
3D reconstruction of fish schooling kinematics from underwater video

Sachit Butail and Derek A. Paley

Abstract— This paper describes a probabilistic framework to
estimate the shape and position of multiple fish in a school. We
model the fish shape as an ellipsoid with a curvature coefficient
that allows us to incorporate bending. An expression for the
extremal contour in terms of state parameters is used to derive
a likelihood function for shape. We present a motion model
that uses curvature as an input to the turning rate. Tracking
is performed using a particle filter with joint probabilistic data
association. We evaluate our algorithm using simulated data
and further characterize its performance using real data from
a laboratory experiment with six giant danios.

I. INTRODUCTION

Animal aggregations have fascinated and inspired re-

searchers studying collective behavior in many species [14].

Where biologists stand to gain from tools in engineer-

ing that help advance the understanding of animal groups,

engineers use this improved understanding to design bio-

inspired robotic systems. Among animals that demonstrate

collective behavior, fish are particularly attractive because

a wide variety of schooling fish are easy to procure and

maintain in a laboratory environment.

While there are many control strategies that appear to

replicate collective behavior [24], [12], there are far fewer

experiments that have managed to quantify this kind of

behavior in nature. A major reason for this is that automatic

tracking of multiple targets is inherently hard. Advances

in computer vision techniques have helped: e.g., tracking

positions of up to eight fish in three dimensions [26].

Still, an underwater environment presents challenges such

as changing light conditions, clutter and reflections. We

would not expect fish to exhibit natural behavior were we to

put markers on them. A typical schooling behavior as seen

from an underwater camera consists of numerous occlusions,

speed bursts and sharp turns.

Fast starts and quick turns are common swimming behav-

ior, often as a precursor to an escape or attack [25]. In a

fish school the collective response to an external cue can

take place within a fraction of a second. In such a scenario

the pose of each fish may not give a complete picture. The

sensory volume of a fish that determines nearest neighbor

interactions is dependent on the instantaneous pose and shape

of the fish body [10]. In this paper we build a framework to

track position, orientation, and shape of individual fish in a

school.
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Fish schools have been tracked in both their natural

environment [11] and in laboratories [26], [17]. Positions

of up to fourteen fish have been tracked in two dimensions

[17] and groups of four and eight fish have been tracked in

three dimensions [26]. In [11] an acoustic sensor is used to

track individual fish in a school from a moving platform. In

[26], [17] least squares fitting is used to join track segments

already matched on the image plane.

We are not aware of any prior instance of automatic

shape tracking of multiple fish in a school. In the context

of computer vision, our objective is to track the structure

of multiple non-rigid objects through time. We have ap-

proximate knowledge of our target geometry when it is

not in motion. Structure of a rigid object can be estimated

using feature extraction [21] or optical flow [1]. For a non-

rigid object, however, shape estimation is relatively difficult.

Feature-tracking algorithms extended to non-rigid objects

involve distorting a regular shape along the low frequency

modes. A detailed model is then created through training

data [15], or determined probabilistically [22]. We found

feature tracking to be unsuccessful in tracking multiple

similar looking objects. Another method not tested here

called shape from silhouette builds a 3D approximation of

an object based on overlapping volumes from within the

silhouettes of multiple views [8].

As our objective is to solve a multi-target tracking prob-

lem, we are concerned with data association and occlusions.

There is an extensive amount of literature on both these

aspects that are addressed in different applications [3], [18],

[13]. For example, in [13], [19] occlusions are explicitly

handled by using prior knowledge about target geometry.

In this paper we utilize prior information about our target

shape in a probabilistic tracking framework. We model fish

motion as having constant speed along its body direction

(heading) with orientation driven by random turning rates.

The yaw motion is proportional to curvature about the yaw

axis. We model fish shape as an ellipsoid that can be bent

along its center line as a function of a single parameter called

curvature. This model relates the shape and its 2D projection.

State estimation is performed using a particle filter with joint

probabilistic data association for motion correspondence.

We evaluate our algorithm using simulated data and further

characterize its performance using a laboratory experiment

with six giant danios (Danio aequipinnatus) in a 300 gal tank.

