
  

  

Abstract—This paper describes a DSP integration of sound 
source localization (SSL) and multi-channel Wiener filter 
(MWF). To develop a robot audition system, we integrated SSL 
module and MWF module into a DSP system. SSL is a module 
to perceive the direction of a human user’s call. It measures time 
delay of arrival among microphones and estimates the direction 
of sound source. Also, it post-processes the resulted estimations 
of direction by histogram to perceive the direction robustly 
under noisy environment. MWF is a module to reduce back-
ground noises from raw voice signal to enhance the performance 
of robot’s speech recognition. It gathers information of back-
ground noises during noise-period and then reduces noises 
during voice-period. This SSL-MWF combination system will 
be a cheap, high-performing and convenient solution for robot 
audition. 

I. INTRODUCTION 

OBOT audition systems are commonly composed of 
microphone array, sound amplifier, A/D converter, and 

computer for various sound signal processing. But this 
PC-based system is not convenient and efficient in the ro-
botics. A heavy and power-consuming system deteriorates 
the portability and battery duration of robots. Instead of the 
PC-based system, we designed a set of small and optimized 
boards for a robot audition system, which consists of Sound 
Localization Processing board (SLP) and Nonlinear Ampli-
fying Board (NAB). It is convenient to attach to various robot 
systems because it is a completely independent audition 
module. As indicated by their names, the SLP is a DSP board 
for signal process performing sound source localization 
(SSL), and the NAB is a data acquisition board equipped with 
nonlinear amplifier. Fig. 1 shows the whole SLP & NAB 
system using a 3-channel microphone-array. SLP has a high 
performance DSP chip and convenient developmental envi-
ronment serviced by Analog Device Company. NAB has 
synchronized A/D converters and gain-variable amplifier. 
This optimized hardware system can reduce the burden on 
software, and minimize computational overhead and delay by 
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simultaneously receiving real-time speech signals from mul-
ti-channel microphone array. 

 
We have developed SSL algorithm on a set of SLP & NAB 

[1-3]. SSL is an algorithm estimating the direction of sound 
source, mainly speaking person, using the time delay of ar-
rival (TDOA) among microphones. However, TDOA is 
vulnerable to background noise, interfering sound, and re-
verberant sound. There exist numerous approaches to estab-
lish a robust SSL algorithm. To relieve this problem, Kalman 
filters [4], Bayesian networks [5], Sequential Monte Carlo 
method [6], and particle filters [7] have been proposed. We 
introduced a reliable detection method by transforming 
cross-correlation into a spatial function [1]. A post-process 
using histogram is applied to our method to achieve robust 
localization results. 

In this paper, we add a speech enhancing process, mul-
ti-channel Wiener filter (MWF) to our DSP system. Noise 
reduction is very important in the case of distant or hands-free 
speech acquisition system such as robot audition. Hence, 
there have been many researches on noise suppression for 
several decades. Among them, beam-former and Wiener filter 
are regarded as typical noise reduction techniques. Mul-
ti-channel Wiener filter has been shown to provide better 
performance than the standard beam-former [8]-[10]. More 
recently, GSVD (Generalized Singular Value Decomposi-
tion)-based subspace approach is developed for multi-channel 
Wiener filter [9]. The underlying principle of subspace ap-
proach is based on the low-rank subspace model of speech 
signal. The vector space of noisy input signal is decomposed 
into signal and noise subspace and the noise reduction is 
achieved by removing the noise subspace. In this paper, we 
present an embedded multi-channel Wiener filter (e-MWF) 
which is also based on the subspace decomposition using 
generalized eigen-value problem in the frequency domain.  

By integration of SSL and e-MWF, we could achieve a 
small and efficient robot audition system which can notify the 
robot’s main PC of the direction of detected sound source, 
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Fig. 1.  SLP & NAB system. SLP board is piled up above NAB 
board. Triangular microphone array is connected to NAB board.  
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and simultaneously provide enhanced speech signal for ro-
bot’s speech recognition engine. In the rest of this paper, we 
explain more details about our DSP hardware system, SSL 
algorithm and e-MWF algorithm, and present experimental 
results of our robot audition system. 

 

II. HARDWARE ARCHITECTURE 
 

Our hardware is composed of two parts. One is NAB 
(Nonlinear Amplifying Board) that amplifies sound signals 
and digitizes amplified sound signals. The other is SLP 
(Sound Localization Processing board) that processes digi-
tized sound signals. Fig. 2 shows the system architecture. 

