
A Probabilistic Approach to Mixed Open-loop and Closed-loop Control,

with Application to Extreme Autonomous Driving

J. Zico Kolter, Christian Plagemann, David T. Jackson, Andrew Y. Ng, Sebastian Thrun

Abstract— We consider the task of accurately controlling a
complex system, such as autonomously sliding a car sideways
into a parking spot. Although certain regions of this domain
are extremely hard to model (i.e., the dynamics of the car
while skidding), we observe that in practice such systems are
often remarkably deterministic over short periods of time,
even in difficult-to-model regions. Motivated by this intuition,
we develop a probabilistic method for combining closed-loop
control in the well-modeled regions and open-loop control
in the difficult-to-model regions. In particular, we show that
by combining 1) an inaccurate model of the system and 2)
a demonstration of the desired behavior, our approach can
accurately and robustly control highly challenging systems,
without the need to explicitly model the dynamics in the
most complex regions and without the need to hand-tune the
switching control law. We apply our approach to the task of
autonomous sideways sliding into a parking spot, and show that
we can repeatedly and accurately control the system, placing
the car within about 2 feet of the desired location; to the best
of our knowledge, this represents the state of the art in terms
of accurately controlling a vehicle in such a maneuver.

I. INTRODUCTION

In this paper, we consider control strategies that employ

a mixture of closed-loop control (actively controlling the

system based on state feedback) and open-loop control

(executing a fixed sequence of control inputs without any

feedback). To motivate such strategies, we focus on the task

of sliding a car sideways into a parking spot — that is,

accelerating a car to 25 mph, then slamming on the brakes

while turning the steering wheel, skidding the car sideways

into a narrow desired location; this is a highly challenging

control task, and therefore an excellent testbed for learning

and control algorithms. One feature of this and many other

control tasks is that the system operates in multiple distinct

regimes that can be either easy or hard to model: for instance,

a “normal driving” regime, where the dynamics of the car

are well understood and easily modeled, and a “sideways

sliding” regime, where the dynamics are extremely difficult

to model due to time-delay or non-Markovian effects.

Although it may appear that controlling the system in

these hard-to-model regimes is nearly impossible, if we have

previously observed a trajectory demonstrating the desired

behavior from the current or nearby state, then we could

execute this same behavior in hopes of ending up in a similar

final state. It may seem surprising that such a method has

any chance of success, due to the stochasticity of the world.

However, we repeatedly observe in practice that the world

All authors are with the Computer Science Department, Stanford
University, Stanford CA, 94305 {kolter, plagem, dtj, ang,
thrun}@cs.stanford.edu

is often remarkably deterministic over short periods of time,

given a fixed sequence of control inputs, even if it is very

hard to model how the system would respond to different

inputs; we have observed this behavior in systems such as

the sideways-sliding car, quadruped robots, and helicopters.

Intuitively, this observation motivates an alternating control

strategy, where we would want to actively control the system

using classical methods in well-modeled regimes, but execute

open-loop trajectories in poorly modeled regions, provided

we have seen a previous demonstration of the desired behav-

ior. Indeed, as we will discuss shortly, such strategies have

previously been used to control a variety of systems, though

these have mostly relied on hand-tuned switching rules to

determine when to execute the different types of control.

In this paper, we make two contributions. First, we develop

a probabilistic approach to mixed open-loop and closed-

loop control that achieves performance far superior to each

of these elements in isolation. In particular, we propose a

method for applying optimal control algorithms to a proba-

bilistic combination of 1) a “simple” model of the system that

can be highly inaccurate in some regions and 2) a dynamics

model that describes the expected system evolution when

executing a previously-observed trajectory. By using variance

estimates of these different models, our method probabilisti-

cally interpolates between open-loop and closed-loop control,

thus producing mixed controllers without any hand-tuning.

Our second contribution is that we apply this algorithm to the

aforementioned task of autonomously sliding a car sideways

into a parking spot, and show that we can repeatedly and

accurately control the car, without any need to model the

dynamics in the sliding regime. To the best of our knowledge,

this is the first autonomous demonstration of such behavior

on a car, representing the state of the art in accurate control

for such types of maneuvers.

