
Automatic Reconstruction of Textured 3D Models

Benjamin Pitzer, Sören Kammel, Charles DuHadway, and Jan Becker

Research and Technology Center North America

Robert Bosch LLC

Palo Alto, California

Abstract— This paper describes a system for automatic
mapping and generation of textured 3D models of indoor
environments without user interaction.

Our data acquisition system is based on a Segway RMP plat-
form which allows us to automatically acquire large amounts
of textured 3D scans in a short amount of time. The first data
processing step is registration and mapping. We propose a
probabilistic, non-rigid registration method that incorporates
statistical sensor models and surface prior distributions to
optimize alignment and the reconstructed surface at the same
time. Second, in order to fuse multiple scans and to recon-
struct a consistent 3D surface representation, we incorporate a
volumetric surface reconstruction method based on a oriented
point. For the final step of texture reconstruction, we present a
novel method to automatically generate blended textures from
multiple images and multiple scans which are mapped onto
the 3D model for photo-realistic visualization. We conclude our
report with results from a large-scale, real-world experiment.

The most significant contribution of this research is a
functional system that covers all steps required to automatically
reconstruct textured 3D models of large indoor environments.

I. INTRODUCTION

3D representations of environments are important for a

wide variety of current and future applications: autonomous

navigation of robots, architecture, cultural heritage, crash

and crime site reconstruction, and many more. Emergency

planning, facility management, surveillance and real estate

applications significantly benefit from 3D maps of building

interiors. Creating such models from blueprints is a tedious

task and hard to automate since many buildings do not com-

ply with the blueprints created by their architects. And even

accurate blueprints do not contain furniture or appliances

added after the building construction.

Today, the digital modeling process of such sites is still

primarily done manually. Because working time is expensive,

these models typically lack details that might be vital for

applications such as autonomous robot navigation.

In contrast, a fully automated 3D data acquisition and

model generation involves the following complex compo-

nents:

• automated acquisition of range and image data

• fusion of data from different viewpoints

• integration of range and image data into a a single

consistent model

• simplification and smoothing of the model for visual-

ization and storage

In this paper, we address the first three components and

present a working system for the automatic reconstruction

Fig. 1. The scanning platform is based on a Segway RMP, equipped with
two laser range finders for navigation and 3D scanning respectively, a digital
SLR camera for texture acquisition, and two on-board computers for data
processing.

of textured 3D models.

A. State of the Art and Related Work

The reconstruction of 3D models for robot navigation

gained significant interest in robotics research over the past

years. The progress in this field is mainly based on recent

innovations on statistical techniques for robotic mapping and

localization. Several successful algorithms emerged, among

them CEKF [1], SEIF [2], FastSLAM [3], MLR [4], TJTF

[5], and Stochastic Gradient Descent [6], which are all capa-

ble of generating maps of large scale environments. Nearly

all state of the art methods assume robot operation in a two-

dimensional environment and therefore three parameters (2D

position and heading) are sufficient to describe the robot’s

state. Just recently researchers are extending solutions to full

6 DoF poses [7] and mapping of 3D environments [8].

Many research groups use 2D laser range finders to build

3D map representations. Often, a combination of horizontally

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 3486

and vertically mounted scanners are used and localization of

the robot and registration of the data is performed in 2D [9],

[10]. The mobile robot Kurt3D [11] is among the first robots

capable of building 3D maps by registering the data in 3D.

While in the robotics community laser range finders are

predominant for accurate mapping tasks, in the computer-

vision domain, researchers have developed powerful algo-

rithms to reconstruct 3D models from photographs. Multi-

view stereo (MVS) [12] is one of the most successful

approaches which produces dense models. Another notable

example is Furukawa et. al [13], who presented a fully

automated 3D reconstruction and visualization system for

architectural scenes based on camera images. Although sig-

nificant progress to improve the robustness of computer-

vision reconstruction approaches was made in the past years,

the approaches yet cannot compete with the accuracy of laser

range finders. Specifically, textureless scenes which are often

found in indoor environments remain very challenging.

