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Abstract— We deal with the problem of detecting and iden-
tifying body parts in depth images at video frame rates. Our
solution involves a novel interest point detector for mesh and
range data that is particularly well suited for analyzing human
shape. The interest points, which are based on identifying
geodesic extrema on the surface mesh, coincide with salient
points of the body, which can be classified as, e.g., hand, foot or
head using local shape descriptors. Our approach also provides
a natural way of estimating a 3D orientation vector for a given
interest point. This can be used to normalize the local shape
descriptors to simplify the classification problem as well as to
directly estimate the orientation of body parts in space.

Experiments involving ground truth labels acquired via an
active motion capture system show that our interest points
in conjunction with a boosted patch classifier are significantly
better in detecting body parts in depth images than state-of-
the-art sliding-window based detectors.

I. INTRODUCTION

In this paper, we present a fast and robust system for
detecting, identifying and localizing human body parts in
depth images. The output of our system can either be used
directly, e.g., to infer human gestures, or it can be used
as preprocessing for other algorithms, such as full-body
tracking or surveillance. As one potential application domain
for the developed technology, human-robot interaction (HRI)
relies to a large degree on non-verbal communication. Apart
from communicating through speech and language, humans
use their whole body as an effective medium for communi-
cation. For instance, humans often demonstrate tasks rather
than describing them verbally and point in order to refer to
objects in their environment. Our algorithm was developed
specifically for fast operation at video frame rates, since
natural communication requires a low-latency action-reaction
cycle. The presented system requires 60 ms per camera frame
to estimate the 3D locations of hands, feet and head as well
as their 3D orientations.

The task of understanding human shape and motion from
sensor information, such as camera images, is hard because
the human body is highly variable – both between subjects
and within subjects. The human skeleton has many degrees
of freedom and the skeleton itself is hidden under several
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Fig. 1. The proposed system identifies and localizes human body parts in
3D space from single depth images. The left image shows a color-coded
depth image and detected interest points overlayed in black. The 3D point
cloud representation of the same data as well as the body part detections
are shown on the right.

flexible layers of body, skin and clothes. In addition, the
appearance of a scene under natural lighting conditions is
highly variable, which has been a major hurdle for vision-
based approaches to human motion analysis. In this work,
we take advantage of recent advances in sensor technology
to remove the visual appearance of a scene as one source
of ambiguity. In particular, we use a time-of-flight sensor to
acquire depth images as the primary data source.

Time-of-flight sensors are a rapidly improving technology
that can provide dense depth measurements at every point
in the scene at high frame rates. They can be seen as
the two dimensional extension to the laser range scanners,
which have become standard in applications such as robot
localization. The range data provided by these cameras both
facilitates segmentation of the human body from background
structure and it can also disambiguate visually similar poses.

The contributions of this paper are two-fold: First, we
present a novel interest point detector for range data. It is fast
to compute and robust against the typical sources of noise
found in depth image data. Moreover, the detector provides
estimates for the 3D orientation of foreground structure
around the interest point locations. Our second contribution
is an integrated system that detects human body parts from
depth images in real-time using a boosted classifier that
assigns local shape descriptors extracted at interest point
locations to body part classes.
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II. RELATED WORK
The automatic analysis of human shape and motion from

sensor data is a strongly researched topic in several areas.
Moeslund et al. [1] illustrate this impressively for the field
of computer vision by reviewing more than 350 papers from
this field. There are a multitude of approaches and algorithms
on this topic. In this paper, we focus on the task of accurately
detecting parts of the human body, such as the head, hands
and feet, from a single depth image.

For intensity cameras, many papers have explored im-
provements on the basic paradigm of finding interesting
points in the image and computing descriptors for the local
patches around them. These detectors identify points in the
image for which the signal changes two-dimensionally, that
is, at corners, junctions and blobs. Several authors have
attempted to port computer vision algorithms directly to three
dimensional data to develop detectors for locally interesting
points. Steder et al. [2], for example, apply vision-based
interest point detectors on depth images. Ruhnke et al. [3]
applied the Harris corner detector [4] to the depth image
in order to construct 3D object models in an unsupervised
fashion from partial views. Recently, Zou et al. [5] applied
the concepts of the SIFT detector [6] to arbitrary point clouds
by finding interest points that are local extrema of the DOG
function (difference of Gaussians) over a locally defined
curved surface. In a similar fashion, Hu et al. [7] consider
spectral geometric features on triangle meshes. Nickel et
al. [8] recognize pointing gestures using stereo vision. They
primarily use the color images to identify the location of
the face and hands using standard vision techniques, and
use the depth sensor only to determine the final pointing
direction. Ido et al. [9] enable a robot to identify the hands
of a human by finding small patches that are the closest to
the robot. While suitable for their application, this makes
strong assumptions about the human pose, which we do not
make here.