 
A. Microphone Arrangement 
We have pursued small and efficient robot audition system. 

We use an array of three microphones because a 
3-microphone-array is the smallest structure which doesn’t 
make an ambiguity in determining the sound source direction. 
When 2-microphones is used, there are two cases having the 
same TDOA (Time delay of arrival) which make front-back 
confusion. We placed microphones L, C and R at equi-spaced 
points as shown Fig. 3. Two of them make an angle of 120 
degrees. The symmetric positions of microphones make lo-
calization performance less partial over all directions.  

 
B. NAB (Nonlinear Amplifying Board) 
NAB is composed of two parts, that is, nonlinear amplifier 

and codec as shown in Fig. 4. It can support 4-channel signal. 
1) Amplifier: NAB has a non-linear amplifier, SSM2166 

chip. We can change the compression ratio to capture low-dB 
voice or avoid saturation of loud voice. But in this paper, we 
set the compression ratio as linear amplification because of 
speech enhancement process, MWF. The SSM2166 has two 
resistor values for compression ratio and amplification ratio. 
We can change them in a run-time using digital potentiometer 
which is controlled by SLP. 

2) Codec: Amplified analog signals pass through a codec, 
AD1836. The codec converts analog signal into 16 kHz dig-
ital signal. After conversion, it sends the outputs to the SLP 
module through TDM port. 
 

 
C. SLP (Sound Localization Processing board) 
We have developed SLP module using Blackfin processor 

(BF533) of Analog Device Company. The overview of SLP is 
given by Fig. 5. It has ADSP-BF533 for main processor, flash 
memory for local memory, SPI port for auto gain control of 
NAB, UART port for PC interface, and TDM port for codec 
(AD1836). SLP has features of low power, high performance, 
adaptively embedded system of small-size and convenient 
developmental environment serviced by Analog Device 
Company. It is a suitable system for implementing not only 
SSL algorithm but also any other process on robot audition. 

 
 

III. SOUND SOURCE LOCALIZATION 
 
Background noises, many interfering noises from radio, 

TV, car, etc., and reverberant sounds cause critical errors in 
measuring TDOA (Time Delay of Arrival) among micro-
phones. To localize a sound source robustly, we use a reliable 
detection method by transforming cross-correlation into a 
spatial function and histogram method.  

To measure TDOA of a sound source, we calculate the 
cross-correlation between two microphones.  It is a typical 
way of TDOA measurement to search the maximum point of 
the cross-correlation. But we use not only the maximum 
point but also all the other points of the cross-correlation to 
set up our spatial function which scores the count of exis-
tence value at every direction. 

Let [ ]Lx n , [ ]Cx n  and [ ]Rx n  be signals from microphones 
L, C, and R, respectively. Cross-correlations are given by (1). 

 

 

 
 

Fig. 5.  SLP (Sound Localization Processing board) 

 
 

Fig. 4.  NAB (Nonlinear Amplifying Board) 

 
Fig. 3.  Microphone arrangement 

 
Fig. 2.  System Architecture 
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We need to calculate the (1) only over the possible index 

k’s which are determined by the distance between micro-
phones, the sampling frequency sf , and sound speed soundv  in 
the air. 

Next, we are going to transform [ ]LC kr , [ ]CR kr , and [ ]RL kr  
into functions of θ . So, we need a mapping from k into θ  
such as (2). 
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,where S is the sound source placed at the azimuth angle of 

θ . Using (2), we define a spatial function which indicates 
where a sound source exists “strongly” such as (3). 
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To get a more reliable spatial function, we modify (3) into 

(4) by a threshold thR . 
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Finally, we can estimate the direction of sound source by 

calculating a centroid of ( )R θ  as follows. 
 

( )
ˆ

( )

R

R
θ

θ

θ θ
θ

θ

⋅
=
∑
∑

                                        (5) 

 
Our system processes 3-channel signal by 320-sample 

frame and the sampling frequency is 16 kHz, thus one frame 
is just 20ms long. It is too short to achieve a good localization 
result. Post-processing is required to get a better localization. 
For the post-processing, we first gather the estimated angles 
from each frame within a voice segment. In our old system, 
we took the average of the gathered angles. Now, we changed 
the post-processing from the average into a histogram method 
– building the histogram of the gathered angles and then 
taking the mode of the histogram. This new post-processing is 
more effective than the old one. It will be shown in the part of 

simulation and experiment. 
 

IV. MULTI-CHANNEL WIENER FILTER 
 

A. Multi-channel Wiener Filter 
To get a clean speech signal from distant microphone-array, 

we used multi-channel Wiener filter (MWF) as a noise re-
duction method. MWF is a useful method for reducing sta-
tionary noise from noisy signal. 

For convenience, we change the notation of L, C, and R 
microphones into 1st, 2nd, and 3rd microphones. A 
three-channel signal can be expressed such as (6). 

