

 Abstract – In this paper, the multi robot motion planning prob-
lem is solved through a decoupled approach, where a new algo-
rithm for prioritizing the robots moves is developed. Assuming
that the workspace is mapped into a tree graph and the initial and
final configurations of robots are known, the robots’ shortest start-
to-goal paths on the tree are calculated independently. Then, a new
rule-based prioritization scheme is applied in two phases: (a) Path
Prioritization, which determines which robot can directly move
along its shortest path and which robot should deviate from it, and
(b) Motion Prioritization, which decides the order of robots’ se-
quential moves. Furthermore, an algorithm is presented for mini-
mizing the number of moves by adding extra vertices to the tree.

I. INTRODUCTION

he Multi Robot Motion Planning (MRMP) problem is gain-
ing increased attention as many real-world complex ap-

plications require collective intelligent behaviors exhibited by
multiple robots. The basic MRMP problem is to find start-to-
goal paths for a number of robots moving in a space with
obstacles, such that they do not collide with obstacles or each
other. Space is the most limiting constraint in a typical MRMP
problem: often, because of lack of sufficient space around
robots, they cannot reach their goals without obstructing each
other’s way, causing deadlocks. Deadlocks are situations where
two or more robots intercept each other’s motions and are
prevented from reaching their goals. This happens generally in
narrow passageways where robots cannot pass by each other.

A. Related Work

 The MRMP problem is proved to be NP-hard [1], and is
solved by two general approaches: Centralized planning and
Decoupled planning. In the Centralized planning, all m
robots in the scene are regarded as a single multi-part robot
with m independent bodies that are not necessarily connected
to each other. This (virtual) compound robot has a degree of
freedom equal to the sum of the degrees of freedom of all
part-robots. Thus, collisions of ri robots (i = 1, …, m) is
interpreted as self-collisions of the compound robot. This
approach, however, suffers from high time and memory
requirements for large degrees of freedom [2].
 The Decoupled approach first plans the motion of each
robot individually while ignoring the existence of the other
robots, and then tries to combine the resulting paths by
resolving possible collisions between the paths. Decoupled
planning can handle problems with large number of robots
and is implemented more extensively in the literature.
Collision resolution is performed through two techniques:
Velocity Tuning, and Prioritizing. In the Velocity Tuning

Authors are with the Faculty of Engineering, Tarbiat Modares University,

Tehran, Iran. Corresponding author’s e-mail: masehian@modares.ac.ir.

technique, each robot either stops or decelerates its motion to
avoid colliding with other robots [3]. The Prioritization
technique assigns priorities to each robot and computes the
paths of the robots based on the order of these priorities [4].
 Many different approaches are proposed for assigning
priorities to robots: Buckley’s work is among the first ones, in
which through applying a heuristic algorithm, higher priorities
are assigned to robots that can move to their goals directly [5].
In [6] an approach is described that uses fixed order of priority
and chooses random alternative routes for robots with lower
priorities. A randomized hill-climbing search is used in [7] to
assign the priorities of robots while applying A* search to
compute the optimal path of each robot.
 In [8] a fully distributed cooperative path planning is done
on local sections of the time-space configuration space,
where dynamic conflicts between the robots are solved by
the heuristic adjustment of priority values. A decentralized
motion control system of a team of mobile robots is
developed in [9], which leads each robot to its individual
goal by online modification of pre-computed navigation
functions in order to satisfy formation constraints. The
method handles a limited number of robots, and is tested
only on sparsely located circular obstacles.
 Although methods dealing with continuous spaces have
some advantages, but they suffer from increased computational
burden for high number of robots. To overcome this, the
continuous Configuration space has been discretized into a
graph or tree in a number of works. This is done meant for
downsizing the C-space and implicitly modeling workspace
obstacles (by locating graph nodes and arcs inside the free C-
space), and thus reducing computations. Another advantage of
discretizing the space is the possibility of applying techniques
such as sequencing for motion planning.
 In [10] the possibility of reaching destinations of connected
subgraphs is studied, by simplifying the MRMP between
some predefined subgraphs named stacks, halls, rings, and
cliques. In [11] the coordination problem of multiple robots
on a network is solved by introducing a social law on it
which all the robots should obey. The social law is derived
from a routing of the graph underlying the network
 A multi-phase approach to the planning problem by using
a topological graph and spanning tree representation of a
tunnel or corridor environment is presented in [12], which
plans trajectories for a number of robots proportionate to the
number of leaves of the spanning tree. However, a drawback
of the method is that the construction of the spanning tree is
time consuming since it is not unique, and with selecting
different trees, different number of robots would be dealt
with. Also, the aggregate path length is considerably long
compared to a standard decoupled method.

