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Abstract— This paper presents a novel approach for haptic
object recognition with an anthropomorphic robot hand. Firstly,
passive degrees of freedom are introduced to the tactile sensor
system of the robot hand. This allows the planar tactile
sensor patches to optimally adjust themselves to the object’s
surface and to acquire additional sensor information for shape
reconstruction. Secondly, this paper presents an approach to
classify an object directly from the haptic sensor data acquired
by a palpation sequence with the robot hand – without building
a 3d-model of the object. Therefore, a finite set of essential finger
positions and tactile contact patterns are identified which can be
used to describe a single palpation step. A palpation sequence
can then be merged into a simple statistical description of the
object and finally be classified. The proposed approach for
haptic object recognition and the new tactile sensor system
are evaluated with an anthropomorphic robot hand.

I. INTRODUCTION

Handling unknown objects with a robotic hand has been
a subject of research the recent years and has become
even more important. An active palpation sequence with
direct interaction with the object allows perceiving object
features like shape, texture and weight which are essential
for handling an object. In this context there exist two major
problems: the haptic perception of the robot hand and the
creation of an object model through haptic perception.

The haptic perception of a robotic hand usually includes
tactile sensing for surface sensibility and kinesthetic sensor
data like the finger positions for depth sensibility. A tactile
sensor matrix allows taking small imprints of the object
which can be used to recognize simple surface structures
[1]. A tactile sensor matrix can be arranged on a plane or
on a curved surface. Planar tactile sensor patches have the
benefit that they can take a full imprint of an object’s surface
resulting in a tactile image. As a drawback, the object tends
to adapt its position and orientation according to the planar
surface of the sensor before a contact can be detected. A
curved tactile sensor patch [2] has the benefit that it can
measure contacts from several directions. But the tactile
images of these sensor matrices are limited to point contacts
and do not take a full imprint of the surface structure.

In this paper, we introduce a tactile sensor system which
merges the benefits of both sensor types: firstly, it consists
of planar sensor patches taking tactile imprints of the object
surface and secondly, a sensor patch is mounted on a mini-
joystick gaining two passive degrees of freedom. These
passive joints make the tactile sensor adapt itself to the object

Fig. 1. From a palpation sequence to an object description using haptic
key features: (1) An object is successively enfolded. (2) Key haptic features
including joint angles and tactile patterns are extracted by clustering from
example palpations. (3) Each single palpation is mapped on these key haptic
features. Then, each entry of the object vector tells the percentage of how
often the according haptic feature occurred during the palpation sequence.

surface in case of contact and provides essential information
for shape reconstruction.

Concerning the generation of an object model through
haptic perception, previous work [3] concentrates on the
collection of a point cloud from haptic exploration data.
As an additional processing step, the point cloud can be
approximated by a volumetric object model and the object
can be classified [4], [5]. The problem with these approaches
is that the fusion into a single object model becomes in-
accurate as soon as the object moves – which is likely to
happen having a direct interaction with the object. Therefore,
these approaches assume that the object is fixed and not
moveable. Furthermore, the whole kinematic chain from the
tactile sensors to the robot coordinate system must be known.

Alternatively, recent work tries to build an object model
directly from haptic sensor data without building a 3d-model.
In [6], objects are explored with a single tactile sensor matrix
mounted on a robotic arm. The objects are classified directly
from a tactile image sequence perceived through a palpation
sequence. In [7], [8], objects were categorized according to
their shape from a single grasp. The system was able to
generalize 6 novel objects. In [9] was shown that through
repeated grasping the object converges into a stable grasping
state and the variance of the sensor data for perceiving an
object of the same class is reduced. The sensor data of a
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(a) Working principle of the resistive sensor (b) Finger assembly with the new finger tip. (c) Close-up of a finger tip.

Fig. 2. Sensor working principle and layout.

converged grasp qualifies for making a statement about the
shape and the identity of an object. Recent work [10] learns
a vocabulary from tactile observations to classify an object
from several grasp actions with a two-finger gripper.