With the exception of the last, a commonality in the
above work is that interest points are identified using local
information. Because the time-of-flight sensor is currently
noisier and lower resolution than intensity cameras, the
local curvature can vary widely due to noise. We instead
define interesting points by using the nature of the matrix of
pairwise geodesic distances between all identified foreground
depth measurements.

III. PROBLEM SETTING AND OVERVIEW
The task is to extract information about human body parts,

such as their visibility or their location and orientation in
space, from depth images. We define a depth image as a
set R = {ri, j}, i = 1, . . . ,n, j = 1, . . . ,m, ri, j ∈ R of distance
measurements ri, j relative to a camera location ∈ R3 and
orientation θ ∈ SO(3).

In a preprocessing step, the distance measurements are
transformed into a 3D point cloud using the known camera
calibration and truncated according to a bounding box. The
specific sensor used in our experiments is the Swissranger
SR4000 [10] Time-of-flight camera by MESA Imaging AG,

Switzerland, but most other range sensors such as laser range
finders or dense stereo reconstruction systems would be
applicable as well. The SR4000 sensor yields 176x144 pixels
at 30 frames per second. In our experiments, we rotated the
sensor by 90◦ to better match the dimensions of different
recorded human subjects.

Our goal is to estimate for every depth image a set
D = {(cd ,xd ,θ d)}D

d=1 of body part detections including
class assignments cd ∈ {head,hand,foot}, part locations
xd ∈R3 and optionally their orientations θ d ∈ SO(3). Ideally,
these detections should become available at a high frame rate
so that dependent higher-level functions, such as a module
for human-robot interaction, do not suffer from time delays.

As detailed in the following, we take a bottom-up approach
to this problem by identifying and classifying potential body
part location directly from the range data – as opposed to,
for instance, first fitting a full-body model of the human
subject and inferring the body part configurations in a top-
down fashion.

We provide an algorithm for identifying a novel type of
interesting point based on geodesic distance between vertices
in a mesh. This particular interest point detector has the
added advantage of providing a stable estimate of local pose,
which can be used to normalize image patches prior to
feature extraction.

Our detection pipeline consists of the following steps:
1) Construct a set of connected surfaces meshes from the

point cloud
2) Identify interest points on each of these meshes
3) Extract local descriptors for the interest points
4) Classify the descriptors to body part classes
5) Sort patches by classifier confidence

We now discuss the most important steps in detail, that
is, interest point extraction and patch classification. The
remaining steps are described briefly at the beginning of
the experimental section where we describe the experimental
setup.

IV. INTEREST POINT DETECTION
In this section, we present a novel interest point detector

for range data. The task is to select vertices from an arbitrary
surface mesh embedded in the 3D Euclidean space that are
invariant to mesh deformations, translations, rotations and
noise. As a visual example, consider several depth images of
a moving person or an arbitrary articulated object. Our goal
is to extract sets of interest points from these images that
correspond to the same points on the observed body, even
though the underlying body articulations differ. This property
of an interest point detector is termed stability. On the other
hand, we would also like to maximize the repeatability of the
detector, that is, the likelihood of detecting a once-detected
interest point again should be high.

Our algorithm is inspired by the insight that geodesic
distances on a surface mesh are largely invariant to mesh
deformations and/or rigid transformations. More visually, the
distance from the left hand of a person to the right hand along
the body surface is relatively unaffected by her/his posture.
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Fig. 2. Exemplary results. Left: A test situation including active markers for evaluation. The second image shows the acquired 3D point cloud colored
by the intensity return values and the body part detections head (red), hand (green, including orientation) and foot (blue). Right: A person sitting behind
a desk in a cluttered office environment, facing the camera (raw color-coded depth image as recorded by the camera and the point cloud visualization).

On a more local level, this also holds for the case in which
the body surface is represented by several non-connected
meshes due to segmentation and occlusion effects.

The proposed interest points are termed AGEX, Accumu-
lative Geodesic EXtrema. They are computed by incremen-
tally maximizing geodesic distances on the surface mesh.
Specifically, we define for a given mesh M and k >= 1 the
sets AGEXk(M ) recursively as follows:

• For all k > 1, AGEXk(M ) extends AGEXk−1(M ) by a
vertex p ∈M that maximizes the geodesic distance to
all vertices contained in AGEXk−1(M ).