A Hierarchical Decoupled Approach for Multi Robot Motion
Planning on Trees

Ellips Masehian and Azadeh H. Nejad

T

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 3604

B. The Current Work

 When the workspace is mapped into a graph (such as the
Voronoi diagram), the robots are required to move only along
predefined routes (i.e. graph edges), implicitly avoiding the
obstacles existing in the workspace. The MRMP on graphs
has real-world applications in maze-like environments, indoor
rooms or offices connected with corridors, AGV routes in
plants, multi-story parking lots, railway networks, etc.
 Graphs can be categorized into two general classes: cyclic,
and acyclic: cyclic graphs have loops and provide alternative
ways to access a specific node, and therefore are more
convenient for planning the motions of multiple robots. On
the other hand, acyclic graphs (i.e. trees) do not have any
loops, and the shortest path between every pair of nodes is
unique. As such, trees provide fewer options and less
maneuverability for the robots, and are much harder to solve
than cyclic graphs. Actually, MRMP on trees can serve as a
basis for MRMP on cyclic graphs, and the solution of an
MRMP on a tree is also valid for the MRMP problem on a
cyclic graph which is the superset of that tree. In view of
this, and considering its NP-hardness, we found the MRMP
problem on trees a worthwhile and challenging problem to
be solved efficiently.
 A related issue to the MRMP is that what topology a tree
should have in order to be solvable. A Solvable Tree is a tree
that allows the transition of any initial configuration of
robots to a final configuration via their moves on arcs. The
topologies of solvable trees are proposed in [13]. The
solvability analysis of a problem can determine if the given
MRMP problem has a solution, without explicitly solving it.
 By designing the current decoupled method we intended to
overcome the scalability problem of non-graph-based MRMP
methods such as [8] and [9] (which hardly deal with more that
10 robots), as well as improving the collective path length of
graph-based methods like [11] and [12] (which plan many
redundant moves and take long time). In fact, as far as we
tested the proposed method, it can solve MRMP problems
with hundreds of robots in quite reasonable times.
 The next Section of the paper provides some definitions
and assumptions of the algorithm and briefly describes its
steps. Section III and IV explain in detail the procedures of
path prioritization and motion prioritization, respectively. In
Section V the tree is enhanced to minimize the number of
moves required for deadlocks resolution. Discussions and
conclusions are presented in Section VI.

II. ALGORITHM ASSUMPTIONS AND OVERVIEW

 Before proceeding, some terms and symbols are introduced:
Let T = (V, E) be a tree, with the set of vertices V and set of
edges E. the number of vertices connected to the vertex v is
called its Degree, d(v). The Leaves of a tree, L(T), are vertices
with d(v) = 1, and the Internal Vertices of a tree, I(T), are
vertices with d(v) > 1. The set of vertices connecting v and u
(inclusive) is shown by Path(v, u).
 The Origin O ∈ {v | d(v) ≥ d(u), ∀u∈V} is defined as the
vertex with maximum degree in the Tree. If not unique, it is
selected such that the maximum Level of all vertices is kept
minimal. The Level of a vertex l(v) is the minimal distance of

vertex v from O (i.e. Dist(v, O)). The tree can be searched in a
linear time complexity to decide its Origin. The origin is taken
as the Root of the tree, and the Levels of all vertices are
determined in relation to the Origin.
 si and gi are the start and goal of robot ri, and SPi is the
sequence of vertices on the shortest path of ri from si to gi in
the Tree. Finally, a Plan is the sequences of robots’ motion on
a tree, from initial to final configuration.
 The presented algorithm is based on some assumptions:
1. The free space is represented by a tree, which is finite,

connected, planar, and undirected.
2. Initial and final locations of all robots lie on the tree and

are known.
3. All robots share the same tree and can only reside on

vertices of the tree, and can only move along edges of the
tree. Each vertex can accommodate only one robot at a
time, and only one robot can pass along an edge at a time.

4. A robot at vertex v can move to its neighboring vertex u
only if u is unoccupied; i.e. moves are sequentially. Robots
occupying other vertices in the graph do not affect this
move. Nevertheless, after finalizing the Plan, this
assumption can be relaxed by advancing as much as
possible the motions of robots which do not form
deadlocks with already moved robots, thus introducing
concurrency of motions.

