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Abstract— We propose a 3D obstacle avoidance method for
mobile robots. Besides the robot’s 2D laser range finder, a Time-
of-Flight camera is used to perceive obstacles that are not in the
scan plane of the laser range finder. Existing approaches that
employ Time-of-Flight cameras suffer from the limited field-
of-view of the sensor. To overcome this issue, we mount the
camera on the head of our anthropomorphic robot Dynamaid.
This allows to change the gaze direction through the robot’s
pan-tilt neck and its torso yaw joint.

The proposed obstacle detection method is robust against
kinematic inaccuracies and noise in the range measurements.
The gaze controller takes motion blur effects into account and
controls the gaze depending on the robot’s motion and the
obstacles in its vicinity.

In experiments, we demonstrate that our approach enables
the robot to avoid obstacles that the laser range finder can not
perceive. We also compare our active gaze control strategy with
a fixed gaze orientation.

I. INTRODUCTION

Obstacle avoidance is an elementary capability for au-

tonomous mobile robots to safely navigate in dynamic envi-

ronments. For this task, 2D laser range finders are the most

popular sensors. However, such a sensor provides only a two-

dimensional distance profile of the environment in its scan

plane and hence objects below or above the scan plan can

not be perceived. To overcome this issue, sensor modalities

are required that gain dense three-dimensional measurements

of the environment.

Time-of-Flight (ToF) cameras provide such information.

They are compact, lightweight, solid-state sensors which

measure depth to reflective surfaces at a high frame rate and

are therefore ideally suited for mobile robots. They employ

an array of LEDs that illuminate the environment with

modulated near-infrared light. The reflected light is received

by a CCD/CMOS chip for every pixel in parallel. Depth

information is acquired by measuring the phase shift of the

reflected light. The use of ToF cameras has been studied in

various fields of robotics, also for obstacle avoidance [1], [2].

Main limitations of this sensor are its limited measurement

range, measurement inaccuracies, and its restricted field-of-

view (FoV).

To overcome the sensor’s limited FoV, we propose a

3D obstacle avoidance method that incorporates active gaze

control to focus attention to the most relevant regions. We

mount the camera on the head of our anthropomorphic robot

Dynamaid [3]. This enables the robot to change the gaze

direction through its pan-tilt neck and its torso yaw joint.
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Fig. 1. The anthropomorphic service robot Dynamaid [3]. The robot has
an anthropomorphic upper body with a yaw joint in its torso and a movable
head on a pan-tilt neck. Besides the ToF camera on its head it is equipped
with a Sick LMS 300 laser range finder on its base.

Besides the ToF camera, the robot is equipped with a Sick

LMS 300 laser range finder (LRF) on its base. Fig. 2 shows

a CAD drawing of the robot with the sensors and their

complementary FoVs.

From the ToF camera’s depth image, obstacle points are

detected and composed to a virtual scan. Complementary to

the measurements of the 2D LRF, this virtual scan is used

to avoid obstacles that are not in the scan plane of the LRF.

Such virtual scans can be easily incorporated into methods

that have been designed for 2D LRFs.

This paper is organized as follows: Sec. II summarizes

related work in the field of obstacle avoidance, especially

with ToF cameras. In Sec. III and IV we describe our main

contributions: a method for obstacle detection using ToF

cameras and an approach to active gaze control. We evaluate

our approach in experiments in Sec. V.

II. RELATED WORK

So far, 3D LRFs are mostly used for 3D perception ([4],

[5], [6]) due to their high measurement range and precision.

However, they suffer from low frame rates and wear of

mechanical moving parts. For this reason, ToF cameras have

attracted attention in the field of robotics since their invention

nearly a decade ago.

One of the first robotic applications of ToF cameras was
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Fig. 2. CAD drawing of our robot and visualization of the field-of-views
(FoV) of the sensors. The ToF camera measures dense depth in a narrow
FoV (green cone), while the laser range finder measures in a scan plane
(red). Small obstacles below the laser scanner’s measurement plane can be
perceived by the ToF camera. Its narrow FoV requires to actively control
the gaze.

published in 2004. Weingarten et al. [1] used a CSEM SR-

2 ToF camera prototype for basic obstacle avoidance and

local path planning. They demonstrate that the use of ToF

cameras improves obstacle avoidance. They mention that

some objects are not perceived due to the limited FoV. Their

camera was mounted statically on the robot.

Also, Yuan et al. [2] applied a ToF camera for obstacle

avoidance. They used the camera to build a virtual laser [7]

which is used in addition to the laser scan of a laser range

finder for obstacle avoidance. Their approach also suffers

from the limited FoV of the sensor. Besides mounting the

ToF camera in a fixed orientation, both approaches use a

simple height filter to segment measurements into floor and

obstacle points. We detect points on obstacles at local height

peaks.

