
  

 Abstract – In this paper, the multi robot motion planning prob-
lem is solved through a decoupled approach, where a new algo-
rithm for prioritizing the robots moves is developed. Assuming 
that the workspace is mapped into a tree graph and the initial and 
final configurations of robots are known, the robots’ shortest start-
to-goal paths on the tree are calculated independently. Then, a new 
rule-based prioritization scheme is applied in two phases: (a) Path 
Prioritization, which determines which robot can directly move 
along its shortest path and which robot should deviate from it, and 
(b) Motion Prioritization, which decides the order of robots’ se-
quential moves. Furthermore, an algorithm is presented for mini-
mizing the number of moves by adding extra vertices to the tree.  

I. INTRODUCTION 

he Multi Robot Motion Planning (MRMP) problem is gain-
ing increased attention as many real-world complex ap-

plications require collective intelligent behaviors exhibited by 
multiple robots. The basic MRMP problem is to find start-to-
goal paths for a number of robots moving in a space with 
obstacles, such that they do not collide with obstacles or each 
other. Space is the most limiting constraint in a typical MRMP 
problem: often, because of lack of sufficient space around 
robots, they cannot reach their goals without obstructing each 
other’s way, causing deadlocks. Deadlocks are situations where 
two or more robots intercept each other’s motions and are 
prevented from reaching their goals. This happens generally in 
narrow passageways where robots cannot pass by each other. 

A. Related Work 

 The MRMP problem is proved to be NP-hard [1], and is 
solved by two general approaches: Centralized planning and 
Decoupled planning. In the Centralized planning, all m 
robots in the scene are regarded as a single multi-part robot 
with m independent bodies that are not necessarily connected 
to each other. This (virtual) compound robot has a degree of 
freedom equal to the sum of the degrees of freedom of all 
part-robots. Thus, collisions of ri robots (i = 1, …, m) is 
interpreted as self-collisions of the compound robot. This 
approach, however, suffers from high time and memory 
requirements for large degrees of freedom [2]. 
 The Decoupled approach first plans the motion of each 
robot individually while ignoring the existence of the other 
robots, and then tries to combine the resulting paths by 
resolving possible collisions between the paths. Decoupled 
planning can handle problems with large number of robots 
and is implemented more extensively in the literature. 
Collision resolution is performed through two techniques: 
Velocity Tuning, and Prioritizing. In the Velocity Tuning 
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technique, each robot either stops or decelerates its motion to 
avoid colliding with other robots [3]. The Prioritization 
technique assigns priorities to each robot and computes the 
paths of the robots based on the order of these priorities [4]. 
 Many different approaches are proposed for assigning 
priorities to robots: Buckley’s work is among the first ones, in 
which through applying a heuristic algorithm, higher priorities 
are assigned to robots that can move to their goals directly [5]. 
In [6] an approach is described that uses fixed order of priority 
and chooses random alternative routes for robots with lower 
priorities. A randomized hill-climbing search is used in [7] to 
assign the priorities of robots while applying A* search to 
compute the optimal path of each robot. 
 In [8] a fully distributed cooperative path planning is done 
on local sections of the time-space configuration space, 
where dynamic conflicts between the robots are solved by 
the heuristic adjustment of priority values. A decentralized 
motion control system of a team of mobile robots is 
developed in [9], which leads each robot to its individual 
goal by online modification of pre-computed navigation 
functions in order to satisfy formation constraints. The 
method handles a limited number of robots, and is tested 
only on sparsely located circular obstacles. 
 Although methods dealing with continuous spaces have 
some advantages, but they suffer from increased computational 
burden for high number of robots. To overcome this, the 
continuous Configuration space has been discretized into a 
graph or tree in a number of works. This is done meant for 
downsizing the C-space and implicitly modeling workspace 
obstacles (by locating graph nodes and arcs inside the free C-
space), and thus reducing computations. Another advantage of 
discretizing the space is the possibility of applying techniques 
such as sequencing for motion planning. 
 In [10] the possibility of reaching destinations of connected 
subgraphs is studied, by simplifying the MRMP between 
some predefined subgraphs named stacks, halls, rings, and 
cliques. In [11] the coordination problem of multiple robots 
on a network is solved by introducing a social law on it 
which all the robots should obey. The social law is derived 
from a routing of the graph underlying the network 
 A multi-phase approach to the planning problem by using 
a topological graph and spanning tree representation of a 
tunnel or corridor environment is presented in [12], which 
plans trajectories for a number of robots proportionate to the 
number of leaves of the spanning tree. However, a drawback 
of the method is that the construction of the spanning tree is 
time consuming since it is not unique, and with selecting 
different trees, different number of robots would be dealt 
with. Also, the aggregate path length is considerably long 
compared to a standard decoupled method. 
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B. The Current Work 