A. Overview

 As stated earlier, deadlocks in the decoupled planning
approach can be resolved by introducing a priority scheme,
which determines the order in which the motions of the robots
are planned. In our method, the priority scheme is
implemented hierarchically through two steps: prioritization
of robots paths, and prioritization of robots motions. This is
done since these two types are different in nature: a robot with
priority of path planning has the right to move
straightforwardly toward its goal (i.e. travel along its shortest
path), whereas a robot with priority of motion planning has the
right to move earlier (either to its goal or a temporary node).
 For instance, the robot 1 in Fig. 1(a) (located at S1) and
robot 2 in Fig. 1(b) (located at S2) have higher path planning
priorities. Yet, in both figures, the motion priority is given to
the robot 1. However, in a problem like Fig. 1(c), the path
planning priorities of both robots are equal, but the motion
priority of robot 2 is higher than that of robot 1.

 The outline of the algorithm is as follows:
Step 1: For each robot the shortest start-to-goal paths are

calculated independently. Based on robots’ starts and goals,
they are categorized into two classes: robots that can move

(a) (b) (c)

Fig. 1. Path and Motion priorities in a sample problem (from [7]).

S2

S1
G1 G2

S2

S1
G1 G2

S2

S1

G1 G2

3605

along their Shortest Paths, and robots that must
(temporarily) deviate from their Shortest Paths in order to
let the robots of the first class reach their goals first.

Step 2: The robot’s motions are then prioritized through two
phases: Rough, and Exact Motion Prioritization.

Step 3: Aiming to minimize the robots’ total traversed distance
and resolve possible deadlocks, the temporary stations of
deviating robots are determined.

Step 4: The final Plan is generated based on the previous steps.

III. PATH PRIORITIZATION

 In the presented algorithm, shortest start-to-goal paths are
calculated independently for each robot. If some paths
intersect at certain vertices, then some robots may block
other robots’ motions to their goals, which will lead to
probable collisions. Different cases of blockings (i.e.
deadlocks) can occur for two robots moving at ‘same’ or
‘opposite’ directions in a tree, as illustrated in Table I.
 The relative direction of each pair of robots is determined
based on the order of vertices visited by each robot. For
instance, in Case 1, SP1= {1→2→3→4→5} and SP2 = {2→
3→4}, and so SP2 ⊂ SP1. Or in Case 3, SP1= {1→2→3→
4→5} and SP2 = {5→4→3→2}, and so SP2 ⊂ ¬SP1 ∧
s2 = g1. The symbol ‘¬’ indicates the path in reverse order.

TABLE I
DEADLOCK SITUATIONS FOR TWO ROBOTS

Case Direction Type of deadlock situation

1 same

2 opposite

3 opposite

4 opposite

5 opposite

6 opposite

7 opposite

 Prioritization of paths determines which robot has the
privilege to move to its goal without deviating from its
Shortest Path, and which robot should sacrifice the local
minimality of its motion for the sake of minimizing the total
moves in the Plan. In other words, in path prioritization, a
class of robots called Non-Deviating Robots (NDRs) are
decided to follow their Shortest Path, while another class
called Deviating Robots (DRs) have to plan their paths by
taking into account the already planned paths of NDRs. DRs
have higher priorities for moving than NDRs: that is, only
DRs are deviated from their Shortest Paths and make enough
room for NDRs to move straightforwardly to their goals.

 The decision to classify a robot as Deviating or Non-
Deviating is based on its initial (start) and final (goal)
configurations. A robot can occupy either a Leaf or an Internal
Vertex as its start and goal positions. Four different situations
may happen regarding the locations of starts and goals of a
pair of robots: (1) a robot’s start might be the goal of any other
robot (case S=G), (2) a robot’s goal might be the start of any
other robot (case G=S), (3) a robots’ both start and goal are
the goal and the start of one (or two) other robot(s) (case
S≡G), or (4) none of the above (case S≠G). Based on the type
of the start and goal vertices of robots (i.e. Leaf or Internal
Vertex), 16 different states may occur, as indicated in Table II.

TABLE II
DIFFERENT STATES FOR A ROBOT’S INITIAL AND FINAL CONFIGURATIONS

Goal on

Start on

Internal vertex Leaf

S=G G=S S≡G S≠G S=G G=S S≡G S≠G

Internal vertex 1 2 3 4 9 10 11 12

Leaf 5 6 7 8 13 14 15 16

 For example, State 6 represents the instance where the start
of a robot (say ri) is on a Leaf, and its goal is on an Internal
Vertex, which is itself the start of another robot (say rj).
 Since Internal Vertices are the only places in the tree where
robots can shift from a leaf to another, they should be vacant
as early and as much as possible. Also, robots located on the
goals of other robots should deviate from their shortest paths,
regardless of their destination. Conversely, since robots with
starts on Leaves do not block other robots’ paths (unless the
Leaf is itself a goal), they need not make extra moves other
than their shortest paths. By implementing the above intuitive
principles, the robots can be classified into two general
classes, DRs and NDRs, as shown in Table III.