Our work addresses the scenario of an anthropomorphic
robot hand successively enfolding an object. We want to
perceive the partial shapes of an object and to explicitly
use the variance of the haptic sensor data. As depictured in
Fig. 1, the idea is to find a limited amount of kinesthetic
key features (finger configurations) combined with tactile
key contact patterns which allow describing the perceived
haptic data and therefore the partial geometry of an object at
its best. We call this combination of tactile and kinesthetic
key features haptic key features. The haptic key features
are automatically identified using methods from machine
learning. Each single palpation of a palpation sequence can
then be mapped on these categories. The proposed object
descriptor is based on the histogram of the key features and
includes the percentages of how often certain haptic key
features occurred during a palpation sequence. There will
be no need for a kinematic model of the hand as the angles
of the fingers are directly used without further processing.
The object is explicitly allowed to be moved as there is
no need for a reference coordinate system. The evaluation
of this approach and of the proposed tactile sensor system
will be done with two versions of the robot hand: the first
one has only rigid tactile sensor patches without passive
joints and the second one is equipped at the finger tips with
the proposed tactile sensor modules having two additional
rotatory degrees of freedom.

After this introduction, the robot hand and the tactile sen-
sor system are explained in section II. The workflow of the
object recognition approach is organized in four chapters: the
feature extraction of the sensor data is described in section III
followed by section IV which shows the categorisation of
these features. Section V explains how to create an object
descriptor based on the determined categories and section
V shows the object classification based on these object
descriptors. The results of our approach are presented in
section VI followed by the conclusions in section VII.

II. TACTILE SENSOR SYSTEM
A. Sensor design and working principle

We consider two versions of a tactile sensor system: on
the one hand, a rigid tactile sensor matrix and on the other

hand, a tactile sensor matrix with two additional rotatory
degrees of freedom (DOF). The planar tactile sensor module
(DSA 9330/9335, [11]) used for both sensor versions is
able to pick up a pressure profile using a resistive working
principle. The second tactile sensor system actually consists
of two sensors: a tactile sensor module which is mounted
on an ultra-miniature joystick. The compliant mini-joystick
(CTS Series 254, [12]) gives the tactile sensor module two
additional rotational degrees of freedom. We call these joints
passive as they can not be actively actuated.

Main components of the resistive tactile sensor are a
common electrode and sensing electrodes which are arranged
as a matrix. These electrodes are covered with conductive
foam. The application of pressure on this sensor leads to an
image of the applied pressure profile. As already investigated
[13], the sensor’s working principle depends on an interface
effect between the metal electrodes and the structured sensor
material, as pictured in Fig. 2(a). The resistance between the
common (reference) electrode and a sensor cell electrode is
a function of the applied load and time. Further details on
the sensor’s working principle can be found in [13]–[15].

The compliant mini-joystick consists of two potentiome-
ters with each measuring a rotational angle of 50 degrees.
The determined resistances can be associated with the current
angles of the mini-joystick. Due to their resistive working
principle, the potentiometers can be connected to the existing
sensor controller used for the tactile sensor module. Fig. 2(b)
illustrates how the mini-joystick is integrated into the existing
tactile sensor modules whereas Fig. 2(c) shows a close-up of
the new finger tip.

B. Sensor system of the anthropomorphic robot hand

To build our hand, we used an anthropomorphic robot hand
[16] with eight degrees of freedom. The thumb, the index and
the middle finger have 2DOF in each case. The ring and the
tiny finger respectively have 1DOF at the proximal phalanx.
The hand is actuated pneumatically with position control of
the fingers. The electronic part of the robotic hand consists
of fluidic actuators, joint angle sensors and a hand motion
controller.

As introduced in [14], we developed a construction kit us-
ing tactile sensor modules, a sensor controller (DSACON32-
M with modified firmware [11]), printed circuit boards carry-
ing additional electronic components and the corresponding
hardware to assemble all these parts into the robot hand.
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(a) Real robot hand. (b) Tactile sensor patches Ii and actuators
Fj with positioning sensors.

Fig. 3. Sensor layout of the anthropomorphic robot hand.

To cover the inner surface of the fingers, only two different
sensor modules (with a different length but same width –
resolutions of 4 × 7 and 4 × 6 taxels are available) are
necessary. The index, the middle and the ring finger have
2 tactile sensor modules in each case. The thumb and the
tiny respectively have only one single sensor module at
the distal phalanx. Main parts of the electronic system are
the tactile sensor modules, the tactile sensor controller, a
communication subsystem and the existent hardware of the
robotic hand. Fig. 3 shows the real robotic hand as well as
the sensor and actor configuration of the robot hand.