 When the workspace is mapped into a graph (such as the 
Voronoi diagram), the robots are required to move only along 
predefined routes (i.e. graph edges), implicitly avoiding the 
obstacles existing in the workspace. The MRMP on graphs 
has real-world applications in maze-like environments, indoor 
rooms or offices connected with corridors, AGV routes in 
plants, multi-story parking lots, railway networks, etc. 
 Graphs can be categorized into two general classes: cyclic, 
and acyclic: cyclic graphs have loops and provide alternative 
ways to access a specific node, and therefore are more 
convenient for planning the motions of multiple robots. On 
the other hand, acyclic graphs (i.e. trees) do not have any 
loops, and the shortest path between every pair of nodes is 
unique. As such, trees provide fewer options and less 
maneuverability for the robots, and are much harder to solve 
than cyclic graphs. Actually, MRMP on trees can serve as a 
basis for MRMP on cyclic graphs, and the solution of an 
MRMP on a tree is also valid for the MRMP problem on a 
cyclic graph which is the superset of that tree. In view of 
this, and considering its NP-hardness, we found the MRMP 
problem on trees a worthwhile and challenging problem to 
be solved efficiently. 
 A related issue to the MRMP is that what topology a tree 
should have in order to be solvable. A Solvable Tree is a tree 
that allows the transition of any initial configuration of 
robots to a final configuration via their moves on arcs. The 
topologies of solvable trees are proposed in [13]. The 
solvability analysis of a problem can determine if the given 
MRMP problem has a solution, without explicitly solving it. 
 By designing the current decoupled method we intended to 
overcome the scalability problem of non-graph-based MRMP 
methods such as [8] and [9] (which hardly deal with more that 
10 robots), as well as improving the collective path length of 
graph-based methods like [11] and [12] (which plan many 
redundant moves and take long time). In fact, as far as we 
tested the proposed method, it can solve MRMP problems 
with hundreds of robots in quite reasonable times. 
 The next Section of the paper provides some definitions 
and assumptions of the algorithm and briefly describes its 
steps. Section III and IV explain in detail the procedures of 
path prioritization and motion prioritization, respectively. In 
Section V the tree is enhanced to minimize the number of 
moves required for deadlocks resolution. Discussions and 
conclusions are presented in Section VI. 

II. ALGORITHM ASSUMPTIONS AND OVERVIEW 

 Before proceeding, some terms and symbols are introduced:  
Let T = (V, E) be a tree, with the set of vertices V and set of 
edges E. the number of vertices connected to the vertex v is 
called its Degree, d(v). The Leaves of a tree, L(T), are vertices 
with d(v) = 1, and the Internal Vertices of a tree, I(T), are 
vertices with d(v) > 1. The set of vertices connecting v and u 
(inclusive) is shown by Path(v, u). 
 The Origin O ∈ {v | d(v) ≥ d(u), ∀u∈V} is defined as the 
vertex with maximum degree in the Tree. If not unique, it is 
selected such that the maximum Level of all vertices is kept 
minimal. The Level of a vertex l(v) is the minimal distance of 

vertex v from O (i.e. Dist(v, O)). The tree can be searched in a 
linear time complexity to decide its Origin. The origin is taken 
as the Root of the tree, and the Levels of all vertices are 
determined in relation to the Origin. 
 si and gi are the start and goal of robot ri, and SPi is the 
sequence of vertices on the shortest path of ri from si to gi in 
the Tree. Finally, a Plan is the sequences of robots’ motion on 
a tree, from initial to final configuration. 
 The presented algorithm is based on some assumptions: 
1. The free space is represented by a tree, which is finite, 

connected, planar, and undirected. 
2. Initial and final locations of all robots lie on the tree and 

are known. 
3. All robots share the same tree and can only reside on 

vertices of the tree, and can only move along edges of the 
tree. Each vertex can accommodate only one robot at a 
time, and only one robot can pass along an edge at a time. 