TABLE III
CLASSES OF ROBOTS CATEGORIZED BASED ON STATES

Robots in States 1, 2, 4, 5, and 10 are Deviating (DR)

Robots in States 6, 8, 9, 12, 13, 14, and 16 are Non-Deviating (NDR)

Robots in States 3, 7, 11, and 15 cannot be determined

 The States 3, 7, 11 and 15 in the Table II refer to the case
S≡G, where the path planning priorities of involved robots
are equal, and so the robots’ classes (i.e. DR or NDR) cannot
be determined. Instead, their class should be decided with
respect to the already determined classes of other robots, and
regarding their created deadlock situations, as indicated in
Table IV (compare to Table I).

TABLE IV
CLASSES OF ROBOTS CLASSIFIED BASED ON DEADLOCK SITUATIONS

Case Deadlock situation The Deviating Robot

1 SPi⊂ SPj ri

2 SPi⊂ ¬SPj ∧ si ≠ gj ∧ sj ≠ gi

ri if rj is NDR
or

rj if ri is NDR

3 SPi⊂ ¬SPj ∧ si = gj
4 SPi ⊂ ¬SPj ∧ sj = gi

5 SPi = SPj ∧ si = gj ∧ sj = gi
6 gi∈SPj ∧ gj∈SPi
7 SPi⊄SPj ∧ SPj⊄SPi ∧ si∈SPj ∧ sj∈SPi

gi

gj sj

si

41 3 2 5

sj

si

4 1 3 2
gj
5

gi

sj

si

41 3 2
gj
5

gi

sj

si

41 3 2
gj
5

gi

sj

si

41 3 2
gj
5

gi

sj

si

41 3 2
gj

5

gi

si gi

4 1 3 2

sj gj

5

3606

 The whole process of classifying all robots into DR and NDR
classes is explained in Fig. 2. Note that since a robot can form
different deadlock situations with different robots, its class may
be simultaneously set as both DR and NDR. This contradiction
is settled by marking the robot as DR (line 16 in Fig. 2).
 The process of classifying robots is illustrated through a
sample problem, with 10 robots located on a 13-vertex tree
(with A as Origin), as depicted in Fig. 3. Dotted vertices will
be discussed later. Considering the shortest start-to-goal paths
of robots as shown in Table V, the classes of some robots can
be decided according to lines 3 and 4 of the pseudocode.

Fig. 2. Pseudocode for classifying robots into DRs and NDRs.

Fig. 3. The initial configuration of 10 robots in a sample workspace.

 Further classification of undecided robots is possible by
comparing them with the already classified robots (lines 5 to
7), as shown in Table VI. Robot r5 still remains undecided,
and so is compared again for possible deadlocks with the
newly-classified robots r1, r7, r8, and r9 (lines 8 and 9). As a
result, it is understood that r5 forms deadlocks with none of
them, and so its class is determined as NDR (lines 11 and 12).

TABLE V
SHORTEST PATHS, STATES AND CLASSES OF ROBOTS IN FIG. 3

Robot Shortest Path State Class
r1 {B→A→C→E→G→H} 15 undecided
r2 {I→A→C→E→F} 12 NDR
r3 {J→I→A→C→D} 9 NDR
r4 {C→A→B} 10 DR
r5 {M→L→I→J} 7 undecided
r6 {G→E→C→A→I→L} 1 DR
r7 {E→C→A→I→L→M} 11 undecided
r8 {A→C→E} 3 undecided
r9 {H→G→E→C→A} 7 undecided
r10 {K→J→I→A→C→E→G} 6 NDR

TABLE VI
DETERMINING THE CLASS OF ROBOTS REMAINED UNDECIDED IN TABLE V

Robot Compared with Deadlock situation Case Decision

r1 r4 SP4 ⊂ ¬SP1 ∧ s1=g4 4 r1 is NDR
r5 r2, r3, r4, r6, r10 none − undecided
r7 r2 s7 ∈ SP2 ∧ s2 ∈ SP7 7 r7 is DR

r8

r2 SP8 ⊂ SP2 1 r8 is DR
r4 s8 ∈ SP4 ∧ s4 ∈ SP8 7 r8 is NDR
r6 SP8⊂ ¬SP6 ∧ s8=g6 ∧ s6=g8 2 r8 is NDR
r10 SP8 ⊂ SP10 1 r8 is DR

r9 r10 g10 ∈ SP9 ∧ g9 ∈ SP10 6 r9 is DR

 Also, robot r8 is marked as both DR and NDR due to
comparisons with different robots, and therefore is classified
as a DR, according to the lines 15 and 16.

