenario (b) for the xy-plane (top) and the
xz-plane (bottom). The positions of the simple-airplanes every 10 time steps are shown with a disc. Later positions are drawn on top of earlier positions.
The trajectory of each simple-airplane is denoted by a different color, with the red discs in (b) corresponding to the trajectory of the dynamic obstacle.

V. IMPLEMENTATION AND SIMULATION
In this section, we describe our implementation of the

approach presented above and report simulated results from
several scenarios.

A. Implementation Details
We implemented our approach as a C++ framework on a

2.53 GHz Intel Core 2 Duo dual-core processor with 4 GiB
of memory running the Mac OS X 10.6 Snow Leopard op-
erating system. The calculations for each individual simple-
airplane were performed in separate parallel processes using
Grand Central Dispatch, a programming model and runtime
architecture for multi-core computing in Snow Leopard.

B. Simulated Results
The scenarios that we simulated were as follows.
• Sphere: Simple-airplanes are placed at points on an
imaginary sphere. Their goals are to navigate to a point
on the opposite side of the sphere. The simple-airplanes
will meet and have to negotiate around each other
towards the middle of the sphere.

• Dynamic obstacle: One or more dynamic obstacles
travel at a constant velocity across the environment. The
simple-airplanes have to cross the path of the obstacles
to reach their goals, while avoiding collisions.

We assume that each simple-airplane has full knowledge of
the kinematic and dynamic constraints of the other simple-
airplanes, and can easily identify a dynamic obstacle from a
cooperating simple-airplane.
Traces of four simple-airplanes for the sphere scenario

are shown in Fig. 6(a). The paths computed by the simple-
airplanes are collision-free and contain no oscillations. They

are smooth and direct, with no sudden changes in direction
that would indicate that kinematic constraints have been
violated. Moreover, the simple-airplanes are not restricted to
a fixed plane and change altitude where necessary, clearly us-
ing the positions and velocities of the other simple-airplanes
to plan their path.
In Fig. 6(b), the dynamic obstacle scenario demonstrates

that our approach can deal with an entity that is entirely
constrained and unable, or unwilling, to adjust its motion due
to the proximity of simple-airplanes. Here, the three simple-
airplanes detect that the region of attainable velocities of
the single dynamic obstacle is a point and of zero volume,
therefore naturally obtaining a reciprocity factor of α = 1,
which corresponds to taking full responsibility for avoiding
a collision, without requiring the addition of a special case
to our formulation. The dynamic obstacle nominally has
a reciprocity factor α = 0, indicating that it takes no
responsibility for avoiding the simple-airplane.
Videos of expanded versions of the sphere scenario with

sixteen simple-airplanes and the dynamic obstacle scenario
with twelve simple-airplanes and four dynamic obstacles, as
shown in Fig. 1, are available at http://gamma.cs.unc.edu/S-
AIRPLANE/ and via http://www.youtube.com/gammaunc.

VI. LIMITATIONS AND CONCLUSIONS

In this paper, we have introduced the simple-airplane and
presented an extension of the optimal reciprocal collision
avoidance (ORCA) algorithm in three dimensions to allow
multiple simple-airplanes to navigate amongst each other. In
practice, our approach is able to generate collision-free and
oscillation-free paths that satisfy the underlying kinematic
and dynamic constraints.

3979



Key features of our algorithm are the consideration of most
kinematic and dynamic constraints of the simple-airplane
when choosing a velocity from within the permitted veloci-
ties provided by the ORCA algorithm and the enumeration
of pre-computed curves to confirm that the new velocity
meets all remaining kinematic constraints. We also account
for reciprocity in our formulation to prevent undesirable
oscillations, and by incorporating kinematic and dynamic
constraints, the idea of variable reciprocity is introduced to
ensure that simple-airplanes that are less constrained take
more responsibility for avoiding collisions. Moreover, the
simple-airplanes are restricted to neither constant speed nor
fixed altitude as is the case in many approaches.
Our current implementation ignores both roll and pitch of