4. A robot at vertex v can move to its neighboring vertex u 
only if u is unoccupied; i.e. moves are sequentially. Robots 
occupying other vertices in the graph do not affect this 
move. Nevertheless, after finalizing the Plan, this 
assumption can be relaxed by advancing as much as 
possible the motions of robots which do not form 
deadlocks with already moved robots, thus introducing 
concurrency of motions. 

A. Overview 

 As stated earlier, deadlocks in the decoupled planning 
approach can be resolved by introducing a priority scheme, 
which determines the order in which the motions of the robots 
are planned. In our method, the priority scheme is 
implemented hierarchically through two steps: prioritization 
of robots paths, and prioritization of robots motions. This is 
done since these two types are different in nature: a robot with 
priority of path planning has the right to move 
straightforwardly toward its goal (i.e. travel along its shortest 
path), whereas a robot with priority of motion planning has the 
right to move earlier (either to its goal or a temporary node). 
 For instance, the robot 1 in Fig. 1(a) (located at S1) and 
robot 2 in Fig. 1(b) (located at S2) have higher path planning 
priorities. Yet, in both figures, the motion priority is given to 
the robot 1. However, in a problem like Fig. 1(c), the path 
planning priorities of both robots are equal, but the motion 
priority of robot 2 is higher than that of robot 1. 

 The outline of the algorithm is as follows: 
Step 1: For each robot the shortest start-to-goal paths are 

calculated independently. Based on robots’ starts and goals, 
they are categorized into two classes:  robots that can move 

 
(a)        (b)         (c) 

Fig. 1. Path and Motion priorities in a sample problem (from [7]). 
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along their Shortest Paths, and robots that must 
(temporarily) deviate from their Shortest Paths in order to 
let the robots of the first class reach their goals first. 

Step 2: The robot’s motions are then prioritized through two 
phases: Rough, and Exact Motion Prioritization. 

Step 3: Aiming to minimize the robots’ total traversed distance 
and resolve possible deadlocks, the temporary stations of 
deviating robots are determined. 

Step 4: The final Plan is generated based on the previous steps. 

III. PATH PRIORITIZATION 

 In the presented algorithm, shortest start-to-goal paths are 
calculated independently for each robot. If some paths 
intersect at certain vertices, then some robots may block 
other robots’ motions to their goals, which will lead to 
probable collisions. Different cases of blockings (i.e. 
deadlocks) can occur for two robots moving at ‘same’ or 
‘opposite’ directions in a tree, as illustrated in Table I.  
 The relative direction of each pair of robots is determined 
based on the order of vertices visited by each robot. For 
instance, in Case 1, SP1= {1→2→3→4→5} and SP2 = {2→ 
3→4}, and so SP2 ⊂ SP1. Or in Case 3, SP1= {1→2→3→ 
4→5} and SP2 = {5→4→3→2}, and so SP2 ⊂ ¬SP1 ∧ 
s2 = g1. The symbol ‘¬’ indicates the path in reverse order. 

TABLE I 
DEADLOCK SITUATIONS FOR TWO ROBOTS 

Case Direction Type of deadlock situation 

1 same 

2 opposite 
 

3 opposite 
 

4 opposite 
 

5 opposite 
 

6 opposite 
 

7 opposite 

 Prioritization of paths determines which robot has the 
privilege to move to its goal without deviating from its 
Shortest Path, and which robot should sacrifice the local 
minimality of its motion for the sake of minimizing the total 
moves in the Plan. In other words, in path prioritization, a 
class of robots called Non-Deviating Robots (NDRs) are 
decided to follow their Shortest Path, while another class 
called Deviating Robots (DRs) have to plan their paths by 
taking into account the already planned paths of NDRs. DRs 
have higher priorities for moving than NDRs: that is, only 
DRs are deviated from their Shortest Paths and make enough 
room for NDRs to move straightforwardly to their goals. 

 The decision to classify a robot as Deviating or Non-
Deviating is based on its initial (start) and final (goal) 
configurations. A robot can occupy either a Leaf or an Internal 
Vertex as its start and goal positions. Four different situations 
may happen regarding the locations of starts and goals of a 
pair of robots: (1) a robot’s start might be the goal of any other 
robot (case S=G), (2) a robot’s goal might be the start of any 
other robot (case G=S), (3) a robots’ both start and goal are 
the goal and the start of one (or two) other robot(s) (case 
S≡G), or (4) none of the above (case S≠G). Based on the type 
of the start and goal vertices of robots (i.e. Leaf or Internal 
Vertex), 16 different states may occur, as indicated in Table II. 