II. BACKGROUND AND RELATED WORK

There is a great deal of work within both the machine

learning and control communities that is relevant to the

work we have presented here. As mentioned, previously, the

mixed use of open-loop and closed-loop control is a common

strategy in robotics and control (e.g., [3], [10], [23]), though

typically these involve hand-tuning the regions of closed-

loop/open-loop control. The work of Hansen et al., [9] also

considers a mixture of open-loop and closed-loop control,

though here the impetus for such control comes from a

cost to sensing actions, not from difficulty of modeling the

system, and thus the algorithms are very different.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 839

Our work also relates to work on multiple models for

controls tasks [14]. However, with few exceptions the term

“multiple models” is typically synonymous with “local mod-

els,” building or learning a collection of models that are

each accurate in a different portion of the state space –

for example, locally linear models, [18], [5], [24] or non-

parametric models such as Gaussian Processes [13]. While

our algorithm can be generally interpreted as an application

of a particular type of local models, the basic intuition behind

the way we combine models is different: as we will discuss,

we aren’t seeking to necessarily learn a better model, nor

is each model always tailored to a specific region along the

trajectory; rather the models we will use capture different

elements — an inaccurate model of the whole system, and

a model of the trajectory that provides no information at

all about state or control derivatives. Doya et al., [7] also

propose a model-based reinforcement learning algorithm

based on multiple models, but again these models are local

in nature.

From the control literature, our work perhaps most closely

resembles the work on multiple model adaptive control [15],

[19]. Like our work, this line of research takes motivation

from the fact that different models can capture the system

dynamics with different degrees of uncertainty, but again

like the previous work in machine learning, this research

has typically focused on learning or adapting multiple local

models of the system to achieve better performance.

Our work also relates somewhat more loosely to a variety

of other research in reinforcement learning. For instance,

the notion of “trajectories” or “trajectory libraries” has been

explored for reinforcement learning and robotics [20], [21],

but this work has primarily focused on the trajectories as a

means for speeding up planning in a difficult task. Abbeel

et al., [1] consider the problem of reinforcement learning

using inaccurate models, but their approach still relies on

the inaccurate model having accurate derivatives, and indeed

the pure LQR approach we employ is very similar to their

algorithm provided we linearize around a trajectory from the

real system.

The notion of learning motor primitives has received a

great deal of attention recently (e.g. [16]), though such re-

search is generally orthogonal to what we present here. These

motor primitives typically involve feedback policies that are

not model-based, and we imagine that similar techniques

to what we propose here could also be applied to learn

how to switch between model-based and motor-primitive-

based control. Indeed to some extent our work touches on

the issue of model-based versus model-free reinforcement

learning [4] where our open-loop controllers are simply a

very extreme example of model-free control, but we could

imagine applying similar algorithms to more general model-

free policies.

Finally, there has been a great deal of past work on

autonomous car control, for example [11]. Some of this work

has even dealt with slight forays into control at the limits of

handling [12], but all such published work that we are aware

of demonstrates significantly less extreme situations than

what we describe here, or includes only simulation results.

We are also aware of another group at Stanford working

independently on control at the limits of handling [8], but

this work revolves more around physics-based techniques for

stabilizing the system in an unstable “sliding” equilibrium,

rather than executing maneuvers with high accuracy.

III. PRELIMINARIES

We consider a discrete-time, continuous state, and con-

tinuous action environment, where the state at some time

t is denoted as st ∈ R
n and the control as ut ∈ R

m. The

dynamics of the system are governed by some unknown (and

noisy) dynamics

st+1 = f(st, ut) + ǫt,

where f : R
n × R

m → R
n gives the mean state and ǫt is

some zero-mean noise term.

The control task we consider is that of following a desired

trajectory on the system, {s⋆
0:H , u⋆

0:H−1
}.1 More formally,

we want to choose controls that will minimize the expected

cost

J = E

[H−1
∑

t=0

(

δsT
t Qδst + δuT

t Rδut

)

+ δsT
HQδsH

∣

∣

∣

∣

st+1 = f(st, ut) + ǫt

]

(1)

where δst ≡ st − s⋆
t and δut ≡ ut − u⋆

t denote the state

and control error, and where Q ∈ R
n×n and R ∈ R

m×m

are symmetric positive semidefinite matrices that determine

how the cost function trades off errors in different state

and control variables. Even when the desired trajectory

is “realizable” on the true system — for example, if it

comes from an expert demonstration on the real system —

minimizing this cost function can be highly non-trivial: due

to the stochasticity of the world, the system will naturally

deviate from the intended path, and we will need to execute

controls to steer the system back to its intended path.