The second version of the hand is additionally equipped
with the enhanced version of the tactile sensor system using
mini-joysticks. For this purpose, the existing construction
kit can be completely reused without modification. The
joystick modules need a supply voltage and provide two
analog signals. The analog output signals are connected to a
multiplexer which is connected again to the digital address
bus and the A/D converter of the sensor controller. The 5
compliant finger tips make 10 additional passive degrees of
freedom for the robot hand.

III. TACTILE SIGNAL PROCESSING

For feature extraction two approaches are considered in
this work: a moment analysis for computing the position,
area and eccentricity of a contact as well as a principal
component analysis for finding a low-dimensional subspace
for tactile contact patterns. The aim is a dimension reduction
of the tactile patterns while keeping the essential information.

A. Moment Analysis

As the data of the tactile sensor matrix corresponds to a
two-dimensional planar image, we analyze these images us-
ing moments up to the 2nd order [17]. The two-dimensional
(p+ q)th order moment mp,q of an image is defined as the
following double sum over all image pixels (x, y) and their
values f(x, y):

mp,q =
∑
x

∑
y

xpyqf(x, y) p, q ≥ 0 . (1)

The moment m0,0 constitutes the total area of the object
imprinted on the sensor. The centroid ~xc = (xc, yc)T of this

Fig. 4. Output of the moment analysis: the position (x, y) and the
eigenvalues λ1, λ2 of a contact region. The orientation θ is not used.

area can be computed to

xc =
m1,0

m0,0
, yc =

m0,1

m0,0
. (2)

Furthermore, the centroid is needed to calculate the higher
order moments, the so-called central moments µp,q:

µp,q =
∑
x

∑
y

(x− xc)p(y − yc)qf(x, y) p, q ≥ 0 . (3)

The 2nd order central moments can be used to compute the
principal axes of the object which approximate the image by
an ellipse.

The eccentricity ε of a contact is described by the relation
of the eigenvalues λ1 and λ2 of the matrix [ µ2,0 −µ1,1

−µ1,1 µ0,2
]. If

both eigenvalues have a similar value, then the contact area
tends to have a round or square shape and the eccentricity
is close to zero.

Touching an edge results in an oblong ellipse with an
eccentricity ε close to 1 when using

ε =
(µ2,0 − µ0,2)2 + 4µ2

1,1

(µ2,0 + µ0,2)2
ε ∈ [0, 1] . (4)

Each tactile image Ii can then be described by the vector
(x, y, ε, λ1), as illustrated in Fig. 4. Alternatively, a binary
presentation for each tactile image is considered: “having
contact” or “having no contact”. A tactile sensor patch has
contact, if m00 > δ with δ as a predefined pressure threshold.

B. Principal Component Analysis

A principal component analysis (PCA) is used for iden-
tifying the characteristic features of given contact pattern
examples. For the PCA n tactile images are given. With
I as one of these images of the size w × h, the vector
representation is given by the vector ~v of size s = w · h.

I =

I11 · · · Iw1
...

. . .
...

I1h · · · Iwh


⇒ ~v =

(
I11 . . . Iw1, I12 . . . Iw2 . . . I1h . . . Iwh

)T
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The mean vector is computed to

~µ =
n∑
i=1

1
n
~vi. (5)

The covariance matrix is given by

K =
1
n

n∑
i=1

(~vi − ~µ)(~vi − ~µ)T (6)

which is of size s× s.
The principal component analysis of K results in s eigen-

values Λi and the accordant eigenvectors γi, which span the
orthogonal eigenspace Γ = (γ1, · · · , γp). This eigenspace
describes the highest variance between the images. The s×s-
matrix, with each eigenvector as a column, is reduced to a
s× d-matrix E by taking only the first d eigenvectors with
highest eigenvalues. Given an image in vector presentation
~v and the reduced eigenvector matrix E the image vector is
reduced to a d × 1-vector by ~k = ET · ~v which is used as
the final presentation of a tactile image. Given a set of tactile
images, these images are transferred into a vector representa-
tion. Then, a lower dimensional subspace is computed from
the given examples by a principal component analysis. This
subspace optimally represents the given contact patterns.