IV. MOTION PRIORITIZATION

 The deadlock resolution process is generally (but not
necessarily) performed in three stages: (1) a DR moves away
(deviates) from its Shortest Path and occupies a newly-
inserted vertex, (2) an NDR moves from its start to goal
directly, and (3) the DR returns to its Shortest Path and
reaches its goal vertex. The first stage above is called
Evacuation stage, and the third is called Occupation stage.
The second stage simultaneously incorporates both
Evacuation and Occupation stages.
 For any two robots ri and rj, the right given to ri to
evacuate its start earlier than rj is called its Evacuation
Priority and is denoted by EPi > EPj. Alternatively, the right
given to ri to occupy its goal earlier than rj is called its
Occupation Priority and is denoted by OPi > OPj.
 Regarding the mutual impacts of multiple DRs and NDRs,
setting their motion priorities is a very complex task. In this
section, a new Motion Prioritization procedure is developed
consisted of two levels: Rough, and Exact. In Rough Motion
Prioritization, a general and tentative motion priority scheme
is produced by identifying the number of deadlock situations
a robot is involved at its initial and final configurations. On
the other hand, Exact Motion Prioritization determines the
order of robots in evacuating their starts and occupying their
goals with regard to their locations in the Tree.

A. Rough Motion Prioritization

 For Rough Motion Prioritization of robots, a binary m×m
matrix called Deadlocks Matrix is constructed to summarize
all deadlock situations that robots create due to their locations
relative to the Shortest Paths of other robots. The rows of this
matrix refer to the Shortest Paths of robots, whereas the
columns point to robots. Each cell in the i-th row and j-th
column of the Deadlocks Matrix is an ordered pair of 0’s or
1’s: A ‘1’ as the first element of the pair indicates that the start
of the robot j is located on the Shortest Path of robot i.
Alternately, a ‘1’ as the second element indicates that the goal
of the robot j is located on the Shortest Path of robot i. Non-
deadlock instances are shown by 0’s. The Deadlocks Matrix
for the sample problem is formed as Fig. 4.
 By summing the first and second elements of the cells in
column j, the number of deadlocks respectively created by
the start and goal of robot j with other robots is calculated. A
large value in the first element of the sum implies that the

INPUT (a solvable tree for given initial and final configurations of robots)
1 Calculate the Shortest Paths of all robots on the tree
2 Do until the classes (DR or NDR) of all robots are decided
3 Determine the state of each robot (based on Table III)
4 Determine the class of each robot (based on Table IV)
5 For robots with undecided classes do
6 Identify their deadlock situations with robots classified in line 4
7 Determine the class of undecided robots (based on Table V)
8 For robots with still undecided classes do
9 Determine their class with respect to robots classified in line 7
10 end
11 If the class of a robot is still undecided then
12 Categorize its class as a Non-Deviating Robot (NDR)
13 end
14 end
15 If the class of a robot is marked as both DR and NDR then
16 Categorize its class as a Deviating Robot (DR)
17 end
18 end

r3 r10
F

E

D

M

B

L

G

H

J K

A2 A1

C1

A

C2

C

I1

I

r7
r6

r9

r4

r8 r2

r5

r1

3607

start position of the robot j blocks the motions of many
robots and so must be evacuated earlier. On the other hand, a
large value in the second element of the sum implies that the
goal position of the robot j is on the path of many robots and
so must be occupied later.

 s1, g1 s2, g2 s3, g3 s4, g4 s5, g5 s6, g6 s7, g7 s8, g8 s9, g9 s10, g10

SP1 0, 0 0, 0 0, 0 1, 1 0, 0 1, 0 1, 0 1, 1 1, 1 0, 1
SP2 0, 0 0, 0 0, 0 1, 0 0, 0 0, 0 1, 0 1, 1 0, 1 0, 0
SP3 0, 0 1, 0 0, 0 1, 0 0, 1 0, 0 0, 0 1, 0 0, 1 0, 0
SP4 1, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 1, 0 0, 1 0, 0
SP5 0, 0 1, 0 1, 0 0, 0 0, 0 0, 1 0, 1 0, 0 0, 0 0, 0
SP6 0, 0 1, 0 0, 0 1, 0 0, 0 0, 0 1, 0 1, 1 0, 1 0, 1
SP7 0, 0 1, 0 0, 0 1, 0 1, 0 0, 1 0, 0 1, 1 0, 1 0, 0
SP8 0, 0 0, 0 0, 0 1, 0 0, 0 0, 0 1, 0 0, 0 0, 1 0, 0
SP9 0, 1 0, 0 0, 0 1, 0 0, 0 1, 0 1, 0 1, 1 0, 0 0, 1
SP10 0, 0 1, 0 1, 0 1, 0 0, 1 1, 0 1, 0 1, 1 0, 1 0, 0
Sum (1, 1) (5, 0) (2, 0) (8, 1) (1, 2) (3, 2) (6, 1) (8, 6) (1, 8) (0, 3)

Fig. 4. The Deadlocks Matrix for the sample problem.