Seara et al. [8], [9] have proposed a gaze control scheme

for their visually guided humanoid robot. The cameras are

mounted on a movable head. Their approach to active gaze

control arbitrates two concurrent objectives, i.e. obstacle

avoidance and self-localization.

III. SENSOR DATA PROCESSING

Our approach to obstacle detection proceeds in three main

steps: In a pre-processing stage, we filter mismeasurements

out of the ToF data. Then, we detect points on obstacles in

the filtered data, especially at the object boundaries. The last

step builds a virtual scan from the obstacle points.

A. Filtering

Measurements of ToF cameras are subject to several error

sources [10]. From the image, we filter out measurements

with low amplitude, as these indicate either highly noisy

measurements of poorly reflecting objects or measurements

of objects beyond the ambiguity range of the camera.

(a) (b)

Fig. 3. (a) The generated height image. The grayscale value of every pixel
corresponds to the z-coordinate of the respective point in the point cloud.
(b) The resulting obstacle points (red).

A further error effect are so-called jump-edges at object

boundaries. They can be detected by examining local pixel

neighborhoods. We detect jump-edges when two points ap-

proximately lie along the line-of-sight of the camera [11].

Since this jump-edge filter is sensitive to noise, we apply a

median filter to the distance values beforehand.

B. Detection of Obstacle Points

For obstacle avoidance, the 3D range image needs to be

segmented into points on the drivable floor and obstacles.

Yuan et. al. [2] and Weingarten et. al. [1] simply threshold the

height of a point above the floor plane to separate obstacles

from the floor. However, measurement noise and kinematic

inaccuracies result in erroneous segmentations. Instead, we

consider the local neighborhood of a point in the range image

for segmentation.

Fig. 4(b) shows a typical example of a filtered point cloud

taken in an indoor scene. We transform the filtered depth

measurements to the robot reference frame which origin we

define in the center of the base in floor height. The colors

of the points correspond to the distance of a point from the

sensor, brighter colors relate to shorter distances. From this

point cloud we build a height image as shown in Fig. 3(a).

A point pi,j is classified as belonging to an obstacle, if

(Wmax − Wmin) > ǫH , (1)

where Wmax and Wmin are the maximum and minimum

height values in a local window W , spanned by the Moore

neighborhood around pi,j . The threshold ǫH thereby corre-

sponds to the minimum tolerable height of an obstacle. It

needs to be chosen appropriately since it cannot be smaller

than the sensor’s measurement accuracy. Due to evaluating

a point’s local neighborhood, floor points are inherently not

considered as obstacles. The result of this filter is shown in

Fig. 3(b).

C. Extraction of Virtual Scans

From the set of obstacle points a two-dimensional virtual

scan is extracted. The number of range readings, the apex

angle, and the resolution of the virtual scan are determined

by the ToF camera’s specifications. For the SR4000, the

number of range readings is 176, which is the number of

4036



-2

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1 0 1 2 3 4 5 6

Base laser

Virtual scan

Fig. 5. Comparison of the resulting virtual scan (red line) of the scene
with the scan from the laser range finder (dashed green line). In the base
laser scan, only the chair legs are visible, whereas the virtual scan outlines
the contour of the chair.

columns in the image array. The apex angle and the angular

resolution are 43◦ and 0.23◦.

From every column of the ToF camera’s distance image,

the obstacle point with the shortest Euclidean distance to the

robot is chosen. This distance constitutes the range in the

scan. If no obstacle point is detected in a column, the scan

point is marked invalid by setting it to the maximum range

of the sensor.

Fig. 4(a) shows an example scene of an indoor environ-

ment. The point cloud which results from the ToF camera’s

depth image is shown in Fig. 4(b). The color of the points

corresponds to the distance, brighter color relates to shorter

distances and darker color to farther distances. The result

of the filtering and the obstacle detection step is depicted

in Fig. 4(c). Points with a low amplitude are removed from

the cloud. Obstacle points are marked white and the obstacle

points that contribute to the virtual scan are marked red. The

remaining points are marked green.

The resulting virtual scan of the scene is compared with

the scan from the laser range finder in Fig. 5. The base laser

scan is illustrated by the dashed green line. The red line

illustrates the virtual scan. The chair shows only a few points

in the scan from the laser range finder, since only the legs

of the chair are in the scan plane, whereas the virtual scan

outlines the contour of the chair.