We consider two possibilities for applying the PCA: treat
each tactile image independently gaining an input space of
4 × 7 taxels or group the two tactile images of each finger
together gaining an input space of 8× 7 taxels.

IV. IDENTIFYING HAPTIC KEY FEATURES

A. Grasping Strategy

In order to enfold an object with the robot hand and to
acquire haptic data, a simple strategy for closing the hand
is needed. In order to simplify the test scenario, the object
is handed over to the robot by laying it into the opened
robot hand. Therefore, the robot does not have to approach
and grasp the object. Furthermore, the robot hand must adapt
itself to the shape of the object in order to capture the variety
of partial shapes of the object. As depictured in Fig. 5, the
process of enfolding an object is done in two steps:

1) Only the proximal phalanges of the robot hand are
closed. A movement of a finger is stopped if a contact
is detected for this finger. A contact is detected if the
desired finger movement deviates from the executed
finger movement. After all finger movements have
stopped, tactile imprints of all tactile sensor patches
are taken.

2) The distal phalanges are closed as well until each finger
has contact or reached the maximum angle. Again,
tactile imprints of all tactile sensor patches are taken.

For a single palpation, we get 2 · 8 angles for the finger
configuration and 2 · 8 tactile images. Using the new version
of the hand, we gain 10 additional angles for the orientation
of the tactile sensor planes of the finger tips.

Fig. 5. Enfolding an object: (1) The object is laid into the opened robot
hand. (2) The proximal phalanges of the robot hand are closed. (3) Finally,
the distal phalanges are closed as well.

B. Haptic key features

A single palpation is represented by a tuple (~F , I) with
~F as the kinesthetic data including the finger positions and
I as the tactile images. Applying the feature extraction from
section III, the set of tactile images in I is transferred to
a set of tactile features ~I . We want to use a limited set
of haptic key features to describe a palpation sequence.
Instead of using a manually predefined primitive set, we
use a clustering method to identify which combination of
finger configurations and contact patterns is most suitable
to describe an object. For identifying haptic key features
we apply a vector quantisation on the finger configurations
and the contact patterns independently. The output of this
clustering consists of f representative vectors for finger
configurations and t for the contact patterns. The number
of clusters has to be predetermined. For identifying haptic
key features, we introduce the Self-Organizing Maps in the
next chapter as a machine learning approach.

C. Self-Organizing Maps

A self-organizing map [18] (SOM) is described by a set of
neurons. Each neuron ci is assigned to a n-dim. weight vector
mi and a position ri on the map. Each neuron represents
a currently unknown category. During the training process
each input pattern is assigned to one of these categories and
simultaneously, the discrimination between the categories
becomes more precisely with each step of the training.
Thus, the training process of a SOM describes a structure-
preservative mapping from high-dimensional input space to
a 2-dim. output space. Similar patterns in the input space
lie in a geographical near position in the output space. Of
course, this mapping concurs with inaccuracy. As a benefit,
the clustered high-dimensional input data can be simply
visualized on a regular grid.

The training of a SOM is based on competitive learning:
the idea is the adaptation of a neuron c with highest activation
energy with respect to a randomly picked pattern x, so that
in the future higher activation energy is achieved with the
same input. Here, the activation energy complies with the
Euclidean distance between the weight and the input vectors.
The SOM can be referred to as an unsupervised learning or
clustering method.

One training run t consists of 4 steps:
1) Pick a random input vector x(t).
2) Calculate distance between weight vectors and input

vector:
Di(t) = ‖x(t)−mi(t)‖ .
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3) Determine winner neuron c:

c = argmin
i

(Di(t)).

4) Adapt weight neurons in the neighborhood of the
winner:

mi(t+ 1) = mi(t) + α(t) · hci(t) · [x(t)−mi(t)].

The neighborhood function is given by:

hci(t) = exp
‖rc − ri‖2

2 · σ(t)2
.

An adaptation means the movement of the weight vectors
into the direction of the input vectors. The learning process
determinates by reducing the learning rate α(t) and the
neighborhood hci(t). The SOM converges to a stable state,
if no further changes occur.