A. Linear Quadratic Regulator control

While there are many possible methods for minimizing

the cost function (1), one method that is particularly well-

suited to this task is the Linear Quadratic Regulator (LQR)

algorithm (sometimes also referred to as the Linear Quadratic

Tracker when the task is specifically to follow some target

trajectory) — there have been many recent successes with

LQR-based control methods in the both the machine learning

and control communities [6], [22]. Space constraints preclude

a full review of the algorithm, but for a more detailed

description of such methods see e.g. [2]. Briefly, the LQR

algorithm assumes that the (error) dynamics of the system

evolve according to a linear model

δst+1 = Atδst + Btδut + wt (2)

1Note that in this formulation the trajectory includes both states and con-
trols and could be produced, for instance, by a human expert demonstrating
the control task. In cases where the controls (or the desired intermediate
states) are not specified, we could use a variety of planning algorithms to
determine controls and desired states, though this is an orthogonal issue.

840

where At ∈ R
n×n and Bt ∈ R

n×m are system matrices,

and wt is a zero-mean noise term. Under this assumption, it

is well-known that the optimal policy for minimizing the

quadratic cost (1) is a linear policy — i.e., the optimal

control is given by δut = Ktδst for some matrix Kt ∈
R

m×n that can be computed using dynamic programming.

To apply LQR to our control task, we of course need to

specify the actual At and Bt matrices. Ideally, these matrices

would be the state and action derivatives (of the true model)

evaluated along the trajectory. However, since we do not

have access to the true model, we typically determine these

matrices using an approximate model. More formally, we

suppose we have some approximate model of the form

st+1 ≈ f̂(st, ut)

where, as before, f̂ : R
n×R

m → R
n predicts the next state

given the current state and control, and we set At and Bt

to be the Jacobians of this model, evaluated along the target

trajectory

At = Dsf̂(s, u)
∣

∣

∣

s=s⋆

t
,u=u⋆

t

Bt = Duf̂(s, u)
∣

∣

∣

s=s⋆

t
,u=u⋆

t

.

Despite the fact that we now are approximating the original

control problem in two ways — since we use an approximate

model f̂ and additionally make a linear approximations to

this function — the algorithm can work very well in practice,

provided the approximate model captures the derivatives of

the true system well (where we are intentionally somewhat

vague in what we mean by “well”). When the approximation

model is not accurate in this sense (for example, if it

misspecifies the sign of certain elements in the derivatives

at some point along the trajectory), then the LQR algorithm

can perform very poorly.

IV. A PROBABILISTIC FRAMEWORK FOR MIXED

CLOSED-LOOP AND OPEN-LOOP CONTROL

In this section, we present the main algorithmic con-

tribution of the paper, a probabilistic method for mixed

closed-loop and open-loop control. We first present a general

method, called Multi-model LQR, for combining multiple

probabilistic dynamics models with LQR — the model

combination approach uses estimates of model variances

and methods for combining Gaussian predictions, but some

modifications are necessary to integrate fully with LQR.

Then, we present a simple model for capturing the dynamics

of executing open-loop trajectories, and show that when we

combine this with an inaccurate model using Multi-model

LQR, the resulting algorithm naturally trades off between

actively controlling the system in well-modeled regimes, and

executing trajectories in unmodelled portions where we have

previously observed the desired behavior.

A. LQR with multiple probabilistic models

Suppose we are given two approximate models of a

dynamical system M1 and M2 — the generalization to

more models is straightforward and we consider two just

for simplicity of presentation. We also suppose that these

approximate models are probabilistic, in that for a given

state and control they return a Gaussian distribution over

next states, with mean fi(st, ut) and covariance Σi(st, ut),
i.e.,

p(st+1|Mi) = N (fi(st, ut),Σi(st, ut)).

The covariance terms Σi(st, ut) are interpreted as maximum

likelihood covariance estimates, i.e., for true next state st+1,

Σi(st, ut) = E
[

(st+1 − fi(st, ut))(st+1 − fi(st, ut))
T
]

so the covariance terms capture two sources of error: 1) the

true stochasticity of the world (assumed small), and 2) the

inaccuracy of the model. Thus, even if the world is largely

deterministic, model variance still provides a suitable means

for combining multiple probabilistic models.