 Consequently, Rough Evacuation Priorities of robots can
be decided by sorting the first elements of the sum in
descending order, and Rough Occupation Priorities of robots
can be decided by sorting the second elements of the sum in
ascending order. If two or more robots have equal sum of
elements, then they have equal motion priorities. For our
example, the Evacuation Priorities (EP) and Occupation
Priorities (OP) of the robots are worked out as below:

{EP4, EP8} > EP7 > EP2 > EP6 > EP3 > {EP9, EP5, EP1} > EP10
{OP2, OP3} > {OP1, OP4, OP7} > {OP5, OP6} > OP10 > OP8 > OP9

 It should be noted that Rough Prioritization may fail to
provide a comprehensive prioritization since it does not
consider all decisive factors. Thus, further refinements are
needed to finalize the motion priorities.

B. Exact Motion Prioritization

 In order to obtain a finalized and exact motion priority
scheme for the robots, both their start and goal locations and
deviation classes must be taken into consideration. Table VII
presents a number of simple rules for setting priorities. The first
3 rules are based on the fact that robots with lower Levels of
starts (goals) are closer to the ‘center’ (i.e. Origin) of the tree,
and so must evacuate as early as (occupy as late as) possible.
The remaining rules are deduced directly from Table I.

TABLE VII
RULES FOR DETERMINING THE MOTION PRIORITIES OF ROBOTS

Rule Condition Priority

1 if l(si) > l(sj) and sj ∈ Path(O, si), then EPj > EPi

2 if l(gi) > l(gj) and gj ∈ Path(O, gi), then OPi > OPj

3 if l(si) > l(gj) and gj ∈ Path(O, si), then EPi > OPj

4 if ri = DR, rj = NDR, and Deadlock Case = 1, then EPi > EPj

5 if ri = DR, rj = NDR, and Deadlock Case = 1, then OPj > OPi

6 if ri = DR, rj = NDR, and Deadlock Case = 2 to 7, then EPi > EPj

7 if ri = DR, rj = NDR, and Deadlock Case = 2 to 7, then OPj > OPi

 Based on these rules the Evacuation and Occupying
Priorities for the sample problem are further refined and
finalized in Table VIII. As can be seen in the final priorities
scheme, some robots may still have equal motion priorities

(included in braces). This is because those robots are not
involved in a deadlock. Also, note that some priorities
obtained in Rough Prioritization may change after Exact
Prioritization, as for EP5 and EP10.

TABLE VIII
EXACT MOTION PRIORITIES FOR THE SAMPLE PROBLEM

Type Rule Priorities

EP
1

EP8>EP2>EP5; EP8>EP2>EP3>EP10;
EP8>EP1; EP8>EP4>EP7>EP6>EP9;

4 EP8>EP1; EP8>EP2; EP8>EP10;
6 EP4>EP1; EP9>EP1; EP7>EP2; EP9>EP10

OP
2

OP5>OP9; OP3>OP9; OP1>OP10>OP8>OP9;
OP4>OP9; OP2>OP8>OP9; OP7>OP6>OP9;

5 OP1>OP8; OP10>OP8; OP2>OP8;
7 OP1>OP4; OP1>OP9; OP2>OP7; OP10>OP9;

EP – OP 3
EP9>OP1; EP6>OP8; EP7>OP9; EP3>OP9;
EP1>OP4; EP5>OP7; EP10>OP1; EP1>OP9;

FINAL PRIORITY SCHEME

EP8 > EP4 > EP7 > EP2 > EP6 > EP3 > EP9 > EP1 > EP10 > EP5

{OP2, OP3} > {OP1, OP4, OP7} > {OP5, OP6} > OP10 > OP8 > OP9

V. DETERMINING TEMPORARY STATIONS

 In this phase the vertices on which the deviating robots
should temporarily reside are determined. For this purpose, two
approaches can be adopted: (1) using the tree’s existing
vertices, or, (2) inserting new vertices into the tree.
 For the first approach, the temporary stations must be
selected such that the deviation distance is kept minimal, and
the station should not intercept any NDR which will move later.
 The second approach requires that the original C-space is
wide enough near the insertion point to permit such an
expansion. Also, to keep the graph’s size as small as possible,
these additional vertices should be inserted carefully and
strategically so that the resulting tree is minimal in both size
and required robotic moves. Vertices on which the new
vertices must be inserted are called Receiving Vertices (RV).
Depending on the class of the robots appeared in a deadlock
situation, the new vertices are inserted based on either path
priorities, or motion priorities of robots.

