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Abstract— In this paper we explore methods for the online
mapping of received radio signal strength with mobile robots
and localizing the source of the radio signal. By utilizing
Gaussian processes, we are able to build an online model of the
signal-strength map that can, in turn, be used to provide the
current maximum likelihood estimate of the source location.
Furthermore, using the estimate of the source location, the
Gaussian process model allows for prediction of received signal
strength with confidence bounds in regions of the environment
that have not been explored. Finally, we develop a control law
for collecting samples of the signal strength with mobile robots
that allows for online estimation of the radio signal source.

I. INTRODUCTION

Wireless communication is requisite in most multi-robot
scenarios and devices for enabling wireless communication
protocols through radio signals, such as Zigbee, Bluetooth,
and 802.11, are readily available and economically priced.
It is well-known that environmental effects on radio signal
propagation are significant and several models of radio
signal propagation are discussed in [5], [9], [21], includ-
ing: statistical, empirical direct-path, empirical multi-path,
and ray optical models. In the robotics community, several
works exploit the fact that radio-propagation is environment
dependent by leveraging received signal strength indication
(RSSI), a measurement of power present in a radio signal,
as a model for localization, including [7], [12], [14]. This
research suggests that it is possible to localize a robot in an
environment by predicting the RSSI based on experimentally
gathered or modeled data. In each of these works, the authors
study communication via 802.11 b/g or Bluetooth, with sam-
pling in indoor environments via autonomous [12] or sparse
manual [7], [14] methods. RSSI also plays an important role
in multi-robot control algorithms which require inter-robot
coordination via communication [16], [17]. The relationship
between radio signal strength and bit error rate (and thus
communication capability) is well studied and shown to
be heavily correlated. Therefore, RSSI prediction is vital
to the success of control algorithms requiring inter-robot
communication.

We are interested in tasks that rely on the deployment of a
team of networked robots into an environment for which we
do not have an accurate radio signal propagation model. Here
we focus on developing tools that allow for online estimation
and mapping of received radio signal strength. Specifically,
we consider the simplest scenario in which there is a static
base station in an unknown location that is transmitting
to one or more mobile robots. The mobile robot(s) must
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autonomously build a map of the received signal strength
and localize the base station.

We proceed as follows. In Sec. II we detail some back-
ground material on radio signal propagation, Gaussian pro-
cess methods, and active control for sensing. Section III
provides some specifics for our experimental system and
Sec IV then outlines our specific problem statement and
solution approach. In Secs V and VI we conclude with results
and future directions.

II. PRELIMINARIES

A. Radio Signal Propagation

Radio signal strength propagation is a complex multi-
scale process. Received power is a function of distance
from the source, shadowing due to obstacles, and multi-path
phenomena that arise as a result of reflections and refractions.
While spatially and temporally averaged behavior can be
fit to deterministic fading models, small-scale fading can
cause variations to received signal strength on the order of
5 dBm over small length scales. While small-scale fading
can be modeled by complex ray-tracing methods [21], it
is perhaps more readily represented probabilistically by a
Rician (when there is line-of-sight) or Rayleigh (for non-line-
of-sight) distributions. Thus, the received power (in dBm)
can be given by

PdBm = L0 − 10n · log(‖xs − x‖)︸ ︷︷ ︸
Fading

− f(xs, x)︸ ︷︷ ︸
Shadowing

− ε︸︷︷︸
Multipath

(1)

where L0 is the measured power at 1 m from the source, n is
the decay exponent, and xs, x are the positions of the source
and receiver respectively, f(·, ·) is a non-smooth function
that describes shadowing, and ε is drawn from a Rayleigh or
Rician distribution.

Though (as shown in our previous work [8] and depicted
in Fig. 1) a dense sampling of a particular environment
can yield accurate parameter estimation, we wish to deploy
our methods in unknown environments that can not be
sampled a priori. Thus, we shall continue by describing
a probabilistic framework that we can utilize for online
learning and estimation of the radio signal mapping.

B. Gaussian Processes

Gaussian process methods allow us a probabilistically
sound way to incorporate noisy measurements from an un-
known process and then make predictions on the evaluation
of the process at unknown states. Gaussian processes (GP)
are used in many mobile robotics applications such as sensor-
centric localization [3] and mapping gas dispersal [20].