Similar to the base laser scan, the virtual scan is ac-

cumulated in an occupancy grid that is used by the local

planner. The forgetting rate of measurements in the virtual

scan depends on the orientation of the head. Measurements

within the field-of-view of the ToF camera are forgotten

faster than measurements outside the field-of-view. For this

purpose, we calculate the view-frustrum for the current head

orientation by frustrum culling, a technique that stems from

3D computer graphics [12].

IV. GAZE CONTROL

Compared to 2D laser range finders, the field-of-view of

ToF cameras is rather limited (43◦ vs. >180◦). Practically,

obstacles in the robot’s immediate vicinity can only be

perceived when lying directly along the line-of-sight. That is,

all obstacles not falling into the robot’s gaze direction form a

potential source of collision. This poses the question on how

to adapt the robot’s gaze direction to keep all relevant regions

in sight or at least to check, in regular intervals, whether or

not the respective region can be traversed by the robot.

Keeping relevant objects in the sensor’s limited field-of-

view is the primary function of the proposed gaze controller.

If no obstacle is present in the robot’s immediate vicinity,

it should orient the camera along its movement direction

for being able to react to sudden dynamic changes, like

for instance people passing by. However, if an obstacle is

detected the robot should keep track of that obstacle in

order to avoid collisions while still observing potential risks

in its movement direction. That is, we need to adapt the

gaze direction regularly by successively moving it from one

relevant region to the next.

Analogous to changes in the gaze direction of the human

eye, we refer to these kind of motions as saccades. We define

the gaze direction as a vector g = (gx gy gz)T representing

a point in space that lies in the center of the sensor’s field

of view.

A. Gaze Directions

We distinguish between two kinds of gaze directions from

which the controller can choose from – namely the driving

gaze direction gd, and obstacle gaze directions go pointing

towards closest obstacles.

1) Driving Gaze Direction gd: In order to keep track of

obstacles in the robot’s driving direction and for being able

to perceive suddenly appearing obstacles, the gaze vector gd

corresponding to the driving direction solely depends on the

current translational velocities (vx vy)T and the rotational

velocity ω:




gd
x

gd
y

gd
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where dmin is the minimum distance in front of the robot,

that can be perceived. The constants α and β as well as

the offset γ can be adjusted according to a specific robot

platform. The offset γ ≥ 1 can be adapted to prefer the

perception of obstacles being farther away from the robot,

e.g., when driving fast.

2) Obstacle Gaze Direction go: For keeping track of

closest obstacles not lying in the robot’s driving direction, a

gaze direction candidate go = (go
x go

y go
z)T is generated

that points towards the closest obstacle in the occupancy grid.

B. Saccade Selection

Depending on the distance d to the closest obstacle and

the time t that the obstacle was last detected in the field-

of-view, the gaze controller chooses either gd or go as gaze

vector.
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(a) (b) (c)

Fig. 4. (a) An example scene of an indoor environment. (b) The point cloud which results from the ToF camera’s depth image. The color of the points
corresponds to the distance, brighter color relates to shorter distances and darker color to farther distances. (c) The result of the filtering and the obstacle
detection step. Points with a low amplitude are removed from the point cloud. Obstacle points are marked white and the obstacle points that contribute to
the virtual scan are marked red. The remaining points are marked green.

g =

{

go, d ≤ ǫD and t ≥ ǫT

gd, otherwise.
(2)

where ǫD is the distance threshold that defines an obstacle

as close and ǫT is a time threshold. The time threshold ǫT
prevents the robot from keeping the gaze fixated at a close

obstacle. In the following experiments ǫD = 1m is used.

C. Motion Blur and Dropping Frames

Since the acquired sensory information is heavily affected

by motion blur when rotating the camera, we keep track

of the head orientation and neglect depth images when

considerable changes are detected. Furthermore, we keep

the gaze direction constant for a time T after each saccade,

where T corresponds to the sensor’s data acquisition rate.

That is, we a) wait until the camera is no longer rotated and

then b) wait until at least one depth image has been captured

in this static setup.

V. EXPERIMENTS AND RESULTS

To evaluate the proposed approached, we set up a minimal

benchmark environment of size 7m × 4m. In each experi-

ment, the robot is commanded to move from one side of

the area to the other. In order to test the obstacle detection

mechanism and the active gaze control, a set of objects has

been used to setup a test scenario. We evaluated our approach

in three individual experiments. What is examined in these

experiments is the applicability of the obstacle detection

mechanism and its integration into, respectively, local path

planning and reactive collision avoidance.