• AGEX1(M ) contains exactly one vertex: the geodesic
centroid of the mesh.

Note that we chose to initialize AGEX1 as the set containing
only the geodesic centroid of the mesh for simplicity of
implementation. Alternatively, it is relatively straightforward
to start the process at AGEX2 and to define this set as
containing the endpoints of the longest path on the mesh
surface.

AGEXk(M ) can be computed efficiently in an iterative
way using Dijkstra’s algorithm (see, e.g., [11] or standard
text books on graph algorithms). We consider the graph
that corresponds to the acquired surface mesh: mesh points
become the vertices of the graph and edges are created for
neighboring mesh points. Points are considered neighbors, if
(a) the corresponding pixels in the depth image are neighbors
and (b) their distance in 3D scene space does not exceed a
threshold δconnected. We now consider the geodesic centroid vc
of the mesh (i.e., the starting situation AGEX1(M ) = {vc})
and calculate the shortest paths to all other vertices following
Dijkstra’s algorithm. The vertex vs which is found to have the
longest of these shortest paths is added to the interest point
set to yield AGEX2(M ) = AGEX1(M )∪vs. We now add a
zero-cost edge between the vc and vs and update the shortest
paths. This is repeated until k vertices have been added to
the interest point set. The runtime of Dijkstra’s algorithm
per iteration is O(|E|+ |V | log |V |), where |E| is the number
of edges in the graph and |V | the number of vertices. In
our case, in which we consider the 8-neighborhood of depth
image pixels and need to run the shortest path algorithm
k times, this results in O(k · (8n+n logn)), where n is the
number of vertices. Given that the number of vertices is

bounded by the relatively low number of available depth
image pixels and one is typically interested in less then
k = 20 interest points, the computational cost for computing
AGEXk(M ) is effectively very low.

A. Estimating the Interest Point Orientation

We can assign an orientation to each extracted interest
point ki in a natural way by “tracing back” the shortest path
that lead to its detection. Concretely, we mark the graph
vertex corresponding to the interest point and consider the
matrix of path costs produced by Dijkstra’s algorithm. We
successively follow the shortest incoming edges to neighbor-
ing vertices until a maximal geodesic distance of δorient to a
point p is reached. The resulting vector oi := ki−p is treated
as the 3D orientation of the interest point ki.

Figure 3 visualizes local depth image patches extracted
at interest point locations normalized by their estimated
orientation (i.e., the patches have been rotated such that the
orientation vector points downwards). It can be seen that this
normalization step brings the main features of each class
to a close alignment, which in turn, makes learning and
classification significantly easier.

B. Properties of the AGEX Interest Points

Note the following properties of the proposed interest points:
• The detection algorithm presented above is executed

for all subsets of connected meshes and, thus, can deal
with situations in which a mesh falls into several parts,
e.g., due to occlusions in the depth image. As a result,
additional interest points are found at the occlusion
boundaries.

• The resulting interest point set approximates a uniform
distribution over the mesh surface and it grows incre-
mentally with k until it eventually contains all mesh
points.

• AGEXk(M ) is not a uniquely identified set of points. If
several points p ∈M maximize the geodesic distance
to all points in AGEXk−1(M ), a random one of them
is chosen to extend the set.

• For identifying human body parts, the order in which
the interest points are detected typically corresponds to
their importance, that is, points close to the hands, feet
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Hand Head Foot No Class

Fig. 3. Typical examples of local descriptor patches for the different
body part classes. All patches have been automatically centered at their
interest point locations and normalized by orientation using the respective
orientation estimates.

and the head are found first, before other surface points
are added to the set.

• The orientation estimates are particularly useful to
normalize local shape descriptors by their orientation.
This operation leads to better invariance properties of
the descriptors and, thus, to a simpler classification
problem.

V. IDENTIFICATION OF PARTS

The algorithm described in the previous section provides
a set of interest points, which we consider as the hypothesis
space for potential body part locations. In this section we
describe how to learn and apply classifiers for local patch
descriptors that assign body part labels to the interest points.

A popular alternative to the explicit pre-selection of po-
tential location for detections is the so-called sliding window
approach. Here, a set of learned patch classifiers is applied
to the entire image (or a higher dimensional state space)
in a partially overlapping fashion. The local maxima of the
classifier responses are then taken as detection results.