The contributions of this paper are as follows:

• We mathematically relate the 3D shape of a fish body

to its 2D image under perspective projection, using a

model of a bent ellipsoid.

• We implement a probabilistic estimation algorithm to
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automatically track 3D position and shape of individual

fish in a school.

The paper is outlined as follows: Section II provides a

background on nonlinear estimation and data association

methods. Section III presents the bent ellipsoid model and

describes the mathematical relation of the 3D model to its

2D projection according to the tracking variables (position,

heading and curvature) in terms of a likelihood function. The

problem is then cast in a particle filtering framework. Section

IV describes experimental results and Section V provides a

summary of the paper and highlights of our ongoing work.

II. MULTI-FISH TRACKING AND DATA ASSOCIATION

In this section we give an overview of nonlinear estimation

techniques followed by a brief discussion on data association

techniques needed to resolve measurement target association.

A. Nonlinear estimation

Both the motion and measurement models discussed in

this paper are nonlinear functions of state. In this case

a linear estimator such as Kalman filter would diverge

easily. In vision-based systems, nonlinear estimators such

as the extended Kalman filter (EKF), the unscented Kalman

filter (UKF) and the particle filter are often used to track

targets [2]. While the extended Kalman filter (EKF) has

been successfully used in target-tracking systems, particle

filters perform better than the EKF in scenarios that involve

high nonlinearities and non-Gaussian distributions [2]. In this

paper we use a standard sampling importance resampling

(SIR) particle filter to track multiple fish in a school. Within

a particle filter we use a measurement likelihood function

to encode our confidence in the information we receive. A

likelihood function is a conditional probability P (Z|X) of a

measurement Z given state X [3].

Although we use only heading in our state vector, in order

to model shape we need the body orientation represented by

a rotation matrix [x̂ ŷ ẑ]. We make the assumption that a

fish does not roll about its center line. Using the mean x̂ we

compute the cross product of the vertical axis in the inertial

frame with x̂ to get the ŷ direction in the body frame. The

rotation matrix is completed by setting ẑ = x̂ × ŷ.

B. Data association

Data association, common to all multi-target tracking

systems, is the task of matching measurements to targets. In

our context, for example, this implies maintaining the same

measurement-target associations through consecutive frames.

In an environment with clutter it is typical to get more

measurements than the number of targets. A simple strategy

is to assign a measurement to the nearest measurement esti-

mate; this strategy is called the nearest neighbor filter (NNF)

[3]. An optimal Bayesian filter in this scenario would take

into account all of the past history of measurement-target

associations and branch out a path from each such pairing to

assign a probability to the latest set of measurements. The

number of paths in such a scenario increases exponentially

with the number of measurements [16]. Fortunately, there

exist several heuristics to trim these paths [16] (For a review

of data association techniques please refer to [9].)

In this paper we use a method called joint probabilistic

data association (JPDA) [3]. The JPDA algorithm assigns

probability values to measurement-target associations based

on current measurements and state estimates. These values

are then used to assign a weight to each association. The final

update to a target estimate during a time-step is a weighted

sum of all possible measurement updates. At any time-step

k, the set of all valid target-measurement associations, θ,

is generated based on a gating volume. A feasible event

θ ∈ θ is created such that (i) each measurement has only

one source and (ii) each target (excluding clutter) produces

exactly one measurement or no measurements at all. The

joint measurement-target association probability βij between

measurement j and target i is [3]

βij =
∑

θ∈θ

P (θ|Zk), (1)

where Zk is the set of all measurements up to

time k. P (θ|Zk) as per Bayes theorem is the prod-

uct of the measurement-association likelihood function

P (Z[k]|θ,Zk−1) and the prior P (θ). Z[k] represents all

measurements at k. All unassigned measurements are as-

sumed to be uniformly distributed across the entire ob-

servation region. The probability of each association in a

feasible event is computed using the measurement likelihood

function. In a particle filtering framework, the measurement

likelihood function is averaged over all samples [18].

III. RECONSTRUCTING FISH KINEMATICS FROM VIDEO

In this section we present a model of fish shape, followed

by a model of fish motion. Measurement models for ex-

tracting position and shape (which includes orientation) from

video are described and cast in a particle-filtering algorithm.