airplanes, but in principle, we can easily extend it to add
extra kinematic constraints. We also ignore some external
factors such as wind and drag, which may influence the paths
chosen by the simple-airplane. Furthermore, we currently
assume that each simple-airplane has perfect sensing. We
could potentially use the approach of [34] to incorporate
uncertainty in position and velocity.
While our formulation is capable of handling moving ob-

stacles, we do not consider static obstacles and the resulting
complex environments, containing, for instance, buildings or
higher terrain. We would also need to add to our approach a
global planner to direct the simple-airplanes to their goals.
Given that each simple-airplane essentially plans its path

independently, by only observing other simple-airplanes and
dynamic obstacles, there is opportunity to further exploit
the parallel nature of this approach by performing some
calculations on a GPU, possibly using the OpenCL API.
Another possibility would be a decentralized approach for
the navigation of real flying robots such as a Blimpduino
blimp [2] or Mikrokopter quadrotor helicopter [4].

REFERENCES
[1] P. Cheng, J. Keller, and V. Kumar, “Time-optimal UAV trajectory

planning for 3D urban structure coverage,” in Proc. IEEE RSJ Int.
Conf. Intell. Robot. Syst., 2008, pp. 2750–2757.

[2] C. Anderson, “Meet the Blimpduino,” Make Mag., vol. 19, p. 52, 2009.
[3] P. Cheng, V. Kumar, R. Arkin, M. Steinberg, and K. Hedrick, “Co-

operative control of multiple heterogeneous unmanned vehicles for
coverage and surveillance,” IEEE Robot. Autom. Mag., vol. 16, no. 2,
p. 12, 2009.

[4] S. Grzonka, G. Grisetti, and W. Burgard, “Towards a navigation system
for autonomous indoor flying,” in Proc. IEEE Int. Conf. Robot. Autom.,
2009, pp. 2878–2883.

[5] J.-P. Laumond, S. Sekhavat, and F. Lamiraux, “Guidelines in nonholo-
nomic motion planning for mobile robots,” in Robot Motion Planning
and Control, ser. Lect. Notes Contr. Inform. Sci., J.-P. Laumond, Ed.
London, U.K.: Springer, 1998, vol. 229, pp. 1–53.

[6] J.-C. Latombe, “A fast path planner for a car-like indoor mobile robot,”
in Proc. AAAI Nat. Conf. Artif. Intell., 1991, pp. 659–665.

[7] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
Univ. Pr., 2006.

[8] H. Chitsaz and S. M. LaValle, “Time-optimal paths for a Dubins
airplane,” in Proc. IEEE Conf. Decis. Contr., 2007, pp. 2379–2384.

[9] A. Richards and J. P. How, “Aircraft trajectory planning with collision
avoidance using mixed integer linear programming,” in Proc. Am.
Contr. Conf., 2002, pp. 1936–1941.

[10] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in Proc. Int. Symp. Robot. Res., 2009.

[11] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” Amer. J. Math., vol. 79, pp. 497–516, 1957.

[12] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both
forwards and backwards,” Pac. J. Math., vol. 145, no. 2, pp. 367–393,
1990.

[13] H. J. Sussmann and G. Tang, “Shortest paths for the Reeds-Shepp car:
A worked out example of the use of geometric techniques in nonlinear
optimal control.” Rutgers Univ., Tech. Rep. SYNCON 91-10, 1991.

[14] J.-D. Boissonnat, A. Cérézo, and J. Leblond, “Shortest paths of
bounded curvature in the plane,” J. Intell. Robot. Syst., vol. 11, pp.
5–20, 1994.

[15] A. Richards, J. Bellingham, M. Tillerson, and J. P. How, “Coordination
and control of multiple UAVs,” in Proc. AAIA Guid. Navig. Contr.
Conf., 2002, pp. 1936–1941.