A. Vertex Insertion Based on Path Priorities

 In resolving a deadlock situation where a DR and an NDR
are in conflict, a new vertex should be annexed to the DR’s path
to let it deviate. Table IX presents some rules developed based
on Table I and simple logic to identify Receiving Vertices.

TABLE IX
DETERMINING RECEIVING VERTICES BASED ON PATH PRIORITIES

Case Condition Receiving vertices

1 only ri is DR all in SPi

2
only ri is DR all in SPi
only rj is DR {SPi ∩ SPj} except {si, gi}

3
only ri is DR SPi except si
only rj is DR {SPi ∩ SPj} except {si, gi}

4
only ri is DR SPi except gi
only rj is DR {SPi ∩ SPj} except {si, gi}

5
only ri is DR SPi except {si, gi}
only rj is DR SPj except {sj, gj}

6
only ri is DR {SPi ∩ SPj} except gj

only rj is DR {SPi ∩ SPj} except gi

7
only ri is DR {SPi ∩ SPj} except sj
only rj is DR {SPi ∩ SPj} except si

3608

B. Vertex Insertion Based on Motion Priorities

 In a deadlock situation where two DRs are involved, a new
vertex must be inserted for each robot to let it deviate. Based
on the order of deviation, there can be different Receiving
Vertices for each robot. The first new vertex is inserted some-
where on the path of the first deviating robot, and the location
of the second new vertex is afterwards decided with respect to
the first new vertex. Receiving Vertices are determined by
using the Exact Evacuation Priorities of the robots and based
on the type of deadlocks, as described in Table X.
 The set of RVs for vertex insertion in the example problem
are calculated in Table XI. Note that a new vertex is inserted
on only one of the Receiving Vertices of each DR, depending
on the availability of sufficient free space around (see Fig. 3).

TABLE X
DETERMINING RECEIVING VERTICES BASED ON MOTION PRIORITIES

Case Condition Receiving Vertices on SPi Receiving Vertices on SPj

1
EPi > EPj all all

EPj > EPi all all except Path(si, gj)

2
EPi > EPj all all
EPj > EPi all all except Path(si, gj)

3
EPi > EPj all {SPi ∩ SPj} except gi
EPj > EPi all except si all except gj

4
EPi > EPj all except gi all

EPj > EPi all {SPi ∩ SPj} except si

5
EPi > EPj all except gi all except sj
EPj > EPi all except si all except gj

6
EPi > EPj all {SPi ∩ SPj} except gi
EPj > EPi {SPi ∩ SPj} except gi all

7
EPi > EPj {SPi ∩ SPj} except sj all
EPj > EPi all {SPi ∩ SPj} except si

TABLE XI
IDENTIFYING THE RECEIVING VERTICES FOR THE SAMPLE PROBLEM

Robots Deadlock Case Deviating Robot Receiving Vertices

{r1, r4} 4 r4 RV(r4) = {A, C}
{r1, r8} 1 r8 RV(r8) = {A, C, E}
{r1, r9} 3 r9 RV(r9) = {G, E, C, A}
{r2, r7} 7 r7 RV(r7) = {A, C, E}
{r2, r8} 1 r8 RV(r8) = {A, C, E}
{r8, r10} 1 r8 RV(r8) = {A, C, E}
{r9, r10} 6 r9 RV(r9) = {A, C, E}

{r4, r8} 7
r4 and r8

EP8 > EP4
RV(r8) = {A}
RV(r4) = {A, C, B}

{r6, r8} 2
r6 and r8

EP8 > EP6
RV(r8) = {A, C, E}
RV(r6) = {G, E, C, A, I, L}

{r7, r8} 4
r7 and r8

EP8 > EP7
RV(r8) = {A, C}
RV(r7) = {E, C, A, I, L, M}

{r8, r9} 3
r9 and r8

EP8 > EP9

RV(r8) = {A, C, E}
RV(r9) = {A, C}

FINAL DECISION
RV(r4) = {A, C} ∩ {A, C, B} = {A, C}, RV(r6) = {G, E, C, A, I, L},
RV(r7) = {A, C, E} ∩ { E, C, A, I, L, M} = {A, C, E},
RV(r8) = {A, C, E} ∩ {A, C} ∩ {A} = {A},
RV(r9) = {G, E, C, A} ∩ {A, C, E} ∩ {A, C} = {A, C}.