To combine multiple probabilistic models of this form,

we interpret each prediction as an independent observation

of the true next state, and can then compute the posterior

distribution over the next state given both models by a

standard manipulation of Gaussian probabilities,

p(st+1|M1,M1) = N (f̄(st, ut), Σ̄(st, ut))

where

Σ̄ =
(

Σ−1

1 + Σ−1

2

)−1
, and f̄ = Σ̄

(

Σ−1

1 f1 + Σ−1

2 f2

)

and where the dependence on st and ut is omitted to simplify

the notation in this last line. In other words, the posterior

distribution over next states is a weighted average of the two

predictions, where each model is weighted by its inverse

covariance. This combination is analogous to the Kalman

filter measurement update.

We could now directly apply LQR to this joint model by

simply computing f̄(s⋆
t , u

⋆
t) and its derivatives at each point

along the trajectory — i.e., we could run LQR exactly as de-

scribed in the previous section using the dynamics (2) where

At and Bt are the Jacobians of f̄ , evaluated at s⋆
t and u⋆

t ,

and where wt ∼ N (0, Σ̄(s⋆
t , u

⋆
t)). However, combining these

models in this manner will lead to poor performance. This

is due to the fact that we would be computing Σ1(s
⋆
t , u

⋆
t)

and Σ2(s
⋆
t , u

⋆
t) only at the desired location, which can give

a very inaccurate estimate of each model’s true covariance.

For example, consider a learned model that is trained only

on the desired trajectory; such a model would have very low

variance at the actual desired point on the trajectory, but

much higher variance when predicting nearby points. Thus,

what we really want to compute is the average covariance

of each model, in the region where we expect the system

to be. We achieve this effect by maintaining a distribution

Dt over the expected state (errors) at time t. Given such a

distribution, we can approximate the average covariance

Σi(Dt) ≡ Eδst,δut∼Dt
[Σi(s

⋆
t + δst, u

⋆
t + δut)]

via sampling or other methods.

The last remaining element we need is a method for com-

puting the state error distributions Dt. Fortunately, given the

linear model assumptions that we already employ for LQR,

computing this distribution analytically is straightforward. In

841

Algorithm 1

Multi-model LQR(D0:H , M1, M2, s⋆
0:H , u⋆

0:H−1
, Q, R)

Input:

D0:H : initial state error distributions

M1,M2: probabilistic dynamics models

s⋆
0:H , u⋆

0:H−1
: desired trajectory

Q,R: LQR cost matrices

Repeat until convergence:

1. For t = 0, . . . ,H − 1, compute dynamics models

• Σi(Dt)← Eδst,δut∼Dt
[Σi(s

⋆
t + δst, u

⋆
t + δut)] ,

i = 1, 2 (computed via sampling)

• Σ̄t ←
(

Σ−1

1 (Dt) + Σ−1

2 (Dt)
)−1

• f̄ ← Σ̄t

(

Σ−1

1 (Dt)f1 + Σ−1

2 (Dt)f2

)

• At ← Dsf̄(s, u)
∣

∣

s=s⋆

t
,u=u⋆

t

• Bt ← Dsf̄(s, u)
∣

∣

s=s⋆

t
,u=u⋆

t

2. Run LQR to find optimal controllers Kt

• K0:H−1 ← LQR(A0:H−1, B0:H−1, Q,R)

3. For t = 0, . . . ,H − 1, update state distributions

• Γt+1 ← (At + BtKt)Γt(At + BtKt)
T + Σ̄(Dt)

• Dt ← {δst ∼ N (0,Γt), δut ∼ N (0,KtΓtK
T
t)}

particular, we first assume that our initial state distribution

D0 is a zero-mean Gaussian with mean zero and covariance

Γ0. Then, since our state dynamics evolve according to the

linear model (2), at each time step the covariance is updated

by

Γt+1 = (At + BtKt)Γt(At + BtKt)
T + Σ̄(Dt).

Of course, since we average the different models according

to the Σi(Dt), changing Dt will therefore also change At

and Bt. Thus, we iteratively compute all these quantities until

convergence. A formal description of the algorithm is given

in Algorithm 1.