Our reconstruction approach is similar to existing ap-

proaches [14], [15]. The RESOLV project [14] aimed at

modeling interiors for virtual reality and tele-presence and

used a RIEGL laser and the well known ICP algorithm [16]

for scan matching. However, their approach was designed to

reconstruct small (single-room sized) environments; operat-

ing on the scale of a full office floor poses a major challenge.

The AVENUE project [15] targeted the automation of the

urban environment modelling process and used a CYRAX

laser scanner and a feature-based scan matching approach

for registration of the 3D scans.

B. Overview

In the following, we present a system that enables the

automatic creation of 3D models of large environments in

a short amount of time. Fig. 2 shows the complete recon-

struction process. The process is divided into the five steps

exploration, data acquisition, global registration, surface

reconstruction and texture reconstruction.

The exploration contains functions that enable the robot

to autonomously navigate and explore the environment. This

includes online 2D mapping for localization and collision

avoidance, planning of view points for data acquisition, and

navigating in between 3D scans. Data acquisition comprises

the acquisition of the laser scans from a panning lidar sensor,

which are then merged into 3D scans. The digital still camera

simultaneously acquires images, which are undistorted using

an offline camera calibration and subsequently merged into a

circular panorama. The global registration step aligns the 3D

points from the individual scans into a consistent map using

a joint registration and reconstruction algorithm. A unique

surface represented by a triangulated mesh is then generated

using volumetric surface reconstruction. Finally, textures are

generated from still images and blended over the mesh in the

texture reconstruction step.

C. The Experimental Scanning Robot

For our experiments we use a Segway RMP robot as

shown in Fig. 1. The RMP can carry loads up to 50 kg

Fig. 2. Overview of the reconstruction and modelling process.

over a range of 15km. For the purpose of high-quality mea-

surements, we equipped the RMP with an additional castor-

wheel and disabled the dynamic stabilization. To collect data

and perform online mapping and exploration, two on-board

Mac Mini computers (2.0GHz Core 2 Duo processor, 1GB

RAM) are mounted under the base plate. The computers use

the open-source Robot Operating System (ROS) [17] which

provides a structured communications layer above the host

operating system (linux in our case).

II. EXPLORATION

A. 2D Mapping and Localization

For navigation, exploration, and localization purposes the

robot builds and maintains a 2D map of its environment.

The main sensor for this system is a horizontally mounted

SICK LMS200 laser range finder (cf. Fig. 1). The laser

readings and wheel odometry are sent to a SLAM module

based on GMapping [18] which constructs a consistent high

resolution 2D grid-based map of the environment suitable

for path planning.

B. View Point Planning

Frontier based exploration [19] is used to provide active

exploration of the robot’s environment. An additional 2D

grid map is maintained to record which parts of the envi-

ronment have been observed. Boundaries between observed

and unobserved regions (frontiers) are used as goal points for

the robot’s navigation system. Upon arriving at a goal point

3487

the robot will perform a full 3D scan of its environment

and update its exploration map. New boundaries and goal

points will then be calculated. This process repeats until no

reachable frontiers remain.

III. DATA ACQUISITION

A. Sensors

The range measurement component of this scanning sys-

tem consists of a SICK LMS200 laser range finder which

is mounted on a pan-rotation unit such that the plane of the

laser’s sweep is aligned with the vertical axis. The LMS

unit provides accurate measurements up to a range of 30

meters over 180 degrees and with 1/2-degree resolution.

Panning the laser 360 degrees about the vertical axis yields

a spherical range image as shown in Fig. 3. The panning

speed is adjusted to also yield a 1/2-degree scan resolution.

A digital still image camera equipped with a fish-eye

lens is mounted on the same rotation unit opposite of the

laser. This setup allows the system to capture high-resolution

pictures of the scene while panning. Because of the camera’s

wide field-of-view it only needs to take six pictures to cover

the scanned space.

B. System Calibration

In order to fuse data from different scan positions and

texturize the point data obtained from the laser range finder,

the camera’s intrinsic and extrinsic parameters as well as

the laser range finder’s pose have to be determined. The

intrinsic camera parameters were estimated using the method

described in [20] assuming a pin-hole camera model with

three radial and two tangential distortion parameters. The

camera pose relative to the lidar is determined from corre-

spondences of 3D points from the laser range finder with

image pixels from the camera. The correspondences are se-

lected manually from several camera views and a panoramic

range image. The extrinsic parameters are calculated from

the point correspondences by minimizing the reprojection

error [20].