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 1940



1 2 3 4 5 6
Distance HmL

-70

-60

-50

-40

Recv. Power HdBmL

-5 0 5 10 15 20 25
Error HdBL

0.02

0.04

0.06

0.08

0.10

Probability

Fig. 1. Log-fading model fit to experimental data. Note that deviations
from this mean function can be modeled by a Rician fading model or
approximated by a non-zero-mean Gaussian

Radio signal strength is specifically considered in [7],
where Ferris el al. demonstrate the utility of Gaussian
processes for robotic localization tasks and continue in [6]
by addressing the simultaneous localization and mapping
problem when receiving transmissions from multiple base
stations.

We will depart from [7] and [6] in two major ways. First,
we will not assume that we have explored and sampled
the environment a priori – we are primarily inerested in
online methods that improve in quality as the environment is
explored. Second, as a consequence of the requirement that
we make signal strength predictions in unexplored regions,
it is necessary to impose a model-based prior on the radio
signal propagation. This introduces an additional complexity
of parameter estimation that will be a primary focus of this
work.

Here we will provide a brief introduction to the basic
method adopting the function-space view defined in [18]. A
Gaussian process describes a distribution over functions so
that the mean function µ(x) and covariance function k(x, x′)
of a process are

µ(x) = E[f(x)]
k(x, x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))],

and the Gaussian process is then

f(x) ∼ GP (m(x), k(x, x′)).

We will consider x to be a training point for which we have
a corresponding measurement y = f(x) and X to be a list
of such training points. With subscript ∗, x∗ denotes a point
where we wish to sample the Gaussian process and obtain
a prediction f∗ = f(x∗). Finally, the covariance (or kernel)
function k(x, x′) can be applied to vectors so that K(X,X ′)
is the covariance matrix relating each pair of points.

If we assume a measurement model of the form y =
f(x) + ε where ε ∼ N (0, σ2

n), the covariance between
measurements y at points X becomes

cov(y) = K(X,X) + σ2
nI.

This leads to a joint distribution of the observed measure-
ments and desired test locations to be[

y
f∗

]
∼ N

(
0,
[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
.

Conditioning on the measurements, we obtain the predictive
statements

f̄∗ = E[f∗|X,y, X∗]
= k∗[K(X,X) + σ2

nI]−1y
(2)

V[f∗] =k(x∗, x∗)

− k∗[K(X,X) + σ2
nI]−1k∗.

(3)

where k∗ is the vector of variances between x∗ and each
training point. Note that this assumes a zero-mean prior –
below we will extend these equations to include a more
descriptive prior on the mean function of the process.

We can also compute the log marginal likelihood of the
model with respect to the training data to be

logp(y|X) =− 1
2
yT(K + σ2

nI)−1y

− 1
2

log|K + σ2
nI| −

n

2
log2π

(4)

where K is used as shorthand for K(X,X).
Initially, we shall adopt a squared exponential covariance

function

k(x, x′) = σ2
f exp

(
−‖x− x

′‖2

2`2

)
.

Note that the parameters σf and ` control the shape of
the covariance function and thus affect the behavior of the
Gaussian process. ` models the length scale of variation and
σf the amplitude of the variance. In general, the kernel
parameters will be represented by a vector θk. It is not
neccesary that the kernel function be stationary – it must
only be positive semidefinite. In addition to a number of basis
kernel functions, more complex functions can be formed by
the addition or product of multiple kernel functions.

It will be useful in our work to specify an explicit prior on
the mean function of the Guassian process that reflects the
empirical model commonly used to model the fading of radio
signal strength. In addition to other benefits, this enables
more accurate prediction away from the training data. For a
deterministic mean function m(x), this modifies Eq. (2) to
be

f̄∗ =m(x∗)

+ k∗[K + σ2
nI]−1(y −m(X)).

(5)

The covariance on predictions remains the same as (3). Note
that like the kernel function, the mean function m(x) can be
characterized by a vector of parameters θm.

As stated above, both the covariance (or kernel) functions
and the explicit prior on the mean function can be defined
with respect to a set of parameters θk and θm respectively.
These are often refered to as the hyperparameters of the
Gaussian process and control how it fits the observations.
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Fig. 2. Two Scarab robots (Fig. 2(a)). Each robot is equipped with a
MaxStream XBee Zigbee adapter (Fig. 2(b)).