The setup for this experiment series is the following: Two

obstacles are placed in front of the robot with a distance

of 180cm between each other. The first object is a white

cubic box with a side length of 10cm. The second object

is a beverage can with a diameter of 5cm and a height of

10cm. Both objects do not interesect the two-dimensional

measurement plane of the laser range finder in a height of

27cm and require for 3D information in order to get detected.

Fig. 6 shows the result of the first experiment where the

robot was solely using the geometric information acquired

with the 2D laser range finder (dashed blue lines). As

expected, the laser range scan accurately represents the

environmental structures intersecting its scan plane whereas

not a single measurement has been taken on the surface of

one of the test objects (black circles). As a consequence,

the robot collides with the objects as can be seen in the

plotted trajectory (red line). Instead of swerving around the

obstacles, the robot takes the shortest path leading it directly

through the obstacles.

In the second experiment, the information from both

sensors is used. That is, the local path planner is fed with

both the 2D laser range scan and the virtual scan extracted

from the 3D camera data. That is, we use the obstacle

detection mechanism from Section III but not the active gaze

control. Again, the robot first takes the direct path to the goal.

That is, it moves a straight line until the first object gets into

the field-of-view of the SwissRanger camera. The first object

is detected and the robot successfully avoids first collision.

However, by making the detour, the robot is laterally oriented

to the second object while following its path. This causes

that the second object does not get into the sensor’s field of

view and the robot collides. The trajectory of the robot as

well as data from the different sensor modalities is shown in

Fig. 7(a).

In the final experiment, both the obstacle detection using

the ToF camera and the active gaze control are used. It is

expected that by making multiple saccades during the robot’s

movement, both the closest objects in its vicinity as well as

the obstacles appearing in its driving direction are detected

and avoided. As is shown in Fig. 7(b), the robot adapts its

trajectory and the followed path respectively. That is, both

obstacles are successfully detected. The green vectors reflect

the behavior of the gaze controller, switching between the

robot’s movement direction and adjacent regions of the en-

vironment. As soon as an obstacle is detected the robot tries

to keep track of it, by periodically re-checking the respective

region. If a previously detected obstacle has not been in the

field-of-view for a certain time, the robot makes a saccade

switching between the driving direction gd and the respective

object gaze vector go. The resulting trajectory shows that the

combination of the obstacle detection mechanism together

with the active gaze controller allow for adequatly detecting
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Fig. 6. The robot’s trajectories with the laser range finder solely. The
dashed blue line depicts the scan of the laser range finder mounted on the
robot’s base. The two obstacles are depicted by the black circles. Since the
objects are below the scan plane the robot collides with them, driving a
straight trajectory to the goal.

and reacting to obstacles.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this work we present an approach for 3D obstacle avoid-

ance using a Time-of-Flight camera. With this sensor, our

method can perceive obstacles that could not be measured in

the scan plane of the laser range finder. The ToF camera is

mounted on the head of our robot Dynamaid which allows

to actively change the orientation of the sensor. It extends

previous work, where the camera was mounted in a fixed

orientation.

The proposed obstacle detection method is robust against

kinematic inaccuracies and noise in the range measurements.

The gaze controller takes motion blur effects into account

and controls the gaze depending on the robot’s motion and

the obstacles in its vicinity.

In experiments we demonstrate that the robot is able to

avoid obstacles that are not perceived by the laser range

finder. The experiments have been carried out with a fixed

gaze orientation and our active gaze control strategy which

orients the sensor depending on the robot’s driving direction

and the distance to obstacles. A fixed gaze orientation lets

the robot collide with an obstacle that it approaches laterally.

In contrast, the active gaze control lets the robot avoid the

obstacle.

Our approach is mainly limited by the sensor’s inaccura-

cies in depth measurements. Especially on a poorly reflecting

floor, small objects cannot be distinguished from the floor.

Another limitation is the motion blur effect and the resulting

data acquisition delay between saccades that limit the robot’s

performance, i.e. the maximal rotational and translational

driving velocities.

B. Future Work

The experiments show that this simple gaze controller

generates gaze vectors that are probably redundant. Since

each saccade consumes time due to the duration the actuators

need to orient the sensor and the delay that is necessary to

minimize motion blur, a more sophisticated gaze controller

could be formulated. In future work, a gaze controller that

predicts an optimal gaze orientation for a given situation has

to be investigated, maximizing the information gain for the

possible gaze orientations.
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Fig. 7. The robot’s trajectories, using the information from the virtual scan is fused with the scan from the laser range finder. In (a) the camera orientation
(green arrows) is fixed. The robot avoids the first obstacle, but collides with the second obstacle. (b) shows the results of our experiment with active gaze
control. The resulting trajectory shows that the robot navigates around the obstacles without a collision.
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