C. Point Cloud Generation

A three-dimensional point cloud is generated by panning

the laser and associating each vertical scan line with its pan

angle. Since the raw scan data is not sampled equidistantly,

it is resampled into an equidistant spherical grid. Each grid

cell contains the distance measurement which is closest to the

center of the cell. Measurements inside a cell are not aver-

aged since this would cause artifacts at depth discontinuities.

Some cells in the depth grid may not contain any valid depth

measurements if an object is out of range or if the laser beam

hits an absorbant surface and never returns. Those cells are

marked invalid in subsequent processing steps.

IV. GLOBAL REGISTRATION

Multiple 3D scans are necessary to digitize large en-

vironments without occlusions. To create a correct and

consistent model, the scans have to be merged into one

common coordinate system. Since the robot does not have

Fig. 3. Panoramic range image (top) and texture image (bottom) with 1/2
degree resolution. Invalid cells are marked red.

a precise, externally referenced position estimate, we have

to address the problem of simultaneous localization and

mapping (SLAM).

We use a novel probabilistic technique for solving the

offline SLAM problem by jointly solving the data registration

problem and the faithful reconstruction of the underlying

geometry. The key insight of this approach is to incorporate a

generic surface prior which guides the optimization towards

maps that closely resemble the real environment. A more

detailed description of this approach for the 3-DoF case can

be found in [21].

The goal of SLAM is to simultaneously estimate both the

robot’s pose and a map of its environment. In probabilistic

SLAM this is often expressed in a Bayesian filtering formu-

lation [22]. Thrun et al. have shown [23] that a closed form

expression of a posterior over the robot’s pose and the map

can be obtained by recursively applying the Bayes rule and

a subsequent induction:

p (x1:t,m|u1:t, z1:t) = (1)

η p (x0) p (m)
∏

t

[

p (xt|xt−1,ut)
∏

k

p
(

zk
t |xt,m

)

]

Here we adapted the common notation where at a time t the

following quantities are defined: xt is a vector describing the

3D position and attitude of the robot, ut denotes a control

vector that was applied at time t − 1, zk
t corresponds to the

kth observation, and m represents the map as a vector of

feature m = {mi}.

In Eq. (1), p (xt|xt−1,ut) is known as the motion model

which describes state transitions of the robot’s pose in

terms of a probability distribution. The state transitions are

assumed to be a Markov process and independent of both

the observations and the map. The term p
(

zk
t |xt,m

)

on the

other hand denotes an observation model which models a

observation zk
t from a known pose and a known map as a

probability distribution. Both models have been well studied

for a variety of robots and sensors. We use a probabilistic

motion model where the robot is assumed to perform a series

3488

of a rotation, a translation, and a second rotation [24] with an

extension to the 6-DoF state space. Observations are modeled

as a range measurement along a beam, which originates at

the local coordinate system of the sensor [24].

The two prior terms p (x0) and p (m) characterize priors

about the first robot pose and about the map respectively.

Usually p (x0) is used to anchor the initial pose to a fixed

location. The map prior p (m) is typically assumed to be

unknown and subsumed into the normalizer η [25]. In our

formulation, we want to explicitly use the map prior to

achieve a better estimate of the robot’s pose and the map.