C. Generation of the Final Plan

 After deciding the motion priorities and Receiving Vertices,
the final Plan (Table XII) can now be generated according to
this procedure: (1) Move the robots in order of their Evacuation
Priorities (DRs to their RVs and NDRs to goals), and (2) Move
DRs to their goals in order of their Occupation Priorities. The
total number of moves in the Plan can be directly calculated by:

1
2 DR 50 2 5 10 50

m

i
i

C SP m
=

= + − = + × − = .

TABLE XII
THE FINAL PLAN OF ROBOTS MOTIONS FOR THE SAMPLE PROBLEM

r8:{A→A1}; r4:{C→A→A2}; r7:{E→C→C1}; r2:{ I→A→C→E→F };
r6:{G→E→C→A→I→I1}; r3:{J→I→A→C→D}; r9:{H→G→E→C→C2};
r1:{B→A→C→E→G→ H}; r10:{K→J→I→A→C→E→G};
r5:{M→L→I→J}; r7:{C1→C→A→I→L→M}; r4:{A2→A→B};
r6:{I1→I→L}; r8:{A1→A→C→E}; r9:{C2→C→A};

VI. DISCUSSION AND CONCLUSION

 In this paper a new decoupled algorithm is developed for
solving multi robot motion planning problems. After that all m
robots are checked pairwise for probable deadlocks in O(m2)
time, the deviating class of the robots are identified, and their
Path and Motion Priorities are determined through rough and
exact levels, all in linear time. The tree can then be expanded
to minimize the moves of deviating robots. The final Plan is
then generated based on Evacuation and Occupation priorities.
 To evaluate the efficacy of the presented method, 26
problems on trees with different number of vertices and robots
were designed and solved, starting from 3 robots on 6 vertices
to 15 robots on 18 vertices. Comparisons in Fig. 5 show that
the presented prioritization method together with inserting
new vertices (the lower curve) produced solutions with fewer
moves than optimal solutions on original (not appended) trees.

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Fig. 5. Number of moves for the 26 test problems by both methods.

REFERENCES
[1] G. Calinescu, A. Dumitrescu and J. Pach, “Reconfigurations in graphs and

grids,” Springer Lecture Notes in Comp. Sci., Vol. 3887, 2006, pp. 262-273.
[2] C. Belta and R.V. Kumar, “Motion generation for groups of robots: a

centralized, geometric approach,” in Proc. ASME DETC, Montreal, 2002.
[3] M. Saha, P. Isto, “Multi-robot motion planning by incremental

coordination,” in Proc. IEEE IROS, Beijing, pp. 5960-5963, 2006.
[4] J. van den Berg and M. Overmars, “Prioritized motion planning for

multiple robots,” in Proc. IEEE IROS, Edmonton, pp. 2217-2222, 2005.
[5] S.J. Buckley, “Fast motion planning for multiple moving robots,” in Proc.

IEEE Int. Conf. Rob. and Autom., Scottsdale, AZ, pp. 322-326, 1989.
[6] C. Ferrari, E. Pagello, J. Ota, and T. Arai, “Multi robot motion coordination in

space and time,” Rob. and Auton. Syst., Vol. 25, 1998, pp. 219-229.
[7] M. Bennewitz, W. Burgard and S. Thrun, “Finding and optimizing solvable

priority schemes for decoupled path planning techniques for teams of mobile
robots,” Rob. and Auton. Syst., Vol. 41, No. 2, 2002, pp. 89-99.

[8] R. Regele and P. Levi, “Cooperative multi-robot path planning by heuristic
priority adjustment,” in Proc. IEEE IROS, Beijing, pp. 5954-5959, 2006.

[9] G.A.S. Pereira, A.K. Das, R.V. Kumar, and M.F.M. Campos, “Decentralized
motion planning for multiple robots subject to sensing and communication
constraints,” in Proc. 2nd Int. Workshop on Multi-Rob. Sys. 2003, pp. 267-278.

[10] M.R.K. Ryan, “Exploiting subgraph structure in multi-robot path
planning”, J. Artificial Intell. Research, Vol. 31, pp. 497-542, 2008.

[11] S. Onn, and E. Sperber, “Social network coordination and graph routing,”
Networks, Vol. 41, No. 1, 2003, pp. 44-50.

[12] M. Peasgood, J. McPhee, and C.M. Clark. “Complete and scalable
multi-robot planning in tunnel environments,” in Proc. 1st IFAC
Workshop on Multi-Vehicle Systems, Oct. 2006.

[13] E. Masehian and A.H. Nejad, “Solvability of multi robot motion planning
problems on trees,” in Proc. IEEE IROS, St. Louis, USA, 2009.

3609