In the current literature there is no clear preference for
either the interest point-based detection approach or the
sliding-window class of detectors. The preferred choice
seems to depend mainly on the particular task and data set
that is to be solved. As our experimental evaluation shows,
the AGEX interest points outperform the sliding window
approach by a large margin in our application. This is due
to the fact that (a) there is a large overlap between the sets
of AGEX points and the true locations of the considered
body parts – which considerably constrains the hypothesis
space and (b) the normalization of the patch descriptors by
the estimated orientation drastically reduces the intra-class
variability that the classifier has to learn and represent. Both
aspects serve to improve the generalization performance of
the algorithm.

A. Local Shape Descriptor, Classifier and Learning

As local descriptors at interest points we consider 41x41
depth image patches surrounding the point, rotated w.r.t. the
estimated orientation vector. The result is a set of patches
from the image that are likely to be centered on salient parts
of the human body. Figure 3 shows typical examples of local
descriptors for the different classes considered in this paper.

To assign body part labels to the extracted descriptor
patches, we follow a supervised learning approach inspired
by Torralba et al. [12], which is implemented in the STAIR
Vision library [13]. Given a labeled training set of image
patches, the approach constructs a random dictionary of local
image structures and learns a boosted classifier using the
dictionary entries as basic features. This requires a training
set of positive examples, i.e., patches centered on parts of
interest points and a large quantity of negative examples,
i.e,. patches of the background or other parts not of interest.

We obtain training data by simultaneously recording with
an active marker-based motion capture system, specifically
the PhaseSpace system. This system consists of four cameras
and several visible light LED markers placed on parts that we
wish to detect. The LEDs in the PhaseSpace system encode
their unique id. Thus, the output of the motion capture system
is the three-dimensional location of distinct markers with
sub-millimeter accuracy. We register coordinate systems of
the depth sensor and the PhaseSpace system by manually
corresponding measured data with marker locations. With
sufficient pairs of corresponding 3D points, we can compute
the rigid transformation between the coordinate systems in
closed form using a singular value decomposition (SVD).
We experimentally verified that the markers are not visible
in the depth camera images, which is to be expected since
the SR4000 sensor only responds to surfaces that reflect the
specific infrared light it emits.

VI. EXPERIMENTAL EVALUATION

The algorithm was evaluated on several sequences involv-
ing a variety of movements of the entire body, three different
human subjects and several environments including clutter.
The goal of this evaluation is two-fold. First, we evaluate
the overall detection and classification performance of our
integrated system and discuss typical situations that lead to
accurate or inaccurate detections. In the second part, which
is detailed in Sec. VI-A, we compare our approach to the
state-of-the-art alternative for body part detection.

In the experiments, the raw depth sensor data was pre-
processed by (i) de-noising the image and removing so-called
mixed pixels at depth discontinuities and (ii) removing points
that fall outside a bounding box. Mixed pixels are depth
measurements that effectively average the depth value of a
foreground object and the background due to the temporal
integration of raw measurements by time-of-flight cameras.
Furthermore, we perform agglomerative clustering on the 3D
point cloud to produce a set of surface meshes as input to
the AGEX interest point detection algorithm. Video material
is available at http://stanford.edu/˜plagem/publ/icra10
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Fig. 4. Left: The algorithm detects both hands well, even though they point directly towards the camera and do not stand out in the silhouette of the
person. Right: The left hand of the person is detected with a low confidence only, since the orientation vector of the corresponding interest point is not
aligned with the body part.

Figures 2 shows the range of situations considered. The
two left-most diagrams exemplify the laboratory conditions
under which the true part locations are known via recorded
active marker positions and on the right, a significantly more
complex scene including a person sitting behind a desk in a
cluttered office environment is depicted.

Figure 5 gives the precision/recall curves as well as the
confusion matrix for the body part classifiers evaluated at
the extracted AGEX interest points for a test sequence.
The training set consists of 789 recorded frames from a
different sequence, resulting in 6312 patches extracted at
interest point locations. The time requirements for learning
all classifiers on a standard quad-core desktop PC were
approx. 240 minutes per class. The confusion matrix was
computed for a classifier threshold of 0.75, that is, patches
causing classification confidences above 0.75 were counted
as positive classifier output.

Each point on the precision/recall curves corresponds to
a specific threshold opposed on the classifier confidence.
Naturally, at high confidences, the precision takes a high
value and the recall a low one. As the confidence threshold
lowers, recall increases. Each cell of the confusion matrix
gives the frequency at which a given classifier responds to
patches from a given (true) class.