The use of a w× h SOM results into w · h categories for
describing an input pattern. After training, the SOM can be
used for assigning a pattern to one of the determined classes
by the function S(x):

k = S(x) = argmin
i

(‖x−mi‖) ∈ [1, w · h] (7)

In a vector representation, this can be written as a n ·m zero
vector with a value one at position k. We will use this vector
representation in the following. A soft decision can be made
by weighting each weight neuron by its distance to the input
pattern.

V. OBJECT CLASSIFICATION WITH HAPTIC KEY
FEATURES

A. Object descriptor

A palpation sequence consists of n single palpations
(A1, A2, ..., An). A single palpation itself is represented by
a tuple (~F , ~I) with ~F as the finger configuration and ~I as
the processed tactile images.

Due to the inhomogeneity of the tactile and the kines-
thetic data, we apply a clustering for the sensor modalities
independently. Then, a sequence of finger positions Fi can
be described using the SOM-function Sf trained with finger
positions:

(F1, F2, ..., Fn)⇒ (Sf (F1), Sf (F2), ..., Sf (Fn))

As we do not consider the order of the palpations, the fusion
of the palpation sequence of the length n is made by building
a histogram of the key features. This simply results from the
sum over the classification vectors of the whole palpation
sequence:

~̂
Of =

n∑
i=1

Sf (Fi) (8)

Then, each entry of the vector ~̂
Of describes how often the

corresponding finger configuration has been chosen to enfold
an object.

To compare two palpation sequences with a different
amount of palpations, we have to normalize the object vector
with respect to to the length of the sequence:

~Of =
1
n
~̂
Of =

1
n

∑
i=1

Sf (Fi) (9)

Now, each entry of the vector ~Of describes the percentage
of how often the corresponding class was used to describe
a palpation. We use this representation as a final object
descriptor for classification. The same procedure is applied
to tactile data gaining an object descriptor ~Ot.

For classification we use a Bayes classifier explained in the
following section. The classifier C generates a vector ~y with
an output dimension corresponding to the numbers of the
objects to be classified. We propose two different approaches
for the fusion of tactile and kinesthetic data:

1) Description Fusion: The object descriptors of the tac-
tile and the kinesthetic data are concatenated into one
description resulting into a classification C( ~Of , ~Ot).
Having n clusters for the tactile data and m for the
kinesthetic data, the vector size becomes m+ n.

2) Decision Fusion: The classification is done with tactile
and kinesthetic data independently. Afterwards, the
classification results are merged into one decision:
w · Cf ( ~Of ) + (1 − w) · Ct( ~Ot) with w as the weight
for the two classifiers.

B. Bayes classifier

Statistical learning approaches for pattern recognition use
statistical coherence in training data to create a classifier. The
Bayes rule is of utmost importance as it allows to determine
the probability of a certain reason for an observed effect. The
observations are named D and possible reasons are called
hypotheses h. Then, the Bayes rule is given by

P (h|D) =
P (D|h)P (h)

P (D)
(10)

and is derived from the definition of the conditional prob-
ability. We are interested to find the hypothesis ĥ from a
set of hypotheses h ∈ H , which maximize P (h|D). In our
case, h represents an object class and D an observed object
descriptor. The term P (D) can be left out as it does not in-
fluence the maximization. As we assume that all hypotheses
have the same a-priori probability P (h), the maximization
results into the Maximum-Likelihood-hypothesis:

hML ≡ argmax
h∈H

P (h|D) = argmax
h∈H

P (D|h) (11)

The probablity P (D|h) for each class is approximated by a
multivariate normal distribution which is defined by the mean
vector ~µ and the covariance matrix Σ of the related training
descriptors. Any pattern is assigned to the class with the
most likelihood or by weighting the vote according to the
probabilities.
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VI. RESULTS
For the evaluation of this approach, a human being re-

peatedly hands overs the unknown object to the robot hand.
This corresponds to a palpation sequence where the robot
repeatedly enfolds the object without knowing the exact
object position. Fig. 6 shows the objects which were used
for evaluation. The questions we want to investigate are:
• How good is the object recognition approach?
• How important are tactile and kinesthetic data?
• How to merge tactile and kinesthetic data?
• What is the relation between the recognition rate and

the number of palpations?
• What is the improvement of the new tactile sensor type?