Further, using the log marginal likelihood, we can perform an
optimization to tune hyperparameters to our observed data.
However, as seen later, there are several cases in which there
are multiple local maxima in the log marginal likelihood that
relate to different interpretations of the data and some may
lead to over fitting.

C. Active Control

The concept of active control for information gain is
clearly applicable to this work as we would like the mobile
robot to efficiently gather samples that build a signal strength
map with strong predictive capabilities. In [10], Grocholsky
presents the idea of probabilistic information gain as a
control objective which is applied in [11] to the problem
of range-only localization.

In [13] Krause et al. study the issue of active sampling to
build a Gaussian process with a key result that provides a
theoretical condition for switching between exploration and
exploitation strategies.

III. EXPERIMENTAL TESTBED

Before we describe the methodology and algorithms used
in the paper, it is useful to discuss the experimental testbed
and the hardware used in the experiments. In all experiments
described in Secs. IV and V, a single stationary node trans-
mits data via a Zigbee radios while a mobile robot controls
autonomously through an indoor hallway and laboratory
environment.

The robots and communication hardware used in the
experiments are shown in Fig. 2. The Scarab is a 20 ×
13.5 × 22.2 cm3 indoor ground platform. Each Scarab is
equipped with a differential drive axle placed at the center
of the length of the robot with a 21 cm wheel base, onboard
computation, and 802.11a wireless communication. Note
that the operational frequency of 802.11a is 5 GHz and all
data logging and experiment monitoring occurred via this
alternative frequency to avoid affecting the measurement of
RSSI.

A Hokuyo URG 04-LX laser range finder and odom-
etry information provide the necessary sensor information
for laser-based localization in the environment. The Zigbee
device is the MaxStream XBee as pictured in Fig. 2(b)
with 1 mW (0 dBm) power output and receiver sensitivity
of −92 dBm [1].

IV. METHODOLOGY

A. Problem Statement

We seek to develop online methods for mapping signal
strength in unexplored environments. For this work we
will assume (1) a stationary node periodically transmitting
packets with unknown localization and (2) a mobile robot or
team of mobile robots that share information, each of which
has localization capabilities and the ability to navigate in
the, possibly complex, environment. Given that the mobile
robot can perform localization and receive radio broadcasts,
it makes measurements zk =

[
xk, yk

]
consisting of a two-

dimensional position x ∈ R2 and received signal strength
y.

A Gaussian process is well suited to incorporate mea-
surements and provide a predictive mapping from position
to signal strength but, as stated above, it is essential that
we incorporate a model-based prior to improve the quality
of predictions in spatial regions where we have not cap-
tured measurements. A consequence of the introduction of
a model-based prior is the addition of hyperparameters θm

that must be estimated in addition to those for the kernel
function θk.

Potential priors for the radio signal propagation are

m1(x) = −L0, (6)

m2(x) = −L0 − 10nlog10(‖xs − x‖), (7)

m3(x,d) = −L0 − 10nlog10(‖xs − x‖) +
∑

i

kidi. (8)

Clearly, these functions require varying amounts of infor-
mation about the source location and environment and can
be interchanged depending on the problem statement. By
incorporating more knowledge of the system, we can use
more complex priors on the mean function of the Gaussian
process (moving from m1 to m3 in Eq. 6-8) as depicted in
Fig. 3. While the predictive mean of the Gaussian process
near training points is unchanged, the marginal log likelihood
from Eq. 4 increases and the predictions away from training
data become more accurate. While m3(x), with its consid-
eration of shadowing due to obstacles, is clearly the most
descriptive, in this work we will limit ourselves to m2(x) to
reduce the parameters that must be estimated.

Estimation of hyper-parameters θk and θm plays a crucial
role in the effectiveness of the Gaussian process to provide
probabilistically correct predictions. We shall see that the
marginal log likelihood from Eq. 4 can be leveraged to find
maximum likelihood estimates for the hyper-parameters.

Considering a mean function prior such as the log fading
model m2(x) and a squared-exponential kernel function, the
hyper-parameters are explicitly

θk =
[
σ2

f `
]

and (9)

θm =
[
L0 n xs

1 xs
2

]
. (10)

While reasonably accurate priors can be determined for ker-
nel parameters θk based on the small-scale fading phenomena
and for mean function parameters L0 and n, the model is

1942
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Fig. 3. Gaussian process with 1D training data for m1(x) in Fig. 3(a), m2(x) in Fig. 3(b), and m3(x) in Fig. 3(c). The red dashed line indicates the
mean function prior, blue points are the training data, and green solid is the Gaussian process predictive mean with associated variance depicted as an
envelope around the mean. Note that blue crosses represent measurements not used as training data but provided here to demonstrate the quality of the
signal strength prediction.