As can be seen from the diagrams, the head of the test
subject is classified nearly perfectly across all frames. The
hands and the feet of the subject are detected well, but have
higher error rates in general. One interesting question is how
many false negatives are caused simply by the fact that we
restrict our consideration to AGEX points. We evaluated this
on the test set and found that 98% of the patches containing
the head were in AGEX5. The respective numbers for hands
and feet were 82% and 79% respectively. In experiments,
we found that the state-of-the-art alternative to our approach
– the sliding window detector – shows lower performance,
even though it considers all possible image locations. We
give quantitative results of a comparison in Sec. VI-A

Figures 1, 2, 4 and 6 show exemplary results of the part
detector in different realistic situations. Figure 1 and the left
part of Fig. 2 show body configurations that are hard to
analyze using a regular intensity camera since the hands take
up only few pixels in the image space and their appearance

is highly ambiguous. Figures 2 and 6 show instances in
which the 3D orientation vectors of the interest points are
highly correlated with the pointing directions of the hands.
The right-most diagram in Fig. 2 shows a situation in which
this is not the case. Classification performance can decrease
when the orientation estimate of the interest point has high
uncertainty. This can occur, for instance, when the arm is
pointed directly at the camera so that only the hand is visible,
and no part of the arm itself. Then the hand will form its
own disconnected interest point. As a result, almost any
orientation of the hand is possible, which presents difficulty
for the patch classifier. This could be corrected by identifying
cases where the orientation is uncertain and using some other
means for orientation normalization prior to patch extraction.

Some reduction in recall is due to not detecting interest
points at the appropriate locations. Consider, for example,
the left foot in the left image in Fig. 2. The interest point
detector assumes that interesting points occur at geodesic
extrema. When this assumption is violated, performance can
suffer. For instance, when the hand touches the thigh, the first
appropriate interest point for the hand may be contained in
AGEX1000 rather than already in AGEX5 – in which instance
the interest point detector has degraded to selecting a large
part of the image.

A. Comparison to the Sliding-window Approach

We compared our algorithm against the state-of-the-art
approach to body-part detection, that is, the sliding-window
detector (SW). Both algorithms were implemented to use the

Fig. 5. Precision/recall curves and confusion matrix for the body part
classifiers at the AGEX interest points extracted from a real test sequence.
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Fig. 6. Increased classifier confusion due to self occlusion. The head
receives a high confidence from the foot-classifier since the local descriptor
patch is influenced by the occluding right arm.

Fig. 7. Precision/recall curves for the sliding window detector (red, dotted)
and AGEX (blue, solid) for the classes hand and head.

same classification algorithm for image patches as described
in Sec. V-A. The sliding window algorithm was trained using
the standard paradigm of extracting overlapping patches from
the training images, with all patches containing parts of
interest as positive examples and a large number of random
patches in the scene that either contain other parts or the
background as negative examples. At test time, SW classifies
all possible patches in the image and detections are filtered
using non-maximal suppression.

Figure. 7 shows the precision/recall curves of the two
algorithms for the body parts head and hand. The free
parameter of the curves is a threshold applied to the classifier
confidence. We use the standard metric of considering a
detection to be correct when the area intersection of the
detected bounding box and the true bounding box divided
by the union of the areas is greater than 50%. As the
graphs show, both algorithms perform well at identifying
and localizing the head of a human. Our detector offers
significantly higher precision as the recall increases, whereas
the standard detector rapidly drops off. The head usually
has a consistent orientation during standard movements of
a human, and therefore the benefit of our algorithm mostly
presents itself as increased recall. When identifying hands,
AGEX performs significantly better across the range of recall
levels.

We also evaluated the false negative rate caused by the
restriction to the AGEX interest point set and found that
402/407, or 98% of the patches containing the head were in
AGEX5, which is consistent with the previous experiment.

The respective number for hands was 735/851 (86.4%).
Thus, our maximum recall is reduced, but the precision
increases significantly by allowing the classifiers to only
learn the distinction between types of normalized AGEX
patches. At the same time, the AGEX algorithm uses fewer
negative training examples and makes better use of them. At
test time, rather than considering all possible windows and
scales, AGEX only needs to consider five patches centered
around points in AGEX5, which also represents a significant
decrease in computational complexity.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we defined the AGEX interest point detector
and provided an efficient algorithm for executing it on
depth data. We evaluated the efficacy of this detector in the
context of real-time human part detection using learned patch
classifiers and found that it significantly increases precision
and recall while simultaneously decreasing computational
complexity. This work serves to provide a solid foundation
of local detectors which can be incorporated in more compli-
cated algorithms that use more global inference algorithms
to incorporate temporal and articulated model cues.

REFERENCES

[1] T. B. Moeslund, A. Hilton, and V. Krüger, “A survey of advances in
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