[16] Y.-J. Chiang, J. T. Klosowski, C. Lee, and J. S. B. Mitchell, “Geometric
algorithms for conflict detection/resolution in air traffic management,”
in Proc. IEEE Conf. Decis. Contr., vol. 2, 1997, pp. 1835–1840.

[17] E. M. Arkin, J. S. B. Mitchell, and V. Polishchuk, “Maximum thick
paths in static and dynamic environments,” Comput. Geom., vol. 43,
no. 3, pp. 279–294, 2010.

[18] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance,” IEEE Robot. Autom. Mag., vol. 4, pp. 23–33,
1997.

[19] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kino-
dynamic motion planning with moving obstacles,” Int. J. Robot. Res.,
vol. 21, no. 3, pp. 233–255, 2002.

[20] A. Kushleyev and M. Likhachev, “Time-bounded lattice for efficient
planning in dynamic environments,” in Proc. IEEE Int. Conf. Robot.
Autom., 2009, pp. 1662–1668.

[21] S. Petti and T. Fraichard, “Safe motion planning in dynamic environ-
ments,” in Proc. IEEE RSJ Int. Conf. Intell. Robot. Syst., 2005, pp.
2210–2215.

[22] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” Int. J. Robot. Res., vol. 17, no. 7, pp. 760–
772, 1998.

[23] F. Large, S. Sckhavat, Z. Shiller, and C. Laugier, “Using non-linear
velocity obstacles to plan motions in a dynamic environment,” in Proc.
IEEE Int. Conf. Contr. Autom. Robot. Vision, 2002, pp. 734–739.

[24] J. S. Dittrich, F. Adolf, A. Langer, and F. Thielecke, “Mission planning
for small UAV systems in unknown environments,” in Proc. AHS Int.
Spec. Mtg. Unmanned Rotorcraft Syst., 2007.

[25] Y. Abe and M. Yoshiki, “Collision avoidance method for multiple
autonomous mobile agents by implicit cooperation,” in Proc. IEEE
RSJ Int. Conf. Intell. Robot. Syst., 2001, pp. 1207–1212.

[26] B. Kluge and E. Prassler, “Reflective navigation: Individual behaviors
and group behaviors,” in Proc. IEEE Int. Conf. Robot. Autom., 2004,
pp. 4172–4177.

[27] C. Fulgenzi, A. Spalanzani, and C. Laugier, “Dynamic obstacle
avoidance in uncertain environment combining PVOs and occupancy
grid,” in Proc. IEEE Int. Conf. Robot. Autom., 2007, pp. 1610–1616.

[28] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” in Proc. IEEE Int.
Conf. Robot. Autom., 2008, pp. 1928–1935.

[29] S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. Lin, D. Manocha, and
P. Dubey, “ClearPath: Highly parallel collision avoidance for multi-
agent simulation,” in Proc. ACM SIGGRAPH Eurographics Symp.
Comput. Animat., 2009, pp. 177–187.

[30] D. Wilkie, J. van den Berg, and D. Manocha, “Generalized velocity
obstacles,” in Proc. IEEE RSJ Int. Conf. Intell. Robot. Syst., 2009.

[31] K. C. Ng and M. M. Trivedi, “A neuro-fuzzy controller for mobile
robot navigation and multirobot convoying,” IEEE T. Syst. Man Cyb.
B, vol. 28, no. 6, pp. 829–840, 1998.

[32] S. Carpin and L. E. Parker, “Cooperative motion coordination amidst
dynamic obstacles,” in Proc. Int. Symp. Distrib. Auton. Robot. Syst.,
2002, pp. 145–154.

[33] A. Scheuer and C. Laugier, “Planning sub-optimal and continuous-
curvature paths for car-like robots,” in Proc. IEEE RSJ Int. Conf. Intell.
Robot. Syst., 1998, pp. 25–31.

[34] J. Snape, S. J. Guy, J. van den Berg, and D. Manocha, “The stochastic
velocity obstacle: Motion planning for multiple mobile robots and
virtual agents,” Univ. N. Carolina Chapel Hill, Tech. Rep., 2010.

3980