B. A dynamics model for open-loop trajectories

Here we propose a simple probabilistic model that predicts

how the state will evolve when executing a previously

observed sequence of control actions. While generally one

would want to select from any number of possible trajectories

to execute, for the simplified algorithm in this section we

consider only the question of executing the control actions

of the ideal trajectory u⋆
0:H−1

.

To allow our model to be as general as possible, we assume

a very simple probabilistic description of how the states

evolve when executing these fixed sequences of actions.

In particular, we assume that the error dynamics evolve

according to

δst+1 = ρδst + wt

where ρ ∈ R (typically ≈ 1) indicates the stability of taking

such trajectory actions, and where wt is a zero-mean Gaus-

sian noise term with covariance Σ(δst, δut), which depends

only on the state and control error and which captures the

covariance of the model as a function of how far away

we are from the desired trajectory. This model captures the

following intuition: if we are close to a previously observed

trajectory, then we expect the next error state to be similar,

with a variance that increases the more we deviate from the

previously observed states and actions.

To see how this model naturally leads to trading off

between actively controlling the system and largely following

known trajectory controls, we consider a situation where

we run the Multi-model LQR algorithm with an inaccurate

model2 M1 and this described trajectory model, M2. Con-

sider a situation where our state distribution Dt is tightly

peaked around the desired state, but where M1 predicts the

next state very poorly. In this case, the maximum likelihood

covariance Σ1(Dt) will be large, because M1 predicts poorly,

but Σ2(Dt) will be much smaller, since we are still close to

the desired trajectory. Therefore f̄ will be extremely close to

the trajectory model M2, and so will lead to system matrices

At ≈ ρI and Bt ≈ 0 (the derivatives of the trajectory model).

Since this model predicts that no control can affect the state

very much, LQR will choose controls δut ≈ 0 — i.e.,

execute controls very close to u⋆
t , as this will minimize the

expected cost function. In contrast, if we are far away from

the desired trajectory, or if the model M1 is very accurate,

then we would expect to largely follow this model, as it

would have lower variance than the naive trajectory model.

In practice, the system will smoothly interpolate between

these two extremes based on the variances of each model.

C. Estimating Variances

Until now, we have assumed that the covariance terms

Σi(st, ut) have been given, though in practice these will need

to be estimated from data. Recall that the variances we want

to learn are ML estimates of the form

Σi(st, ut) = E
[

(st+1 − fi(st, ut))(st+1 − fi(st, ut))
T
]

so we could use any number of estimation methods to learn

these covariances, and our algorithm is intentionally agnostic

about how these covariances are obtained. Some modeling

algorithms, such as Gaussian Processes, naturally provide

such estimates, but for other approaches we need to use

additional methods to estimate the covariances. Since we

employ different methods for estimating the variance in the

two sets of experiments below, we defer a description of the

methods to these sections below.

V. EXPERIMENTS

In this section we present experimental results, first on a

simple simulated cart-pole domain, and then on our main

application task for the algorithm, the task of autonomous

sideways sliding into a parking spot.

2For the purposes of this discussion it does not matter how M1 is
obtained, and could be built, for example, from first principles, or learned
from data, as we do for the car in Section V.

842

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

Fig. 1. (top) Trajectory followed by the cart-pole under open-loop control
(middle) LQR control with an inaccurate model and (bottom) Multi-model
LQR with both the open loop trajectory and inaccurate model.

A. Cart-pole Task

To easily convey the intuition of our algorithm, and

also to provide a publicly available implementation, we

evaluated our algorithm on a simple cart-pole task (where

the pole is allowed to freely swing entirely around the

cart). The cart-pole is a well-studied dynamical system,

and in particular we consider the control task of balancing

an upright cart-pole system, swinging the pole around a

complete revolution while moving the cart, and then bal-

ancing upright once more. Although the intuition behind

this example is simple, there are indeed quite a few im-

plementation details, and due to space constraints we defer

most of this discussion to the source code, available at:

http://ai.stanford.edu/˜kolter/icra10.

The basic idea of the cart-pole task for our setting is as

follows. First, we provide our algorithm with an inaccurate

model of the dynamical system; the model uses a linear

function of state features and control to predict the next state,

but the features are insufficient to fully predict the cart-pole

dynamics. As a result the model is fairly accurate in the

upright cart-pole regions, but much less accurate during the

swing phase. In addition, we provide our algorithm with a

single desired trajectory (the target states and a sequence

of controls that will realize this trajectory under a zero-noise

system). Because we are focused on evaluating the algorithm

without consideration for the method used to estimate the

variances, for this domain we estimate the variances exactly

using the true simulation model and sampling.