A. Fish shape as a bent ellipsoid

A simple yet robust method to track an articulated object

is to model it as a series of connected quadrics [19], [8].

An even closer approximation of different shapes within an

object can be achieved by modifying the general quadric

equation to form a superquadric [20], or an extended quadric

[28]. All of the above strategies, however, add many more

variables to the state space. We use a similar approach of

modeling the fish shape as a quadric—an ellipsoid—but in a

way that allows us to use a single extra parameter, K, which

we call the curvature, to represent bending of the fish body

during swimming.

We begin with the equation of an ellipse centered at the

origin and oriented along the horizontal axis. Given a point

on the ellipse u =
[

u1 u2

]T
, its equation can be written

as u2
1/a

2 + u2
2/b

2 = 1, where a and b are the lengths of the

semi-major and-minor axes respectively. To bend this ellipse

we re-define the long axis as a curve, u2 = f(u1). The

new equation becomes u2
1/a

2 + (u2 − f(u1))
2/b2 = 1. For

example, to bend the ellipse in a crescent we set f(u1) =
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Fig. 1. Possible solutions to a quartic equation with at least one repeated
root. Also shown is a bent ellipsoid with its projection on camera plane
showing corresponding scenarios in the same color.

Ku2
1, where K is the curvature1. When K = 0, the ellipse

is straight; when K 6= 0, it bends in a parabola.

A similar strategy is employed to bend an ellipsoid in three

dimensions [7]. Consider an ellipsoid with dimensions a, b, c
such that a > c > b. The equation for an ellipsoid that is

bent on its shortest dimension is

r2
B,1

a2
+

(rB,2 −Kr2
B,1)

2

b2
+
r2
B,3

c2
= 1, (2)

where rB =
[

r1 r2 r3
]T

is a point in a body frame B.

We re-write equation (2) in matrix form as

r̃T
BQBr̃B +

K2r4
B,1

b2
−

2Kr2
B,1rB,2

b2
= 0, (3)

where QB = diag{1/a2, 1/b2, 1/c2,−1}, and r̃B ,
[

rT
B

1
]T

is the homogeneous representation of rB. To

express (2) in inertial coordinates, we use the 4×4 transfor-

mation matrix T from the inertial frame I to frame B such

that r̃B = T r̃. We can write (3) as

r̃TQC r̃ +
K2(T1r̃)4

b2
−

2K(T1r̃)2(T2r̃)

b2
= 0, (4)

where QC = TTQBT and Ti denotes the ith row of T .

Having written the equation of a bent ellipsoid in inertial

coordinates, we now proceed to project it onto an image

plane under perspective projection. Similar analysis has been

employed for quadrics [6], [19]. Without loss of generality

we assume the camera frame C is coincident with the inertial

frame I. We represent a line from the origin by L(t) = lt

with l =
[

l1 l2 l3
]T

and t a free parameter. Replacing r̃

in (4) with
[

L(t)T 1
]T

yields a fourth-order polynomial in

t. For a point to lie on the bounding contour of the 3D shape,

the polynomial should have a single root. The projection of

each such point will form the extremal contour in the image

plane. We seek to find an expression for such a contour in

order to extract information about the 3D shape.

If the discriminant of a polynomial with real coefficients

is zero, it will have at least two roots that are same [4].

1Note that this bending causes a proportional increase in the total length
of the ellipse that can be adjusted by setting the length of semi-major axis
as a function of K. In the example above, where f(u1) = Ku2

1
, we can

replace a in the second equation by ab such that a2

b
+ K2a4

b
= a2, which

implies ab = 1/K
q

−1 +
√

1 + 4K2a2/2, for K 6= 0

Fig. 2. Modeling fish as bendable ellipsoids. Shown are image frames
from two cameras with image planes normal to each other. The extremal
contours for each fish use the ellipsoid model.

(This condition is equivalent to having a point on the

surface tangent to its position vector.) Demanding that the

discriminant be zero raises four possible scenarios (Fig. 1):

i. All four roots are the same

ii. Two roots are the same and two are distinct

iii. Two roots are the same same and two are imaginary

iv. Two pairs of repeated roots

Requirement (i) above for a quartic (fourth-order polyno-

mial) is too strong as we can have cases where two roots

are same and the other two do not exist. The only case that

is undesirable is case (ii), i.e., when we have 3 distinct real

roots. Looking at Fig. 1 we see that the projection of points

corresponding to such cases will lie inside the silhouette.