 
( ) ( ) * ( ) ( ) ( ) ( ), 1, 2, 3i i i i iy t h t s t n t x t n t i= + = + =          (6) 

 
, where ( )iy t denotes the observed signal at the ith microphone 

at time t, ( )ix t  and ( )in t  are speech and additive stationary 

noise components, respectively, ( )s t  is the desired speech 

source and ( )ih t  is the acoustic transfer function from the 
speech source to the ith microphone. The frequency domain 
vector representation of (6) is 

 
1 1 1

2 2 2

3 3 3

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

Y f H f N f

f Y f S f H f N f

Y f H f N f
S f f f f f

= = +

= + = +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Y

H N X N

                   (7) 

 
, where ( )iY f , ( )iH f , ( )S f , ( )iN f , and ( )iX f are the 

Fourier transforms of ( )iy t , ( )ih t , ( )s t , ( )in t , and ( )ix t  re-
spectively. 

The MWF (Multi-channel Wiener Filter) is optimal in the 
sense of minimum mean square error (MMSE) between the 
estimated signal and the desired source. If we estimate the 
speech component at the first microphone and assume that the 
speech and noise signals are uncorrelated, the MWF in the 
frequency domain is expressed as follows. 
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B. Subspace-based MWF 
The rank of the narrow-band spatial covariance matrix 

(NSCM) of ( )fX is theoretically equal to 1 because of (9). 
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Hence, we are going to make the estimated NSCM of 
( )fX , i.e., ( ) ( )f f−YY NNR R  to be a rank-1 matrix. If we 

assume that ( )fNNR  is not rank-deficient, ( )fYYR  and 

( )fNNR  can be jointly diagonalized by solving the genera-
lized eigenvalue problem such as 

 
( ) ( ) ( ) ( ) ( )
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f f f f f

f f f f
f f f f

=

=
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R Q R Q Λ
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                   (10) 

 
, where ( )fQ is an invertible, but not necessarily orthogonal 

matrix and, ( )fΛ , ( )fYΛ , and ( )fNΛ are diagonal matrices. 
Using (10), we can obtain the subspace-based MWF equation 
of (11) instead of the original MWF equation of (8).  

 
1 1

1( ) ( )[ ( ) ( )] ( )f f f f f− −= − Y NW Q I Λ Λ Q e               (11) 
 
From (11), we just need to solve (10) to get MWF’s filter 

coefficients ( )fW . ( )fYYR  and ( )fNNR can be easily 
measured if a voice activity detector (VAD) is equipped. 
Within background noise segment, ( )fNNR is measured, 

while within voice segment, ( )fYYR is measured. After 

measuring ( )fYYR  and ( )fNNR , we can solve (10) by a 
conventional iterative method. 

 

V. EMBEDDED ROBOT AUDITION 
 
We have developed an embedded robot audition system 

based on DSP system. Once, SSL (Sound Source Localiza-
tion) is implemented [3], now MWF (Multi-channel Wiener 
Filter) for noise reduction is added to the same system. Hence, 
we are going to focus more on the implementation of e-MWF 
(embedded MWF) than embedded SSL. 

 

A. Overview of our Robot Audition System 
Our integrated system is shown in Fig. 6. The integrated 

system can notify the robot’s main system of the angle of 
detected sound source, and provide enhanced speech signal 
for the robot’s speech recognition engine at the same time. As 
mentioned before, its sampling rate is 16kHz and its frame 
size is 320 samples (frame time is 20ms). Frame sliding size 
is 240 samples and successive frames overlap each other by 
80 samples. In this frame strategy, our DSP system should 
process one frame in less than frame sliding time (15ms). 

 
B. Two problems of DSP 
There are two problems about DSP implementation of 

robot audition system in Fig. 6. One is an inaccurate FFT 
function of DSP and the other is lack of float point unit (FPU) 
in DSP. Inaccuracy of FFT results from the lack of FPU. DSP 
library provides only FFT functions using 16-bit fixed point 
operation. These FFT functions do one-bit right shift after 
every multiplication of FFT algorithm to avoid overflow. 
That means loss of lower bits proportional to the logarithm of 
frame size because FFT algorithm has 2log N  multiplica-
tions if frame size is N. For this reason, its output is very poor 
when N is larger than 64 as shown Fig. 7. 

It doesn’t matter for SSL module because our SSL doesn’t 
need FFT and can be performed enough with fixed point 
operations. However, these problems are very severe for 
MWF module because it is operated in frequency domain and 
its iterative method is too delicate to be operated by fixed 
point. As iteration goes on, the error caused by fixed point 
operation grows and iteration diverges. 