A. Map Prior

The probability distribution p (m) in Eq. (1) represents a

prior distribution of all measured scenes. An exact proba-

bilistic model of this distribution is infeasible and probably

not even well defined. Hence we focus on partial models,

which represent properties of the surface structure. We use

a so called manifold prior. This prior is based on the idea

Fig. 4. The manifold prior uses a fixed neighborhood Nε of a point
to create a tangent plane defined by a point oi and the normal ni. The
distribution is then modelled as a Gaussian over the projected distance to
the tangent plane.

that observations belong to continuous surfaces in the robot’s

environment. For a 3D map this means that the most probable

surface must be a compact, connected, two-dimensional

manifold, possibly with boundary, embedded in R
3. The first

step towards defining such a prior is to compute the tangent

plane associated with each observed point mi. A tangent

plane is defined by a 3D point oi and normal ni. For all

points we choose a local neighborhood Nε of fixed diameter

(typically ε = 10 . . . 20 points). The center oi is taken to

be the centroid of Nε, and the normal ni is determined

using principal component analysis [26]: the eigenvector with

the smallest eigenvalue corresponds to the normal ni. The

projected distance di of the point onto its tangent plane is

defined by the dot product:

di = (mi − oi) · ni . (2)

Now we can define a Gaussian type manifold prior of the

form:

pm (m) = ηm

∏

i

exp

{

− d2
i

2σm

}

, (3)

where σm is the variance of tangent plane distances and

ηm =
∏

i

(

σm

√
2π

)−1

is a normalization factor.

Fig. 4 shows the properties of this prior. The observed

points are drawn to their corresponding tangent planes.

Fig. 5. The top figure shows a manually created floorplan and the trajectory
taken by our scanning robot. The middle figure presents the 3D pointcloud
registered with our registration algorithm. The enlarged detail of a hallway
demonstrates that using our probabilistic non-rigid method results in a more
accurate registration: The registration error visualization reveals a slight
miss-alignment for the ICP registered dataset, while our non-rigid technique
results in a good alignment over the whole surface.

Hence the most probable arrangement given only this prior

is when all points are located on the same one-dimensional

manifold. The point motion will be constrained due to the

dependence of measurement and pose. In fact, a movement

of a point will create a counter potential for the point and

for the corresponding pose to comply with the measurement

model. In other words, maximizing the posterior probability

Eq. (1) will lead to a set of poses and map features that best

explain the measurements as well as the prior model.

B. Optimization

First we use the position estimates of the navigation

system as an initial estimate for x1:t and the measurement

model to calculate and initial estimate for m1:i. Next, we use

a non-linear conjugate gradient variant to find the parameters

which maximize the log-likelihood of p (x1:t,m|u1:t, z1:t).
The result of this optimization is presented in Fig. 5.

3489

V. GEOMETRY RECONSTRUCTION

In our system, we use an algorithm which does not

make any prior assumptions about connectivity of points.

This volumetric approach for surface reconstruction is more

efficient in situations where multiple scans are taken of the

same surface as the 3D points are accumulated into voxel

grid structures first.

An important tool for surface reconstruction from unorga-

nized points is the signed distance function ζ : R
3 → R that

measures for each point the signed distance to the surface.

The implicit surface S is defined as a zero-set of this scalar

function S : ζ (x) = 0 with x ∈ R
3. The aim is to construct a

smooth volumetric field function ζ (x), such that the zero-set

approximates the real surface as closely as possible.

The first step of our surface reconstruction approach is to

calculate a 3D indicator function χ (defined as 1 for points

inside the model, and 0 for points outside). Kazhdan et al.

[27] show that there exists an integral relationship between

points sampled from the real surface and this indicator

function. Specifically, they found that the problem of finding

the indicator function reduces to finding the scalar function

χ whose gradient best approximates a vector field V defined

by the scan points, i. e. min ‖∇χ − V‖.

Since the gradient vectors of the binary indicator func-

tion would be unbounded at the surface, we convolve χ

with a smoothing filter F and consider the gradient of the

smoothed function. One can show [27] that the gradient of

the smoothed indicator function is equal to the smoothed

surface normal field:

∇ (χ ⋆ F) (q) =

∫

S

F (q) NS (p) dp ≈ V (q) (4)

where q ∈ R
3 and NS (p) is the surface normal at p ∈ S.