Figure 1 shows the system performance using three differ-

ent methods: 1) fully “open loop” control, which just replays

the entire sequence of controls in the desired trajectory, 2)

running LQR using only the inaccurate model, and 3) using

the Multi-model LQR algorithm with both the inaccurate

50 100 150 200 250 300 350 400 450 500 550
0

10

20

30

40

50

60

70

80

90

100

Time

A
v
e

ra
g

e
 t

o
ta

l
c
o

s
t

LQR, true model

Multi−model LQR

Hand−tuned switching controller

Open Loop

LQR, GP Model

LQR, inaccurate Model

Method Avg. Total Cost

LQR (true model) 18.03 ± 1.61
LQR (inaccurate model) 96,191 ± 21,327

LQR (GP model) 96,712 ± 21,315
Open Loop 67,664 ± 13,585

Multi-model LQR 33.51 ± 4.38
Hand-tuned Switching Control 73.91 ± 13.74

Fig. 2. Average total cost, with 95% confidence intervals, for different
cart-pole control methods.

model and the trajectory. As can be seen, both pure open-

loop and LQR with the inaccurate model fail to control the

system, but Multi-model LQR is able to reliably accomplish

the control task. Figure 2 similarly shows the average total

costs achieved by each of the methods, averaged over 100

runs. Although open loop and inaccurate LQR fail at different

points, they are never able to successfully swing and balance

the pole, while Multi-model LQR performs comparably to

LQR using the actual model of the system dynamics by

naturally interpolating between the two methods in order

to best control the system. In the figure we also show

the error of a hand-tuned switching policy that switches

between purely model-based and open-loop control; despite

exhaustive search to find the optimal switch points, the

method still performs worse here than Multi-model LQR.

In Figure 2, we also compare to a Gaussian Process

(GP) model (see, e.g. [17] for detailed information about

Gaussian Processes) that attempted to learn a better dynamics

model by treating the inaccurate model as the “prior” and

updating this model using state transitions from the desired

trajectory. However, the resulting model performs no better

than LQR with the inaccurate model. We emphasize that

we are not suggesting that Gaussian processes cannot model

this dynamical system — they can indeed do so quite easily

given the proper training data. Rather, this shows that the

desired trajectory alone is not sufficient to improve a GP

model, whereas the Multi-model LQR algorithm can perform

well using only these two inputs; this is an intuitive result,

since observing only a single trajectory says very little about

the state and control derivatives along the trajectory, which

are ultimately necessary for good fully LQR-based control.

Indeed, we have been unable to develop any other controller

based only on the inaccurate model and the desired trajectory

that performs as well as Multi-model LQR.

843

Fig. 3. Snapshots of the car attempting to slide into the parking spot using (top) open-loop control, (middle) pure LQR control, and (bottom) Multi-model
LQR control. The desired trajectory in all cases is to slide in between the cones.

0 10 20 30 40 50 60 70
−15

−10

−5

0

5

10

15

Desired Trajectory

Open Loop

10 20 30 40 50 60 70
−15

−10

−5

0

5

10

15

Desired Trajectory

LQR, inaccurate model

0 10 20 30 40 50 60 70
−15

−10

−5

0

5

10

15

Desired Trajectory

Multi−Model LQR

0 2 4 6 8 10 12 14 16 18 20
−15

−10

−5

0

5

Desired Trajectory

Open Loop

0 2 4 6 8 10 12 14 16 18 20
−15

−10

−5

0

5

Desired Trajectory

LQR, inaccurate model

0 2 4 6 8 10 12 14 16 18 20
−15

−10

−5

0

5

Desired Trajectory

Multi−Model LQR

Fig. 4. Plots of the desired and actual trajectories followed by the car under (left) open-loop control, (middle) pure LQR control, and (bottom) Multi-model
LQR control. Bottom plots show a zoomed-in view of the final location.