 

C. Modifying FFT of DSP 
There are two choices for FFT function problem. One is to 

utilize the inaccurate FFT function of DSP library. The other 
is to make a more accurate user function of FFT. The latter 
seemed more reasonable and we could make a good FFT 
function using 32-bit fixed point operation. But it has another 
problem, that is, time. It was much slower than FFT of DSP 
library. It took almost 2ms to FFT 512-sample signal. (The 
frame size is 320 samples but generally FFT requires input 
signal length to be a power of 2. 512 is the smallest larger than 
320.) Our system has 3 channels and we need three times of 
FFT. It is not acceptable to spend 6ms of 15ms for just FFT. 

Hence, we went back to the FFT of DSP library. Anyway, 
it is fast and its inaccuracy is tolerable if the signal length is 
less than 64. We tried to make a desired FFT function based 
on 64-point FFT of DSP library. It could be realized by (12).  
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We made a 320-point FFT function by combining five 

64-point FFTs and it took 1ms to do 320-point FFT for all 3 

Fig. 6.  Integrated System 
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channels. Its FFT example is shown in Fig. 7-(d). 

 
D. Filter sharing of neighboring frequencies. 
For the second problem of DSP, there is a bad solution, to 

use float point operations emulated by fixed point operations. 
It is provided by DSP compiler implicitly but it is very slow 
because of lack of float point unit (FPU). It is why we express 
it a bad solution. However, MWF is so complicated that float 
point operation is indispensable. 

Now, the problem is changed into how to meet the limit of 
processing time, 15 ms. Fortunately, the measured processing 
time of e-MWF (embedded MWF) is 11.44 ms per frame. 
Since the processing time of e-SSL (embedded SSL) is just 2 
ms, it is no problem to meet the time limit. However, we have 
a plan beyond the system shown in Fig. 6. Actually, our next 
goal is to integrate one more module, a simple speech re-
cognizer, on DSP. Therefore, we need a way to reduce the 
amount of MWF computation. We propose a filter sharing 
method to reduce the number of frequency bin in which the 
MWF filter coefficients, ( )fW  are calculated. Since the 
neighboring frequencies are very similar to each other, it is 
reasonable and effective to share neighboring filters. When 
choosing frequencies of which filter is just copied from 
neighboring frequency, mel-scaled frequency was regarded 
since our robot speech recognizer uses MFCC 
(Mel-frequency Cepstral Coefficient). Hz-frequency is 
transformed to mel-frequency by (13). 

 
( )1127.01048 ln 1 / 700m f= +                    (13) 

 
As shown Fig. 8, equi-spaced Hz-frequencies are mapped 

unevenly spaced mel-frequencies. Higher mel-frequencies 
are denser than lower mel-frequencies. Therefore, more 

sharing filters in higher frequencies would minimize the loss 
of MFCC features. Since the frame size is 320 samples, there 
are 161 frequency bins. (we need to process just half of fre-
quencies because of its symmetry.) When sharing filters of 40 
frequencies (25% sharing), the processing time of MWF is 
reduced to 8.98 ms per frame. 

 

VI. SIMULATION AND EXPERIMENT 
 

A. Performance of e-SSL 
We tested our embedded SSL (e-SSL) system in noisy 

environment. In a demo room, we prepared a TV and an 
air-conditioner which were noise sources. We made various 
noise conditions by changing the volume of TV or turning on 
the air-conditioner. In each case, the utterance of “Hello, 
H-robot, come here” spoken by an audio system is kept louder 
than the noise signal by 15dB. This is from an assumption that 
most users might call their robot loudly enough if they are in 
noisy environment. Success rates are measured with 15 
deg.-error and 30 deg.-error. The error tolerance is deter-
mined regarding the robot’s field of view in its vision sensor. 
As long as SSL error is less than 30 deg., robot is likely to find 
out its user using the vision system. The result is given by 
Table I. Two different post-processing methods are compared. 
The one is our old method which is to take the average of 
gathered angles and the other is new method which is to take 
the mode value of gathered angles using histogram. 

The result shows the histogram method is much better than 
the average method. The histogram method didn’t fail, while 
the average method was very subjective to TV noise. It seems 
that the average method compounds desired angles and un-
desired angles and concludes an irrelevant angle, while the 
histogram method preserves desired or undesired angle val-
ues and concludes the predominant angle which might come 
from the real source. 