The surface normal field can be best approximated by the

oriented scan points. In other words, the oriented point sam-

ples can be viewed as samples of the gradient of the model’s

smoothed indicator function. If we apply the divergence

operator on both sides of Eq. (4), the variational problem

transforms into a standard Poisson problem:

△ (χ ⋆ F) = ∇ · V (5)

which can be solved efficiently by discretizing the 3D space

into a regular grid G and using this grid as a space of

functions. For each grid cell c, we set Fc : R
3 → R to

be the smoothing function for a local patch. We choose Fc

to be a bilateral filter [28] centered about the cell’s centroid

oc of the following form:

Fc (q) =
1

wq

∑

i∈G

Gσs
(‖oc − q‖) Gσr

(|nc · ni|)ni (6)

where Gσ (x) denotes a Gaussian kernel, nc is the cell’s

normal vector and wq is a normalization factor:

wq =
∑

i∈G

Gσs
(‖oc − q‖) Gσn

(|nc · ni|) . (7)

The parameters σs and σn will measure the amount of filter-

ing for the normal field. Similar to a Gaussian convolution

Fig. 6. Volumetric surface reconstruction based on oriented points.

as proposed by Kazhdan et al. [27], the bilateral filter of

Eq. (6) is a normalized weighted average where Gσs
is a

spatial Gaussian that decreases the influence of distant cells,

Gσn
a Gaussian that decreases the influence of cells i with

a normal vector different from nc. Unlike the Gaussian filter

our bilateral filter takes the variation of normals into account

in order to preserve sharp features.

Once the vector field is defined for each grid node, the

gradient field of our indicator function defined in Eq. (4) can

be efficiently represented as linear sum of all node functions.

Now, we can solve the indicator function χ such that the

gradient of χ is closest to V.

Finally, to extract the iso-surface S from the indicator

function, a method similar to the Marching Cubes algorithm

[29] is used. This method creates vertices at zero-crossings of

χ along edges of the grid nodes. The vertices are connected

to triangles such that a continuous manifold along S is

formed.

VI. TEXTURE RECONSTRUCTION

In our system, we capture color images from a digital

camera together with the geometry. We use these images

to reconstruct texture maps which are mapped onto the 3D

model to generate a greater realism. Our texture recon-

struction approach consists of the following steps: surface

segmentation, surface unfolding, mesh re-parameterization,

color reconstruction, and color blending.

A. Surface Segmentation

The first subproblem for texturing a complex 3D surface

is finding a surface partitioning. We seek to break the surface

into several regions such that the distortion when flattening

each region onto a plane is sufficiently small while the

number of regions remains small at the same time. Since

planes are developable surfaces (with zero Gaussian curva-

ture) by definition, one possible approach is to segment the

surface into nearly planar regions. We employ an incremental

clustering approach with a subsequent merging strategy.

Regions are grown from randomly chosen seeds and adjacent

faces with similar surface normals are iteratively added. A

major problem of this segmentation procedure is the resulting

over-segmentation. In order to reduce the over-segmentation,

we append an optimization procedure to merge segments by

incorporating information about their similarity.

3490

Fig. 7. For the texture reconstruction the mesh is segmented into nearly planar regions and each region is unfolded onto a 2D plane. The texture of
each region is reconstructed from all camera images observing this part of the surface and the resulting color composite is blended afterwards to avoid
discontinuity artifacts.

B. Unfolding

Given a set of disjoint surface regions, we compute a

mapping from each surface point of a region to the texture

domain. A rather simple way for constructing such a parame-

terization of a triangle mesh is based on the fact that the pre-

viously described segmentation procedure results in almost

planar surface segments. We can find the best fitting plane in

a least squares sense by using principal component analysis

(PCA). The result is an orthogonal linear transformation W

that transforms the data point pi = (xi, yi, zi)
T to a new

coordinate system p̃i = (x̃i, ỹi, z̃i)
T such that the greatest

variance of the data is along the first coordinate and the

smallest variance along the third coordinate. Then a mapping

can be defined by projecting the transformed coordinates

onto the plane spanned by the first and the second coordinate

axis:

ui =

(

x̃i

ỹi

)

=

(

1 0 0
0 1 0

)

p̃i . (8)

Even though this method does not guarantee to result in a

bijective mapping, we can easily check this criterion for each

mapping. In a bijective map, the order of the triangle vertices

(anticlockwise) will be preserved. In practice, the mapping

is always bijective since the segmentation algorithm results

in almost developable regions.