The discriminant for a quartic of the form p4t
4 +4p3t

3 +
6p2t

2 + 4p1t+ p0 = 0 is [4]

I3 − 27J2 = 0, (5)

where I = p4p0−4p3p1 +3p2
2 and J = p4p2p0 +2p3p2p1−

p4p
2
1 − p2

3p0 − p2
2. In our case the coefficients pi, i = 0, ..., 4

contain values from the QC and T matrices along with

curvature K. For example p0 = QC,4,4 + K2/b2T 4
1,4 −

2K/b2T2,4T
2
1,4 where the subscript i,j on matrices QC and

T denote element (i, j). (See the appendix for a list of all

coefficients.) We normalize the vector l with respect to l3
such that L(t) =

[

u v 1
]T
t with

[

u v
]T

denoting a

point in the image plane for a camera with unit focal length.

The points on the image plane that satisfy (5) lie inside or

on the silhouette of the projection.

B. Particle-filtering framework

We begin with a model that approximates fish motion. The

following assumptions are made:

• A fish shape is approximated by a bent ellipsoid.

• The ratios between semi-major, medium and minor

axes, a/b, a/c, are the same for all fish.

• A fish does not roll about its centerline; fish maneuver

by yaw and pitch motions only.

The target state vector X =
[

rT ,xT ,K, s
]T

at any time

comprises position r ∈ R
3, heading x ∈ R

3, curvature

K ∈ R, and speed s ∈ R. The full orientation of a fish

is found by completing the orthonormal frame as discussed

in Section II-A. K is assumed to decay exponentially while

being perturbed by a Gaussian disturbance dK = N(0, σ2
K).

The motion model is

ṙ = sx; ẋ = u × x

K̇ = −λK; ṡ = 0,
(6)
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Fig. 3. Motion and measurement models. The left most figure shows how
the ellipsoid turns in the direction of curvature. The grey contour in the
two figures on the right is generated by projecting a bent ellipsoid onto two
camera frames. The black dots are noisy measurements. Random contours
are generated and weighted using the likelihood function for the shape. The
contours that were weighted highest are shown in red dashed lines.

where u =
[

w, h, ψq
]T

is the control input denoting the

turning rate about each axes in the body frame. ψ =
atan(Ka) is the angle of inclination from the center of

ellipsoid to its tip.

For the stochastic version of (6) we model the unknown

turning rates as Gaussian random variables such that ww =
N(0, σ2

w), wh = N(0, σ2
h) and wq = N(0, σ2

q ). We set σw <<
σh and σq = 0 (the fish turns more than it pitches)

dr = sxdt; dx = dwu × x

dK = −λKdt+ dwK ; ds = dws,
(7)

where dwu =
[

dww, dwh, ψdwq

]T

The following likelihood functions represent the measure-

ment model for position and shape. Our observations consist

of the centroid position u =
[

u v
]T

and silhouette s =
{ui, vi; i = 1, ..., ns} of each blob, where ns is the number of

pixels in the silhouette. The centroid measurement on a cam-

era image plane with focal length f (in pixels) as a function

of target center position r is u = f
[

r1/r3, r2/r3
]T

+ I2ηp,

where ηp is a two dimensional Gaussian noise vector for u
and v and I2 is the 2 × 2 identity matrix. The likelihood

function for location of a single measurement, u = u(r),
and estimate, û, pair is

Ppos(u|r) = N(u; û,Σ). (8)

N(u; û,Σ) denotes a normal distribution function with mean

û and noise covariance matrix Σ ∈ R
2×2 = diag{σ2

u, σ
2
v}.