TABLE II 
DIFFERENT STATES FOR A ROBOT’S INITIAL AND FINAL CONFIGURATIONS 

Goal on

Start on 

Internal vertex Leaf 

S=G G=S S≡G S≠G S=G G=S S≡G S≠G 

Internal vertex 1 2 3 4 9 10 11 12 

Leaf 5 6 7 8 13 14 15 16 

 For example, State 6 represents the instance where the start 
of a robot (say ri) is on a Leaf, and its goal is on an Internal 
Vertex, which is itself the start of another robot (say rj). 
 Since Internal Vertices are the only places in the tree where 
robots can shift from a leaf to another, they should be vacant 
as early and as much as possible. Also, robots located on the 
goals of other robots should deviate from their shortest paths, 
regardless of their destination. Conversely, since robots with 
starts on Leaves do not block other robots’ paths (unless the 
Leaf is itself a goal), they need not make extra moves other 
than their shortest paths. By implementing the above intuitive 
principles, the robots can be classified into two general 
classes, DRs and NDRs, as shown in Table III.  

TABLE III 
CLASSES OF ROBOTS CATEGORIZED BASED ON STATES 

Robots in States 1, 2, 4, 5, and 10 are Deviating (DR) 

Robots in States 6, 8, 9, 12, 13, 14, and 16 are Non-Deviating (NDR) 

Robots in States 3, 7, 11, and 15 cannot be determined 

 The States 3, 7, 11 and 15 in the Table II refer to the case 
S≡G, where the path planning priorities of involved robots 
are equal, and so the robots’ classes (i.e. DR or NDR) cannot 
be determined. Instead, their class should be decided with 
respect to the already determined classes of other robots, and 
regarding their created deadlock situations, as indicated in 
Table IV (compare to Table I). 

TABLE IV 
CLASSES OF ROBOTS CLASSIFIED BASED ON DEADLOCK SITUATIONS 

Case Deadlock situation The Deviating Robot 

1 SPi⊂ SPj ri 

2 SPi⊂ ¬SPj ∧ si ≠ gj ∧ sj ≠ gi 

ri if rj is NDR 
or 

rj if ri is NDR 

3 SPi⊂ ¬SPj ∧ si = gj 
4 SPi ⊂ ¬SPj ∧ sj = gi 

5 SPi = SPj ∧ si = gj ∧ sj = gi 
6 gi∈SPj ∧ gj∈SPi 
7 SPi⊄SPj ∧ SPj⊄SPi ∧ si∈SPj ∧ sj∈SPi 
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 The whole process of classifying all robots into DR and NDR 
classes is explained in Fig. 2. Note that since a robot can form 
different deadlock situations with different robots, its class may 
be simultaneously set as both DR and NDR. This contradiction 
is settled by marking the robot as DR (line 16 in Fig. 2). 
 The process of classifying robots is illustrated through a 
sample problem, with 10 robots located on a 13-vertex tree 
(with A as Origin), as depicted in Fig. 3. Dotted vertices will 
be discussed later. Considering the shortest start-to-goal paths 
of robots as shown in Table V, the classes of some robots can 
be decided according to lines 3 and 4 of the pseudocode. 

 
Fig. 2. Pseudocode for classifying robots into DRs and NDRs. 

 

Fig. 3. The initial configuration of 10 robots in a sample workspace. 

 Further classification of undecided robots is possible by 
comparing them with the already classified robots (lines 5 to 
7), as shown in Table VI. Robot r5 still remains undecided, 
and so is compared again for possible deadlocks with the 
newly-classified robots r1, r7, r8, and r9 (lines 8 and 9). As a 
result, it is understood that r5 forms deadlocks with none of 
them, and so its class is determined as NDR (lines 11 and 12).  