C. Mesh Re-parameterization

After having determined a mapping for each segment,

we re-parameterize the mesh to obtain a densely sampled

surface. For the re-parameterization we use an equidistant

point grid in texture space where each grid point corresponds

to a texture pixel. The space spanned by this grid will become

our texture space T .

In order to determine if any p̃i = (ui, vi)
T is inside or

outside of a mapped triangle, we calculate the barycentric

coordinate. The barycentric coordinate of the point p̃i with

respect to the vertices v1, v2, and v3 of a triangle is a triplet

of values, {b1, b2, b3}, such that p̃i = b1v1 + b2v2 + b3v3,

with b1 + b2 + b3 = 1. p̃i lies inside the triangle if b1, b2,

and b3 are positive. In this way, we find the corresponding

triangles for all points of the grid and use the barycentric

coordinate to interpolate the mapping f at the point’s coor-

dinates. Grid points which are not part of the mapped surface

are discarded.

D. Color Reconstruction

Knowing the pose and the intrinsic calibration of our

scanner allows us to project any 3D surface point into

any of the original camera images to retrieve the color

from this particular view. However, every view carries only

information on a part of the reconstructed surface. To find

out if a given 3D point is visible in a certain view, we first

transform the point into the camera coordinate system using

the known view pose. Next, we use the intrinsic camera

calibration to project the point to pixel coordinates. If the

resulting coordinates are valid (i. e. in the range of the image

dimensions) we can conclude that the 3D point is in the

camera’s view frustrum. However, the environment geometry

possibly creates complex occlusions and makes it difficult to

recognize if a 3D point was truly observed by the camera.

To test if the 3D point is occluded in this view we trace

the ray originating at the point to the center of the camera

and determine if it intersects with any surface. This test can

be efficiently performed using the GPU’s occlusion culling.

In many cases, a 3D point is visible from more than one

view and in this case we reconstruct the color from the view

closest to the 3D point.

E. Color Blending

Since the reconstructed texture maps are composites from

multiple camera images, discontinuity artifacts usually be-

come visible. The reason for those artifacts is that the surface

reflectance varies by distance and angle of incident. For a

consistent texturing we want to minimize the visibility of

these discontinuity artifacts. We approach this problem by

using a blending technique, which globally adjusts the color

of all pixels.

Our algorithm extends the ideas of [30] to use a Poisson

formulation for our multi-view blending problem. The pro-

cedure is as follows: for a texture with regions reconstructed

from N camera images, we can treat the regions as separate

functions: f1:N . Now, let Ω1:N be the definition space of

3491

Fig. 8. The texture blending globally optimizes the texture color and
removes discontinuities at boundaries between texture regions reconstructed
from different camera images. The image in the middle shows the recon-
structed texture and the right image the texture after blending.

f1:N , ∂Ωi,j be the boundary between Ωi and Ωj , and ∂Ωi

the texture boundary of the ith texture. Finally, we define V

to be a guidance vector field defined over Ω1:N . See Fig. 8

(left) for an illustration of this notation.

Our goal is to find f ′
1:N which have the same definition

space as f1:N and no visible discontinuities at their bound-

aries. We cast this problem as membrane interpolant that

satisfies:

min
f ′

1:N

∑

i

∫∫

Ωi

|∇f ′
i − V|2 (9)

with the Dirichlet boundary conditions f ′
i |∂Ωi,j

= f ′
j |∂Ωi,j

and f ′
i |∂Ωi

= fi |∂Ωi
. We set the guidance vector field V to

equal the derivatives of f1:N , which means we constrain the

derivatives of f ′
1:N to be the same as the derivatives of f1:N .

The first boundary constraint guarantees a smooth bound-

ary between texture regions while the second constraint is

necessary since the gradient operator is invariant through

multiplicative factors. The solution of Eq. (9) is the unique

solution of the following Poisson equation:

∇ · ∇f1:N = △f1:N = ∇V over Ω1:N (10)

under the same boundary conditions as Eq. (10). In the

discrete texture domain, this can be efficiently solved as a

sparse linear system. See [30] for further details.