We use silhouette points to estimate shape. Consider

a point ui =
[

ui, vi

]T
on the silhouette of an ob-

ject in the image plane. We wish to find the probability

p(ui|r,x,K). Given that r,x and K project an extremal

contour {(uj , vj)|(uj , vj) ∈ C, j = 1, ..., nc} where nc is the

number of points in the contour, we can write the probability

as p(ui|C). The probability of a point on the silhouette ui

given contour C (assuming that measurements are normally

distributed about the true state) can be written as the sum

p(ui|C) =
∑

uj∈C

N(ui;uj ,Σ),

where uj =
[

uj , vj

]T
. The likelihood function for shape

P l
sha for camera l is the product of probabilities over all the

silhouette points

P l
sha =

∏

ui∈s

p(ui|C). (9)

TABLE I

PARAMETER VALUES USED FOR TRACKING

Parameter Value Parameter Value

σu 3.0 pixels σq 2.0 rad/s
σv 3.0 pixels σh 0.20 rad/s
σK 0.01 σw 0.001 rad/s
σs 5 mm/s λ 10

The contours that align with the silhouette will always

have a point on the silhouette and are consequently weighted

the highest. In a multi-camera setup, where multiple per-

spectives of a scene are captured at the same instant, the

combined likelihood function is a product over the likelihood

for all cameras, Psha =
∏

l P
l
sha. Fig. 3 shows an example

of weighting contours using the shape likelihood function.

Note that position and shape likelihood functions are not

independent since silhouette points depend on the position of

a target in space. We use a position-only likelihood function

in scenarios where it is difficult to use shape information

such as during occlusions. Due to symmetry in the shape

representation there is a forward-backward ambiguity in the

likelihood function.

For the first time step, the particle filter is initialized man-

ually and the length of each fish is assigned. Measurement-

target association performed at each step is based on the

position-only likelihood function. If the projected extremal

contours of two targets overlap within a camera frame, an

occlusion is assumed and samples are weighted on the basis

of position only. When a target is again found in at least two

cameras without occlusions, the heading x and curvature K
are interpolated from the last time-step without occlusion.

The particle filtering algorithm for tracking multiple fish is

described below.

Initialize a set of samples N for each target j as a normal

distribution about the initial value. For each time-step k:

1. For each target i and a set of validated measurements

based on a suitable gating volume [23], compute βij using

(1).

2. For each target i

a) Compute particle weights and normalize for all mea-

surements Z[k] at time step k, according to

w̃i =
∑

j∈Z[k]

βijPm; wi = w̃i[

Nt
∑

p=1

w̃i,p]
−1,

where Pm = Ppos if the target is occluded and Pm =
Psha otherwise.

b) Resample using normalized weights wi.

c) Estimate the output by computing the mean of each

parameter over all sample values.

d) Propagate each particle using motion model (7).

IV. EXPERIMENTAL METHODS AND RESULTS

Obtaining ground truth is not possible for all the pa-

rameters that we wish to estimate. In order to characterize

the performance of our tracking algorithm, particularly the

likelihood function and motion model, we run it on a single
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Fig. 4. Results from 25 Monte Carlo runs of a single fish simulation.
Errors plotted as dots are shown for position, heading and curvature. For
heading the angle between the estimated vector and true value is shown.

simulated fish. The simulated motion is generated by (6)

and the shape is constructed using the method described in

Section III-A. Fig. 3 shows a few steps in such a simulation.

At each step, the extremal contours were projected onto two

different camera planes and peppered with pixel noise having

Σ = diag{2, 2}. These contours were used as silhouette

measurements for the tracker. Fig. 4 shows the results from

25 Monte Carlo runs of the algorithm using five hundred

samples with a time-step of 1/15 seconds for 5 seconds each.

For our laboratory experiment we tracked six giant danios.

These schooling fish are 4–5 cm long. The fish were moved

from a 20 gal tank into a 300 gal (1.2 m wide and 0.91

m deep) tank and kept there for a few days to acclimatize.

Schooling behavior was observed soon after the fish were

moved into the large tank. Four CWC-620WP Speco cameras

were mounted on the inside wall of the tank such that

the maximum volume was covered. (Three cameras were

mounted at the bottom, middle and top levels spaced at

120 degree intervals. The bottom and top cameras were at

an inclination pointing into the tank. A fourth camera was

mounted on top opposite to the other top camera.) Intrinsic

calibration was performed using the MATLABTM calibration

toolbox [5]. Extrinsic calibration was performed by moving

a checkerboard between the cameras and propagating the

extrinsic parameters,
[

R t
]

, between overlapping camera

views until all camera positions and orientations were known

with respect to a common inertial frame.