TABLE V 
SHORTEST PATHS, STATES AND CLASSES OF ROBOTS IN FIG. 3 

Robot Shortest Path State Class 
r1 {B→A→C→E→G→H} 15 undecided 
r2 {I→A→C→E→F} 12 NDR 
r3 {J→I→A→C→D} 9 NDR 
r4 {C→A→B} 10 DR 
r5 {M→L→I→J} 7 undecided 
r6 {G→E→C→A→I→L} 1 DR 
r7 {E→C→A→I→L→M} 11 undecided
r8 {A→C→E} 3 undecided
r9 {H→G→E→C→A} 7 undecided
r10 {K→J→I→A→C→E→G} 6 NDR 

TABLE VI 
DETERMINING THE CLASS OF ROBOTS REMAINED UNDECIDED IN TABLE V 

Robot Compared with Deadlock situation Case Decision 

r1 r4 SP4 ⊂ ¬SP1 ∧ s1=g4 4 r1 is NDR 
r5 r2, r3, r4, r6, r10 none − undecided 
r7 r2 s7 ∈ SP2 ∧ s2 ∈ SP7 7 r7 is DR 

r8 

r2 SP8 ⊂ SP2 1 r8 is DR 
r4 s8 ∈ SP4 ∧ s4 ∈ SP8 7 r8 is NDR 
r6 SP8⊂ ¬SP6 ∧ s8=g6 ∧ s6=g8 2 r8 is NDR 
r10 SP8 ⊂ SP10 1 r8 is DR 

r9 r10 g10 ∈ SP9 ∧ g9 ∈ SP10 6 r9 is DR 

 Also, robot r8 is marked as both DR and NDR due to 
comparisons with different robots, and therefore is classified 
as a DR, according to the lines 15 and 16. 

IV. MOTION PRIORITIZATION  

 The deadlock resolution process is generally (but not 
necessarily) performed in three stages: (1) a DR moves away 
(deviates) from its Shortest Path and occupies a newly-
inserted vertex, (2) an NDR moves from its start to goal 
directly, and (3) the DR returns to its Shortest Path and 
reaches its goal vertex. The first stage above is called 
Evacuation stage, and the third is called Occupation stage. 
The second stage simultaneously incorporates both 
Evacuation and Occupation stages. 
 For any two robots ri and rj, the right given to ri to 
evacuate its start earlier than rj is called its Evacuation 
Priority and is denoted by EPi > EPj. Alternatively, the right 
given to ri to occupy its goal earlier than rj is called its 
Occupation Priority and is denoted by OPi > OPj. 
 Regarding the mutual impacts of multiple DRs and NDRs, 
setting their motion priorities is a very complex task. In this 
section, a new Motion Prioritization procedure is developed 
consisted of two levels: Rough, and Exact. In Rough Motion 
Prioritization, a general and tentative motion priority scheme 
is produced by identifying the number of deadlock situations 
a robot is involved at its initial and final configurations. On 
the other hand, Exact Motion Prioritization determines the 
order of robots in evacuating their starts and occupying their 
goals with regard to their locations in the Tree. 

A. Rough Motion Prioritization 

 For Rough Motion Prioritization of robots, a binary m×m 
matrix called Deadlocks Matrix is constructed to summarize 
all deadlock situations that robots create due to their locations 
relative to the Shortest Paths of other robots. The rows of this 
matrix refer to the Shortest Paths of robots, whereas the 
columns point to robots. Each cell in the i-th row and j-th 
column of the Deadlocks Matrix is an ordered pair of 0’s or 
1’s: A ‘1’ as the first element of the pair indicates that the start 
of the robot j is located on the Shortest Path of robot i. 
Alternately, a ‘1’ as the second element indicates that the goal 
of the robot j is located on the Shortest Path of robot i. Non-
deadlock instances are shown by 0’s. The Deadlocks Matrix 
for the sample problem is formed as Fig. 4. 
 By summing the first and second elements of the cells in 
column j, the number of deadlocks respectively created by 
the start and goal of robot j with other robots is calculated. A 
large value in the first element of the sum implies that the 

INPUT (a solvable tree for given initial and final configurations of robots) 
1 Calculate the Shortest Paths of all robots on the tree 
2 Do until the classes (DR or NDR) of all robots are decided 
3  Determine the state of each robot (based on Table III) 
4  Determine the class of each robot (based on Table IV) 
5  For robots with undecided classes do 
6   Identify their deadlock situations with robots classified in line 4 
7   Determine the class of undecided robots (based on Table V) 
8   For robots with still undecided classes do 
9    Determine their class with respect to robots classified in line 7 
10   end 
11   If the class of a robot is still undecided then 
12    Categorize its class as a Non-Deviating Robot (NDR) 
13   end 
14  end 
15  If the class of a robot is marked as both DR and NDR then 
16   Categorize its class as a Deviating Robot (DR) 
17  end 
18 end 
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start position of the robot j blocks the motions of many 
robots and so must be evacuated earlier. On the other hand, a 
large value in the second element of the sum implies that the 
goal position of the robot j is on the path of many robots and 
so must be occupied later. 