B. Extreme Autonomous Driving

Finally, in this section we present our chief applied result

of the paper, an application of the algorithm to the task

of extreme autonomous driving: accurately sliding a car

sideways into a narrow parking space. Concurrent to this

work, we have spent a great deal of time developing an LQR-

based controller for “normal” driving on the car, based on

a non-linear model of the car learned entirely from data;

this controller is capable of robust, accurate forward driving

at speeds up to 70 mph, and in reverse at speeds up to

30 mph. However, despite significant effort we were unable

to successfully apply the fully LQR-based approach to the

task of autonomous sliding, which was one of the main

motivations for this current work.

Briefly, our experimental process for the car sliding task

was as follows. We provided to the system two elements;

first we learned a driving model for “normal” driving, learned

with linear regression and feature selection, built using about

2 minutes of driving data. In addition, we provided the

algorithm a single example of a human driver executing a

sideways sliding maneuver; the human driver was making no

attempt to place the car accurately, but rather simply putting

the car into an extreme slide and seeing where it wound up.

This demonstration was then treated as the target trajectory,

and the goal of the various algorithms was to accurately

follow the same trajectory, with cones placed on the ground

to mark the supposed location of nearby cars.

For this domain, we learned domain parameters needed by

the Multi-model LQR algorithm (in particular, the covariance

terms for the inaccurate and open-loop models, plus the

ρ term) from data. To reduce the complexity of learning

the model variances, we estimated the covariance terms

as follows: for the inaccurate model we estimated a time-

varying (but state and control independent) estimate of the

variance by computing the error of the model’s predictions

for each point along the trajectory, i.e.,

et = (st+1 − f1(st, ut))(st+1 − f1(st, ut))
T

then averaged these (rank-one) matrices over a small time

window to compute the covariance for time t. For the open-

844

loop trajectory model, we learned a state and control de-

pendent (but not time dependent) estimate of the covariance

of the form Σ2(st, ut) =
(

w1‖δut‖
2 + w2‖δst‖

2 + w3

)

I ,

where we learned the parameters w1, w2, w3 > 0 via least-

squares; this model captures the intuition that the variance of

the open-loop model increases for points that are farther from

the desired trajectory. Finally we selected ρ = 1 due to the

fact that the system rarely demonstrates extremely unstable

behavior, even during the slide.

Figure 3 shows snapshots of the car attempting to execute

the maneuver under the three methods of control: open-loop,

pure LQR, and our Multi-model LQR approach integrating

both the inaccurate model and the trajectory. Videos of the

different slides are included in the video accompanying this

paper. It is easy to understand why each of the methods

perform as they did. Purely open-loop control actually does

perform a reasonable slide, but since it takes some distance

for the car to build up enough speed to slide, the trajectory

diverges significantly from the desired trajectory during this

time, and the slide slams into the cones. Pure LQR control,

on the other hand, is able to accurately track the trajectory

during the backward driving phase, but is hopeless when

the car begins sliding: in this regime, the LQR model is

extremely poor, to the point that the car executes completely

different behavior while trying to “correct” small errors

during the slide. In contrast, the Multi-model LQR algorithm

is able to capture the best features of both approaches,

resulting in an algorithm that can accurately slide the car into

the desired location. In particular, while the car operates in

the “normal” driving regime, Multi-model LQR is able to use

its simple dynamics model to accurately control the car along

the trajectory, even in the presence of slight stochasticity

or a poor initial state. However, when the car transitions

to the sliding regime, the algorithm realizes that the simple

dynamics model is no longer accurate, and since it is still

very close to the target trajectory, it largely executes the

open-loop slides controls, thereby accurately following the

desired slide. Figure 4 shows another visualization of the

car for the different methods. As this figure emphasizes, the

Multi-model LQR algorithm is both accurate and repeatable

on this task: in the trajectories shown in the figure, the final

car location is about two feet from its desired location.

VI. CONCLUSION

In this paper we presented a control algorithm that prob-

abilistically combines multiple models in order to integrate

knowledge both from inaccurate models of the system and

from observed trajectories. The resulting controllers naturally

trade off between closed-loop and open-loop control in an

optimal manner, without the need to hand-tune a switching

controller. We applied the algorithm to the challenging task

of autonomously sliding a car sideways into a parking

spot, and show that we can reliably achieve state-of-the-art

performance in terms of accurately controlling such a vehicle

in this extreme maneuver.

ACKNOWLEDGMENTS

We thank the Stanford Racing Team, Volkswagen ERL,

and Boeing for support with the car. J. Zico Kolter is

supported by an NSF Graduate Research Fellowship.