 
B. Performance of e-MWF 
We had a simulation to measure the performance of our 

embedded MWF (e-MWF). Its performance is measured by 
noise reduction ratio. Since e-MWF was added to our robot 

 
TABLE I 

EXPERIMENT : SUCCESS RATE OF SSL 
Condition Average method Histogram method 

Quiet 47dB 100% (100%) 100% (100%) 
TV 53dB 27.3% (61.4%) 100% (100%) 
TV 57dB 14.0% (41.9%) 100% (100%) 
TV 60dB 7.0% (41.9%) 100% (100%) 

Air-conditioner 54dB 100% (100%) 100% (100%) 
Total 50% (69.3%) 100% (100%) 

Each case has 43~44 utterances of  “Hello, H-robot, come here.” 
and total 218 utterances are tested. The utterances are spoken 15dB 
louder than noise at the azimuth angles of 0, 90, 180 or 270 deg. in the 
3m distance. SSL is regarded successful if the error of SSL is less than 
or equal to 15 deg. or 30 deg. The success rate of 15 deg. error is 
written without parentheses, while that of 30 deg. error is written 
within parentheses. 

 
Fig. 8.  Hz-frequency vs. Mel-frequency 
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(a) 64 points                                 (b)128 points 
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(c)512 points                              (d)320 points 

Fig. 7.  FFT-IFFT results of rectangular pulse: (a)-(c) use the original 
FFT function, and (d) uses a combination of five 64pt FFT functions. 
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audition system to enhance the performance of robot’s speech 
recognition which uses MFCC features, we measured how 
much MFCC distortion was reduced by MWF filters. To 
measure MFCC distortion, we need the original clean signals. 
However, in real situation, it is difficult to obtain the clean 
signal and to measure the performance of e-MWF objectively. 
It is the reason we had a simulation instead of a real experi-
ment. The result is given by Table II. We compared the per-
formances of PC version of MWF, e-MWF and filter-sharing 
e-MWF. In Table II, the performance of PC MWF is the best 
as expected. But the performance of e-MWF is very close to 
that of PC MWF. The difference is just 1.14% points. Also, 
the filter-sharing e-MWF is close to that of PC MWF and the 
difference is 4.13% points. This result shows that fil-
ter-sharing is an effective way to reduce the processing time 
of MWF. We could save 2.46ms per frame at the cost of 
2.99% points of noise reduction ratio.  We provide an exam-
ple of e-MWF result in Fig. 9. It shows visually how effective 
e-MWF is. The spectrogram of source signal has a clear 
sound pattern and it could be almost restored by e-MWF. 

 

VII. CONCLUSION 
 
We integrated SSL (Sound Source Localization) and MWF 

(Multi-channel Wiener Filter) into an embedded system. Not 
only it could operate in real-time, but also it showed high 
performance. The e-SSL module using histogram 
post-processing could cope with the difficulties in the noisy 
environment and the e-MWF module suppressed the noise 
level effectively in the noisy speech signal and was expected 
to enhance the performance of robot’s speech recognition 
engine. Our embedded robot audition is suitable for various 
portable robot systems because of its compactness and effi-
ciency. Our next plan is to add a simple word recognition 
module into this embedded system. 
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TABLE II 
SIMULATION : NOISE REDUCTION RATIO OF MWF 

SNR Sentence MWF (PC) e-MWF e-MWF 
(25% sharing) 

20dB 1 55.73 % 38.75 % 37.15 % 
 2 29.58 % 29.68 % 28.96 % 
 3 47.36 % 41.68 % 39.90 % 
 4 44.70 % 38.76 % 36.88 % 
 5 28.49 % 25.17 % 25.27 % 

10dB 1 51.98 % 47.11 % 44.80 % 
 2 44.68 % 48.08 % 44.63 % 
 3 54.01 % 53.61 % 48.72 % 
 4 42.62 % 43.94 % 39.41 % 
 5 44.90 % 42.78 % 40.36 % 

0dB 1 37.58 % 38.69 % 36.69 % 
 2 36.35 % 37.04 % 33.79 % 
 3 41.41 % 41.82 % 38.18 % 
 4 29.35 % 31.64 % 27.32 % 
 5 37.45 % 39.06 % 35.32 % 

Total  41.47 % 40.33 % 37.34 % 
By simulation, 3-channel signals are generated from 5 

mono-signals and white Gaussian noise is added to them in various 
SNR conditions. 

The performance of MWF is measured by reduction ratio of MFCC 
feature distortion. When s, x, and z are the MFCC of source signal, 
noisy signal, and MWF output, respectively, the noise reduction ratio 
is given by 

 

( , ) ( , ) *100(%)( , )
dist s x dist s z

dist s x
−

 . 
 

       (a)Source signal           (b)noisy signal          (c) e-MWF output 
Fig. 9. Spectrograms of sentence 3 (SNR 10dB)
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