  s1, g1 s2, g2 s3, g3 s4, g4 s5, g5 s6, g6 s7, g7 s8, g8 s9, g9 s10, g10

SP1  0, 0 0, 0 0, 0 1, 1 0, 0 1, 0 1, 0 1, 1 1, 1 0, 1 
SP2  0, 0 0, 0 0, 0 1, 0 0, 0 0, 0 1, 0 1, 1 0, 1 0, 0 
SP3  0, 0 1, 0 0, 0 1, 0 0, 1 0, 0 0, 0 1, 0 0, 1 0, 0 
SP4  1, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 1, 0 0, 1 0, 0 
SP5  0, 0 1, 0 1, 0 0, 0 0, 0 0, 1 0, 1 0, 0 0, 0 0, 0 
SP6  0, 0 1, 0 0, 0 1, 0 0, 0 0, 0 1, 0 1, 1 0, 1 0, 1 
SP7  0, 0 1, 0 0, 0 1, 0 1, 0 0, 1 0, 0 1, 1 0, 1 0, 0 
SP8  0, 0 0, 0 0, 0 1, 0 0, 0 0, 0 1, 0 0, 0 0, 1 0, 0 
SP9  0, 1 0, 0 0, 0 1, 0 0, 0 1, 0 1, 0 1, 1 0, 0 0, 1 
SP10  0, 0 1, 0 1, 0 1, 0 0, 1 1, 0 1, 0 1, 1 0, 1 0, 0 
Sum (1, 1) (5, 0) (2, 0) (8, 1) (1, 2) (3, 2) (6, 1) (8, 6) (1, 8) (0, 3) 

Fig. 4. The Deadlocks Matrix for the sample problem. 

 Consequently, Rough Evacuation Priorities of robots can 
be decided by sorting the first elements of the sum in 
descending order, and Rough Occupation Priorities of robots 
can be decided by sorting the second elements of the sum in 
ascending order. If two or more robots have equal sum of 
elements, then they have equal motion priorities. For our 
example, the Evacuation Priorities (EP) and Occupation 
Priorities (OP) of the robots are worked out as below: 

{EP4, EP8} > EP7 > EP2 > EP6 > EP3 > {EP9, EP5, EP1} > EP10 
{OP2, OP3} > {OP1, OP4, OP7} > {OP5, OP6} > OP10 > OP8 > OP9 

 It should be noted that Rough Prioritization may fail to 
provide a comprehensive prioritization since it does not 
consider all decisive factors. Thus, further refinements are 
needed to finalize the motion priorities. 

B. Exact Motion Prioritization 

 In order to obtain a finalized and exact motion priority 
scheme for the robots, both their start and goal locations and 
deviation classes must be taken into consideration. Table VII 
presents a number of simple rules for setting priorities. The first 
3 rules are based on the fact that robots with lower Levels of 
starts (goals) are closer to the ‘center’ (i.e. Origin) of the tree, 
and so must evacuate as early as (occupy as late as) possible. 
The remaining rules are deduced directly from Table I. 

TABLE VII 
RULES FOR DETERMINING THE MOTION PRIORITIES OF ROBOTS 

Rule Condition Priority 

1 if  l(si) > l(sj)   and sj ∈ Path(O, si), then  EPj > EPi 

2 if  l(gi) > l(gj)   and gj ∈ Path(O, gi), then  OPi > OPj 

3 if  l(si) > l(gj)   and gj ∈ Path(O, si), then  EPi > OPj 

4 if ri = DR,  rj = NDR, and Deadlock Case = 1, then  EPi > EPj 

5 if ri = DR,  rj = NDR, and Deadlock Case = 1, then  OPj > OPi 

6 if ri = DR,  rj = NDR, and Deadlock Case = 2 to 7, then  EPi > EPj 

7 if ri = DR,  rj = NDR, and Deadlock Case = 2 to 7, then  OPj > OPi 

 Based on these rules the Evacuation and Occupying 
Priorities for the sample problem are further refined and 
finalized in Table VIII. As can be seen in the final priorities 
scheme, some robots may still have equal motion priorities 

(included in braces). This is because those robots are not 
involved in a deadlock. Also, note that some priorities 
obtained in Rough Prioritization may change after Exact 
Prioritization, as for EP5 and EP10. 