Noise in images was a major concern despite the labo-

ratory conditions. Changing lighting effects in water gave

rise to glare and clutter in images. The background was

modelled as a running Gaussian average at each pixel [27].

The silhouettes were obtained using a Canny edge detector

on the binary image after filling up any dark pixels.
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Fig. 5. Tracking results with real data for position only. The plot shows
the absolute position error for each fish.

Verification of results: The results for position tracking

were verified using a GUI created in MATLAB in which a

user can click on fish and perform the association manually.

User marked centroid positions were then used to output a

least-squares estimate of position and projected back on to

the images for verification. Shape was verified by projecting

the occluding contour on the image plane and comparing

with the silhouette measurement.

Results & discussion: We are able to automatically

track position of all six fish despite occlusions for over forty

frames. Fig. 5 shows the error norm of difference between

the position vectors and user-verified (ground-truth) data for

all six fish. The tracker’s performance often degrades during

extended occlusions or when the fish are not visible in at

least two cameras, as can be seen in Fig. 5 for the purple

fish after frame 20 and, for the green fish, after frame 35.

Shape estimation (Fig. 6) is highly dependent on mea-

surements, which were often noisy. Not all fish shapes

were tracked well. Errors can be attributed to occlusions,

quick turns and inexact shape representation. We can address

occlusions by using cameras with large field of view, which

ensures that the fish stay within two cameras. Quick turns can

be addressed using high-speed camera to track shape during

fast maneuvers. Lastly, a better approximation of shape can

be made by using bends that are not necessarily about the

center of a fish body by introducing an additional parameter

in the bent-ellipsoid equation, (2).

V. CONCLUSION

We describe a probabilistic framework to estimate position

and shape of multiple fish in a school using underwater

cameras. This framework will be used to quantitatively ana-

lyze fish-schooling kinematics during subsequent behavioral

experiments. We mathematically model fish shape using a

bent ellipsoid with time-varying curvature. We develop an

expression for the extremal contour of such a shape under

perspective projection. We use a motion model with constant

speed and curvature-dependent turning rate in the body

frame. The tracking algorithm uses a particle filter with joint

probabilistic data association to estimate shape.

As part of ongoing work we are exploring methods to

improve shape estimation and track more targets. A prob-

abilistic framework allows us to include a high resolution

camera to augment the shape estimation. We also intend to

detect occlusions and compensate for them. In order to track
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Fig. 6. Tracking results for shape. The bent ellipsoid shape is projected back onto two cameras at five different time-steps. Black arrows represent heading.
A target track is lost during occlusion in the 30th frame

larger datasets these algorithms may be implemented on a

parallel processing architecture such as CUDATM.
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APPENDIX

EQUATION FOR A BENT ELLIPSOID UNDER PERSPECTIVE

PROJECTION

A bent ellipsoid as seen from the camera frame is a

trivariate equation in r1, r2, r3 where r =
[

r1, r2, r3
]T

is

a point in the camera frame. Setting r = L(t) as a function

of scaling parameter in t we get a fourth-order polynomial

equation in t of the form p4t
4+4p3t

3+6p2t
2+4p1t+p0 = 0.

The coefficients pi, i = 0, ..., 4, of the above polynomial are

(subscript C is dropped from QC for clarity):

p0 =Q4,4 +
1

b2
(K2T 4

1,4 − 2KT2,4T
2
1,4)

4p1 =2lTQ1:3,4 +
1

b2
(4K2(T1,1:3l)T

3
1,4 − 2K(T2,1:3l)T

2
1,4

− 4KT2,4(T1,1:3l)T1,4)

6p2 =lTQ1,1:3l +
1

b2
(6K2(T1,1:3l)

2T 2
1,4−

4K(T2,1:3l)(T1,1:3l)T1,4 − 2KT2,4(T1,1:3l)
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4p3 =
1

b2
(6K2(T1,1:3l)

2T1,4 − 2K(T2,1:3l)(T1,1:3l)
2)

p4 =
K2
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