VII. RESULTS

A number of experiments have been conducted using

the previously described approaches. In particular, we have

created a 3D model of Bosch’s office in Palo Alto. Snapshots

of this model are depicted in Fig. 9.

The largest fraction of the time required for the complete

3D reconstruction process was spent on the data acquisition;

6 hours were necessary to scan one office floor by taking

127 scans (approx. 3 min per scan). Registration, surface

and texture reconstruction took on the order of 100 minutes

for the Bosch dataset on a standard desktop computer (3.4

GHz, 4GB RAM). About 70% of this time was spend on

IO operations on the 8GB of compressed raw data. The

registration was performed on a sub-sampled dataset and

took 20 minutes to converge. Projecting the registration

results onto the high-resolution data yielded good results.

Our volumetric surface reconstruction approach found a

highly detailed approximation of the real surface in ap-

proximately 65 minutes. Again, we employed a multi-grid

scheme to speed up the reconstruction. Structures such as

legs of chairs, as well as plants, due to fine leaf and branch

structures, turned out to be problematic. The reconstruction

typically fused multiples of such structures into a single

blob or merged them with a nearby wall. Improvements are

certainly possible by scanning higher resolution, with the

obvious drawback of increased memory requirements and

extended acquisition and processing times. For the final step

of model reconstruction, we found that the automatic texture

reconstruction procedure results in high-quality texture maps

in only 15 minutes for the Bosch dataset. Some failures led

to a distorted, unrealistic looking texture and were caused

by inaccurately reconstructed geometry.

VIII. CONCLUSION

Our research has led to a number of interesting results.

We presented an automated system for the creation of large

scale 3D models in a short amount of time with moderate

hardware requirements. The presented paper describes the

required components, specifically data acquisition, registra-

tion, geometry reconstruction, and texture reconstruction.

The capabilities of our system were demonstrated in several

experiments by capturing large models with up to more than

54 million triangles covering an area of 50 m by 140 m

meter. The resulting quality in terms of geometric and texture

details is remarkable and to the best of our knowledge, our

system is the first to fully automatically reconstruct large

indoor environment models of this quality.

A common restriction made in mapping systems is the

assumption of a static environment. Our system obliges the

same restriction. Although the registration is fairly robust

to artifacts created by a limited amount of dynamic objects

during the scan process, the methods presented for geometry

and texture reconstruction will fail. More research is required

to distinguish dynamic and static parts in a scene and to

then consider only the latter for 3D modeling. The ultimate

goal remains a system being able to operate autonomous

in dynamic or even crowded environments for an indefinite

amount of time.

REFERENCES

[1] J. E. Guivant and E. M. Nebot, “Improving computational and
memory requirements of simultaneous localization and map building
algorithms.” in IEEE International Conference on Robotics and Au-

tomation, 2002, pp. 2731–2736.

[2] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-
Whyte, “Simultaneous localization and mapping with sparse extended
information filters,” International Journal of Robotics Research, 2004.

[3] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “Fastslam:
a factored solution to the simultaneous localization and mapping
problem,” in 18th National Conference on Artificial Intelligence, 2002,
pp. 593–598.

[4] U. Frese and T. Duckett, “A multigrid approach for accelerating
relaxation-based SLAM,” in IJCAI Workshop on Reasoning with

Uncertainty in Robotics, Acapulco, Mexico, 2003, pp. 39–46.

[5] M. A. Paskin, “Thin junction tree filters for simultaneous localization
and mapping.” in 18th International Joint Conference on Artificial

Intelligence, 2003, pp. 1157–1166.

[6] E. Olson, J. Leonard, and S. Teller, “Fast iterative alignment of pose
graphs with poor initial estimates,” in IEEE International Conference

on Robotics and Automation, May 15-19 2006, pp. 2262–2269.

[7] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard, “A tree
parameterization for efficiently computing maximum likelihood maps
using gradient descent,” in Robotics: Science and Systems, 2007.

3492

Fig. 9. The reconstructed office model consists of 28.167.234 vertices and 54.745.336 triangles covering an area of 50 m by 140 m meter.