TABLE VIII 
EXACT MOTION PRIORITIES FOR THE SAMPLE PROBLEM 

Type Rule Priorities 

EP 
1 

EP8>EP2>EP5;    EP8>EP2>EP3>EP10; 
EP8>EP1; EP8>EP4>EP7>EP6>EP9; 

4 EP8>EP1; EP8>EP2; EP8>EP10; 
6 EP4>EP1; EP9>EP1; EP7>EP2; EP9>EP10 

OP 
2 

OP5>OP9; OP3>OP9; OP1>OP10>OP8>OP9; 
OP4>OP9; OP2>OP8>OP9;  OP7>OP6>OP9; 

5 OP1>OP8; OP10>OP8; OP2>OP8; 
7 OP1>OP4; OP1>OP9; OP2>OP7; OP10>OP9; 

EP – OP 3 
EP9>OP1; EP6>OP8; EP7>OP9; EP3>OP9; 
EP1>OP4; EP5>OP7; EP10>OP1; EP1>OP9; 

FINAL PRIORITY SCHEME 

EP8 > EP4 > EP7 > EP2 > EP6 > EP3 > EP9 > EP1 > EP10 > EP5 

{OP2, OP3} > {OP1, OP4, OP7} > {OP5, OP6} > OP10 > OP8 > OP9 

V. DETERMINING TEMPORARY STATIONS 

 In this phase the vertices on which the deviating robots 
should temporarily reside are determined. For this purpose, two 
approaches can be adopted: (1) using the tree’s existing 
vertices, or, (2) inserting new vertices into the tree.  
 For the first approach, the temporary stations must be 
selected such that the deviation distance is kept minimal, and 
the station should not intercept any NDR which will move later. 
 The second approach requires that the original C-space is 
wide enough near the insertion point to permit such an 
expansion. Also, to keep the graph’s size as small as possible, 
these additional vertices should be inserted carefully and 
strategically so that the resulting tree is minimal in both size 
and required robotic moves. Vertices on which the new 
vertices must be inserted are called Receiving Vertices (RV). 
Depending on the class of the robots appeared in a deadlock 
situation, the new vertices are inserted based on either path 
priorities, or motion priorities of robots. 

A. Vertex Insertion Based on Path Priorities 

 In resolving a deadlock situation where a DR and an NDR 
are in conflict, a new vertex should be annexed to the DR’s path 
to let it deviate. Table IX presents some rules developed based 
on Table I and simple logic to identify Receiving Vertices. 

TABLE IX 
DETERMINING RECEIVING VERTICES BASED ON PATH PRIORITIES 

Case Condition Receiving vertices 

1 only ri is DR all in SPi 

2 
only ri is DR all in SPi  
only rj is DR {SPi ∩ SPj} except {si, gi} 

3 
only ri is DR SPi except si  
only rj is DR {SPi ∩ SPj} except {si, gi} 

4 
only ri is DR SPi except gi  
only rj is DR {SPi ∩ SPj} except {si, gi} 

5 
only ri is DR SPi except {si, gi}
only rj is DR SPj except {sj, gj} 

6 
only ri is DR {SPi ∩ SPj} except gj

only rj is DR {SPi ∩ SPj} except gi

7 
only ri is DR {SPi ∩ SPj} except sj 
only rj is DR {SPi ∩ SPj} except si
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B. Vertex Insertion Based on Motion Priorities 

 In a deadlock situation where two DRs are involved, a new 
vertex must be inserted for each robot to let it deviate. Based 
on the order of deviation, there can be different Receiving 
Vertices for each robot. The first new vertex is inserted some-
where on the path of the first deviating robot, and the location 
of the second new vertex is afterwards decided with respect to 
the first new vertex. Receiving Vertices are determined by 
using the Exact Evacuation Priorities of the robots and based 
on the type of deadlocks, as described in Table X. 
 The set of RVs for vertex insertion in the example problem 
are calculated in Table XI. Note that a new vertex is inserted 
on only one of the Receiving Vertices of each DR, depending 
on the availability of sufficient free space around (see Fig. 3).  