For the evaluation of our approach we used initially the first
version of the hand with rigid tactile sensor modules. For
the moment analysis, we used the features mean-x, mean-
y, eccentricity and major axis length. These values were
normalized between [0, 1]. For the PCA, we processed the
images of the tactile sensors separately. Each image was
upscaled by factor 2 gaining an input size for the PCA of
14 × 8. The output dimension of the dimension reduction
based on the PCA is 10. For the clustering, we used a 6×6-
SOM on finger positions and a 8×8-SOM on image data. If
not explicitly stated, decision fusion and 3 palpations for a
sequence were used. We used for training 50 sequences for
each object. This makes 150 palpations for an object class for
training. Similarly, we recorded for each object 35 sequences
for testing.

Fig. 6. The 7 Objects used for evaluation.

Fig. 7. Single Recognition Rates.

Fig. 7 shows the single recognition rates. The ball, the
bottle and the glue were recognized over 90%. The wooden
block, the play cube and the cup have still a recognition rate
of over 74%. Surprisingly, the recognition rate of the mug
is only close to 50%.

To find the best way of merging the two sensor modalities,
we have a look at Fig. 8. We used a moment analysis
for tactile feature extraction. Applying decision fusion, we
used for summing up both decisions a weight of 0.5. The
performance of object recognition with position and with

Fig. 8. Comparison of description fusion, decision fusion and recognition
just based on a single sensor modality.

image data is almost equal. It becomes obvious that fusion
of both modalities improves the results in general. So none
of the two sensor modalities is more appropriate for object
recognition although the finger positions were expected to
achieve better results. By merging the decision vectors by a
weighted sum, the best results were achieved.

Fig. 9. The relation of recognition rate to the number of palpations -
comparing sensor fusion, image data only and position data only.

Fig. 9 plots the relation between recognition rate and the
number of palpations. We used an increasing number of
palpations from 1 to 6. The recognition rate becomes in
general better with an increasing number of palpations - this
applies to both sensor modalities and to the fusion of them
as well. This agrees with the idea of examining an entire
sequence of palpations instead of just a single palpation.
Furthermore, it shows that the fusion of a sequence works
with a different number of palpations.

Fig. 10. Comparison of different tactile feature types: binary contacts,
image moments and PCA.

For finding the best way for extracting features from tactile
data, PCA, image moments and simple binary contacts were
compared as depicted in Fig. 10. The tactile features based
on moment analysis achieved in general the best results.
This result encourages us to further investigate tactile feature
extraction using a dense matrix of tactile sensors.
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Finally, Fig. 11 shows the benefit of the new finger tip. The
planar tactile sensor matrices passively adapt their orientation
until the normal of the tactile sensor plane almost agrees with
object surface normal. We consider the additional passive
joints as kinesthetic data. This good impression is confirmed
by the evaluation pictured in Fig. 12. It compares the
recognition rate of single objects regarding the sensor type
and only considering the kinesthetic data. All objects except
the glue bottle were recognized much better – especially the
ball and the block. The additional kinesthetic sensor data
improves the performance of the haptic recognition.

Fig. 11. The two rotatory degrees of freedom: (1) The finger tips of thumb,
index and middle finger adapt themselves to the surface of the ball. (2) A
close-up of the thumb.

Fig. 12. Comparison of sensor versions – enhanced sensors with passive
joints and standard rigid sensors: recognition rates based on kinesthetic data
only.

VII. CONCLUSIONS AND FUTURE WORKS

This work introduced an approach which classifies an
object directly from the finger positions and tactile patterns of
an anthropomorphic robot hand. Using haptic key primitives
as a compact description, a sequence of palpations can
be merged into a simple statistical object description. This
approach worked for most of the tested objects. The objects
don’t have to be fixed and are allowed to be moved. No hand
kinematics must be known.

Furthermore, this paper introduced a versatile tactile sens-
ing system consisting of a planar tactile sensor matrix
mounted on a mini-joystick. The planar sensor surface adapts
its orientation passively to the object surface and gathers
additional information for perceiving the object shape. These
additionally rotatory degrees of freedom improve the object
recognition process.

For future work we will further investigate and improve
the new finger tip – especially for grasping and exploration.

Furthermore, we will try to improve recognition rates and
consider autonomous enfolding of objects. A focus will be on
the improvement of the tactile signal processing, e.g. using
extensions of the PCA.
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