[8] D. Borrmann, J. Elseberg, K. Lingemann, A. Nchter, and J. Hertzberg,
“The efficient extension of globally consistent scan matching to 6 dof,”
in 4th International Symposium on 3D Data Processing, Visualization

and Transmission, 2008, pp. 29–36.

[9] S. Thrun, W. Burgard, and D. Fox, “A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3D mapping,”
in IEEE International Conference on Robotics and Automation, San
Francisco, CA, 2000.

[10] P. Biber, S. Fleck, and W. Strasser, “The wägele: A mobile platform
for acquisition of 3d models of indoor outdoor environments,” in 9th

Tübingen Perception Conference, 2006.

[11] A. Nüchter, K. Lingemann, J. Hertzberg, H. Surmann, K. Pervölz,
M. Hennig, K. R. Tiruchinapalli, R. Worst, and T. Christaller, “Map-
ping of rescue environments with kurt3d,” in International Workshop

on Safety, Security, and Rescue Robotics, Kobe, Japan, June 2005, pp.
158–163.

[12] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski,
“A comparison and evaluation of multi-view stereo reconstruction
algorithms,” in IEEE Conference on Computer Vision and Pattern

Recognition, Washington, DC, USA, 2006, pp. 519–528.

[13] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, “Reconstruct-
ing building interiors from images,” in International Conference on

Computer Vision, 2009.

[14] V. Sequeira, K. Ng, E. Wolfart, J. Gonalves, and D. Hogg, “Automated
reconstruction of 3d models from real environments,” Journal of

Photogrammetry and Remote Sensing, vol. 55, no. 1, pp. 1–22, 1999.

[15] A. Georgiev, “Design, implementation and localization of a mobile
robot for urban site modeling,” Ph.D. dissertation, Computer Science
Dept., Columbia University, New York, NY, 2003.

[16] P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, no. 2, pp. 239–256, 1992.

[17] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in International Conference on Robotics and Automation,
ser. Open-Source Software workshop, 2009.

[18] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE Transac-

tions on Robotics, vol. 23, no. 1, pp. 34–46, Feb. 2007.

[19] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in IEEE International Symposium on Computational Intelligence in

Robotics and Automation, Monterey, California, 1997, p. 146.

[20] Z. Zhang, “Flexible camera calibration by viewing a plane from
unknown orientations,” IEEE International Conference on Computer

Vision, vol. 1, p. 666, 1999.

[21] B. Pitzer and C. Stiller, “Probabilistic mapping for mobile robots

using spatial correlation models,” in IEEE International Conference

on Robotics and Automation, 2010.
[22] S. Thrun, “Robotic mapping: A survey,” in Exploring Artificial In-

telligence in the New Millenium, G. Lakemeyer and B. Nebel, Eds.
Morgan Kaufmann, 2002.

[23] S. Thrun and M. Montemerlo, “The GraphSLAM algorithm with
applications to large-scale mapping of urban structures,” International

Journal on Robotics Research, vol. 25, no. 5/6, pp. 403–430, 2005.
[24] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,

2005.
[25] T. Bailey and H. Durrant-Whyte, “Simultaneous localisation and

mapping (slam): Part i - state of the art,” Robotics and Automation

Magazine, vol. 13, no. 2, pp. 99–110, June 2006.
[26] H. Hoppe, T. Derose, T. Duchamp, J. Mcdonald, and W. Stuetzle,

“Surface reconstruction from unorganized points,” Computer Graph-

ics, vol. 26, no. 2, pp. 71–78, 1992.
[27] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruc-

tion,” in 4th Eurographics symposium on Geometry processing, Aire-
la-Ville, Switzerland, 2006, pp. 61–70.

[28] T. R. Jones, F. Durand, and M. Desbrun, “Non-iterative, feature-
preserving mesh smoothing,” ACM Transactions on Graphics, vol. 22,
no. 3, pp. 943–949, 2003.

[29] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3d surface construction algorithm,” in 14th annual conference on

Computer graphics and interactive techniques. New York, NY, USA:
ACM Press, 1987, pp. 163–169.

[30] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” ACM

Transactions on Graphics, vol. 22, no. 3, pp. 313–318, 2003.

3493