TABLE X 
DETERMINING RECEIVING VERTICES BASED ON MOTION PRIORITIES 

Case Condition Receiving Vertices on SPi Receiving Vertices on SPj 

1 
EPi > EPj all all 

EPj > EPi all all except Path(si, gj) 

2 
EPi > EPj all all 
EPj > EPi all all except Path(si, gj) 

3 
EPi > EPj all  {SPi ∩ SPj} except gi 
EPj > EPi all except si all except gj 

4 
EPi > EPj all except gi all 

EPj > EPi all {SPi ∩ SPj} except si 

5 
EPi > EPj all except gi all except sj 
EPj > EPi all except si all except gj 

6 
EPi > EPj all {SPi ∩ SPj} except gi 
EPj > EPi {SPi ∩ SPj} except gi all 

7 
EPi > EPj {SPi ∩ SPj} except sj all 
EPj > EPi all {SPi ∩ SPj} except si 

TABLE XI 
IDENTIFYING THE RECEIVING VERTICES FOR THE SAMPLE PROBLEM 

Robots Deadlock Case Deviating Robot Receiving Vertices 

{r1, r4} 4 r4 RV(r4) = {A, C} 
{r1, r8} 1 r8 RV(r8) = {A, C, E} 
{r1, r9} 3 r9 RV(r9) = {G, E, C, A} 
{r2, r7} 7 r7 RV(r7) = {A, C, E} 
{r2, r8} 1 r8 RV(r8) = {A, C, E} 
{r8, r10} 1 r8 RV(r8) = {A, C, E} 
{r9, r10} 6 r9 RV(r9) = {A, C, E} 

{r4, r8} 7 
r4 and r8 

EP8 > EP4 
RV(r8) = {A} 
RV(r4) = {A, C, B} 

{r6, r8} 2 
r6 and r8 

EP8 > EP6 
RV(r8) = {A, C, E} 
RV(r6) = {G, E, C, A, I, L}

{r7, r8} 4 
r7 and r8 

EP8 > EP7 
RV(r8) = {A, C} 
RV(r7) = {E, C, A, I, L, M}

{r8, r9} 3 
r9 and r8 

EP8 > EP9 

RV(r8) = {A, C, E} 
RV(r9) = {A, C} 

FINAL DECISION 
RV(r4) = {A, C} ∩ {A, C, B} = {A, C},   RV(r6) = {G, E, C, A, I, L},
RV(r7) = {A, C, E} ∩ { E, C, A, I, L, M} = {A, C, E}, 
RV(r8) = {A, C, E} ∩ {A, C} ∩ {A} = {A}, 
RV(r9) = {G, E, C, A} ∩ {A, C, E} ∩ {A, C} = {A, C}. 

C. Generation of the Final Plan 

 After deciding the motion priorities and Receiving Vertices, 
the final Plan (Table XII) can now be generated according to 
this procedure: (1) Move the robots in order of their Evacuation 
Priorities (DRs to their RVs and NDRs to goals), and (2) Move 
DRs to their goals in order of their Occupation Priorities. The 
total number of moves in the Plan can be directly calculated by: 

1
2 DR 50 2 5 10 50

m

i
i

C SP m
=

= + − = + × − = . 

TABLE XII 
THE FINAL PLAN OF ROBOTS MOTIONS FOR THE SAMPLE PROBLEM 

r8:{A→A1};      r4:{C→A→A2};      r7:{E→C→C1};     r2:{ I→A→C→E→F }; 
r6:{G→E→C→A→I→I1};  r3:{J→I→A→C→D};  r9:{H→G→E→C→C2}; 
r1:{B→A→C→E→G→ H};      r10:{K→J→I→A→C→E→G}; 
r5:{M→L→I→J};   r7:{C1→C→A→I→L→M};      r4:{A2→A→B};
r6:{I1→I→L};    r8:{A1→A→C→E};        r9:{C2→C→A};

VI. DISCUSSION AND CONCLUSION 

 In this paper a new decoupled algorithm is developed for 
solving multi robot motion planning problems. After that all m 
robots are checked pairwise for probable deadlocks in O(m2) 
time, the deviating class of the robots are identified, and their 
Path and Motion Priorities are determined through rough and 
exact levels, all in linear time. The tree can then be expanded 
to minimize the moves of deviating robots. The final Plan is 
then generated based on Evacuation and Occupation priorities. 
 To evaluate the efficacy of the presented method, 26 
problems on trees with different number of vertices and robots 
were designed and solved, starting from 3 robots on 6 vertices 
to 15 robots on 18 vertices. Comparisons in Fig. 5 show that 
the presented prioritization method together with inserting 
new vertices (the lower curve) produced solutions with fewer 
moves than optimal solutions on original (not appended) trees. 
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Fig. 5. Number of moves for the 26 test problems by both methods. 
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