Fig. 5. If samples densly cover the domain, the Gaussian process provides
a good model of the signal strength behavior without any mean function
prior and can clearly be used to estimate the source location.

quite sensitive to the source location xs which may be un-
bounded for an unknown environment. Figure 4 demonstrates
the effect of source location on both the likelihood p(y|X)
and the prediction in regions without training data.

B. Mapping using a dense sampling of the environment

In a set of preliminary experiments, we had a single robot
exhaustively explore the environment taking measurements
at 5Hz. Given a sufficiently dense sampling of the space
around the source, it is possible to estimate the gradient of
the signal strength map and follow it to the global maximum
as depicted in Fig. 5. However, we wish to avoid having
to explore the whole environment exhaustively and thus we
shall first focus on a maximum likelihood estimator for
the signal source location and continue to define a control
law that incorporates both exploration of the space and
exploitation based upon current estimates.

C. Maximum Likelihood Estimate of Signal Source

Given a parametric mean function that incorporates the
signal source location, the marginal log-likelihood function

L(θm) = logp(y|X, θm)

for a set of training data X is then

log p(y|X, θm) =

− 1
2

(y −m(X, θm))T(K + σ2
nI)−1(y −m(X, θm))

− 1
2

log|K + σ2
nI| −

n

2
log2π.

(11)

In order to consider the maximum likelihood estimate θ̂m of
the mean function parameters θm, we consider the gradient
of the log-likelihood ∂L(θm)/∂θm

∂L(θm)
∂θm

=
∂logp(y|X, θm)

∂θm

= (y −m(X, θm))T(K + σ2
nI)−1 ∂m(X, θm)

∂θm

=
(
∂m(X, θm)

∂θm

)T

(K + σ2
nI)−1 (y −m(X, θm))

(12)

and perform gradient ascent to find θ̂m. Note that if we
assume to know the kernel parameters, this optimization
can be evaluated with a single computation of the inverse
(K + σ2

nI)−1 which avoids the typically prohibitive O(n3)
cost.

Furthermore, as shown in [2] we can use the second
derivative of the log-likelihood

∂2L(θm)
∂θm,i,j

=(
∂2m(X, θm)
∂θm,i,j

)T

(K + σ2
nI)−1 (y −m(X, θm))−(

∂m(X, θm)
∂θm,i

)T

(K + σ2
nI)−1 ∂m(X, θm)

∂θm,j
(13)

to compute the Fisher information matrix

Ii,j = −∂
2L(θm)
∂θm,i,j

(14)

which, via the Cramer-Rao bound, provides a lower bound
on the covariance of the maximum likelihood estimate θ̂m

so that we can consider

θm ∼ N (θ̂m,Σm) where Σm = I−1. (15)

D. Control Law

Our focus is on using a mobile robot to continously
drive through an environment and sample the signal strength.
We assume that signal strength mapping is the only task
assigned to the robot so that it has full freedom to choose
control directions that are most informative with respect
to signal strength mapping. Here we take an exploration-
exploitation approach similar in spirit to [13]. When we first
enter an environment and have very few training samples, the
estimate of θm is poor or sometimes impossible to determine,
random exploration is the best/only strategy. However, when
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Fig. 4. Similar to Fig. 3, here we depict the effect of mean function hyperparameters θm (specifically source location xs) for m2(x). Note the actual
source location is xs = {0, 0}. Blue crosses are experimental data not input to the GP but provided to show the quality of the prediction.

an estimate is available for θm (particularly the source
location), the controller can choose directions that are more
informative.

To formalize, we define two control directions uexplr and
uexplt. The exploration direction uexplr is chosen to locally
reduce the entropy of the Gaussian process by following the
gradient of the predictive variance

uexplr(x∗) = α1∇V[f(x∗)]

= α1

(
∂k(x∗, x∗)

∂x∗
− 2

∂k∗T

∂x∗
Qk∗

)
where Q = (K+σnI)−1. On the other hand, the exploitation
direction is chosen based on the current maximum likelihood
estimate of the source location x̂s

uexplt(x∗) = α2(x̂s − x∗).