REFERENCES

[1] Pieter Abbeel, Morgan Quigley, and Andrew Y. Ng. Using innaccurate
models in reinforcement learning. In Proceedings of the International

Conference on Machine Learning, 2006.
[2] Brian D. O. Anderson and John B. Moore. Optimal Control: Linear

Quadratic Methods. Prentice-Hall, 1989.
[3] Christoper G. Atkeson and Stefan Schaal. Learning tasks from a single

demonstration. In Proceedings of the International Conference on

Robotics and Automation, 1997.
[4] Christopher G. Atkeson and Juan Carlos Santamaria. A comparison

of direct and model-based reinforcement learning. In Proceedings of

the International Conference on Robotics and Automation, 1997.
[5] Stefan Schaal Christopher G. Atkeson, Andrew W. Moore. Locally

weighted learning for control. Artificial Intelligence Review, 11:75–
113, 1997.

[6] Adam Coates, Pieter Abbeel, and Andrew Y. Ng. Learning for control
from muliple demonstrations. In Proceedings of the International

Conference on Machine Learning, 2008.
[7] Kenji Doya, Kazuyuki Samejima, Ken ichi Katagiri, and Mitsuo

Kawato. Multiple model-based reinforcement learning. Neural

Computation, pages 1347–1369, 2002.
[8] Chris Gerdes. Personal communication.
[9] Eric Hansen, Andrew Barto, and Shlomo Zilberstein. Reinforcement

learning for mixed open-loop and closed-loop control. In Neural

Information Processing Systems, 1996.
[10] Jessica K. Hodgins and Marc H. Raibert. Biped gymnastics. Interna-

tional Journal of Robotics Research, 9(2):115–128, 1990.
[11] Gabriel M. Hoffmann, Claire J. Tomlin, Michael Montemerlo, and

Sebastian Thrun. Autonomous automobile trajectory tracking for off-
road driving: Controller design, experimental validation and racing. In
Proceedings of the 26th American Control Conference, 2007.

[12] Yung-Hsiang Judy Hsu and J. Christian Gerdes. Stabilization of a
steer-by-wire vehicle at the limits of handling using feedback lin-
earization. In Proceedings of the 2005 ASME International Mechanical

Engineering Congress and Exposition, 2005.
[13] Jonathan Ko, Daniel J. Klein, Dieter Fox, and Dirk Hhnel. Gaussian

processes and reinforcement learning for identification and control of
an autonomous blimp. In Proceedings of the International Conference

on Robotics and Automation, 2007.
[14] Roderick Murray-Smith and Tor Arne Johansen. Multiple Model

Approaches to Modelling and Control. Taylor and Francis, 1997.
[15] Kumpati S. Narendra and Jeyendran Balakrishnan. Adaptive control

using multiple models. IEEE Transactions on Automatic Control,
pages 171–187, 1997.

[16] Jan Peters and Stefan Schaal. Learning motor primatives with
reinforcement learning. In Proceedings of the 11th Joint Symposium

on Neural Computation., 2004.
[17] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian

Processes for Machine Learning. The MIT Press, 2006.
[18] Stefan Schaal. Nonparametric regression for learning. In Proceedings

of the Conference on Adaptive Behavior and Learning, 1994.
[19] Kevin D. Schott and B. Wayne Bequette. Multiple model adaptive

control. In Multiple Model Approaches to Modelling and Control.
1997.

[20] Martin Stolle and Christopher G. Atkeson. Policies based on trajectory
libraries. In Proceedings of the International Conference on Robotics

and Automation, 2006.
[21] Martin Stolle, Hanns Tappeiner, Joel Chestnutt, and Christopher G.

Atkeson. Transfer of policies based on trajectory libraries. In
Proceedings of the International Conference on Intelligent Robots and

Systems, 2007.
[22] Yuval Tassa, Tom Erez, and William Smart. Receding horizon

differential dynamic programming. In Neural Information Processing

Systems 20, 2007.
[23] Claire Tomlin. Maneuver design using reachability algorithms, with

applications to STARMAC flight. Presentation at RSS Workshop:
Autonomous Flying vehicles - Fundamentals and Applications.

[24] Sethu Vijayakumar, Aaron D’Souza, and Stefan Schaal. Incremental
online learning in high dimensions. Neural Computation, 17:2602–
2634, 2005.

845