The intuition behind this control direction for estimating the
parameters of a log-based function is that samples must be
collected away from the long flat tail of the function where
the local variation will be within that explained by small-
scale fading.

When a control direction uk is chosen, the robot attempts
to control along that direction for a fixed distance based upon
the kernel parameters θk so that statistically independent
samples can be collected. After the completion of each
control action, uk+1 is chosen randomly to be either uexplr

or uexplt. The first control direction u0 is selected randomly
since we have no prior knowledge or samples.

V. RESULTS

In Fig. 5, the signal strength prediction is depicted from
a Gaussian process trained offline on samples that densely
cover the complex indoor environment. In the results that
follow we first demonstrate that the controller defined in
Sec. IV-D can be used to efficiently localize a source and thus
obtain an accurate prior for the remainder of the mapping
process. We continue by demonstrating our method on a
more complex environment and showing the accuracy of the
resulting signal-strength map.

With respect to the online aspect of our work, it should be
noted that we currently utilize a “standard” Gaussian process
implementation in C++ that allows for realtime performance
of the calculations we present here with hundreds of training
points on a 2.5Ghz processor. However, there are a number of
sparse approximations to Gaussian processes published [4],
[15], [19] that allow for efficient operation as we increase
the number of training points.

1) Open environment with active control: Here we place a
stationary robot randomly in an open environment and have
it broadcast packets via its Zigbee radio at 2 Hz. A mobile
robot is started somewhere in the same obstacle-free region
and follows the controller defined in Sec. IV-D as depicted
in Fig. 6. After a random initial control direction in Fig. 6(a),
there is an estimated source location in the +x-direction and
the uexplt action is selected in Fig. 6(b). Figure 6(c) and
6(d) depict the uexplr control action while Figs. 6(e) and
6(f) depict execution of uexplt.

Note that as samples are collected, multiple local maxima
of the likelihood function L(θm) (Fig. 6(e)) are resolved
to the true maximum shown in Fig. 6(f). With an accurate
estimate of the signal source location, we can use the Gaus-
sian process to predict the signal strength at other locations.
A variance associated with the prediction will represent
confidence. Obviously, prediction confidence decreases away
from sampled locations.

2) Complex Environment: In a complex hallway environ-
ment, allowable control directions are limited, precluding the
use of the control law defined in Sec. IV-D. Instead, here
we perform an explicit exploration by driving the length
of the hallway in the x-direction as depicted in Fig. 7(a),
predicting the source location (Fig. 7(b)), and comparing the
resulting prediction to data gathered along the orthogonal
hallway (Fig. 7(c)). Finally, Fig. 7(d) depicts a key strength
of our GP-based approach. The source has been correctly
localized but the gathered data is consistently different (as
result of non-line-of-sight transmission). As the new data is
included, the prediction improves.

VI. CONCLUSION & SUMMARY

We have presented a method for online mapping of radio
signal strength from a static source at an unknown location
using Gaussian processes which can provide not only predic-
tive capabilities but also an associated uncertainty with each
prediction. As our method relies on a model-based prior,
we addressed the online estimation of model parameters –
specifically the signal source location. By optimizing on a
marginalized likelihood function and using an active control
law, we are able to efficiently gather samples to estimate
the signal source location. Additionally, we demonstrated the
utility of our mapping technique in a complex environment
including its ability to handle situations where the model-
based prior is not sufficiently descriptive of the underlying
process.
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(a) n = 20 (b) n = 38 (c) n = 73 (d) n = 85 (e) n = 112 (f) n = 155

Fig. 6. The evolution of the likelihood function L(θm) with respect to the signal source location xs after n samples. As the experiment progresses from
Fig. 6(a)–6(f), the measurements are incorporated into the Gaussian process, affecting the likelihood of the source location. The trial concludes when there
is a clear global maximum of the likelihood function. Samples are represented by yellow points, the vector field depicts the gradient of L(θm). The white
circle in each figure represents the actual signal source location.
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(d) Final Prediction

Fig. 7. In a complex hallway environment, we forgo active control due
to environmental constraints and instead drive as depicted in Fig. 7(a).
Figure 7(b) depicts the training process for the hallway along the x-direction
which yields a signal strength prediction as compared to experimental data
in Fig. 7(c). Finally, Fig. 7(d) shows how the incorporation of experimental
data corrects the prediction.
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