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Abstract— We describe an autonomous robotic system ca-
pable of navigating through an office environment, opening
doors along the way, and plugging itself into electrical outlets
to recharge as needed. We demonstrate through extensive
experimentation that our robot executes these tasks reliably,
without requiring any modification to the environment. We
present robust detection algorithms for doors, door handles, and
electrical plugs and sockets, combining vision and laser sensors.
We show how to overcome the unavoidable shortcoming of
perception by integrating compliant control into manipulation
motions. We present a visual-differencing approach to high-
precision plug-insertion that avoids the need for high-precision
hand-eye calibration.

I. INTRODUCTION

We aim to develop robots that combine mobility and
manipulation to assist and work with people in offices
and similar institutional settings. These robots inhabit an
environment that is simultaneously structured and varied;
designed according to social and legal norms, but under
constant change by the people who use it. To be effective in
even a single application, such a robot must exhibit an array
of capabilities, some specific to the application, but many
with broader utility.

We focus on two basic capabilities that are necessary
for most, if not all, applications: navigation and energy
management. We want our robots to safely go anywhere
that people can go, avoiding all obstacles, opening doors,
and passing through doorways along the way. When low on
energy, a robot should find a standard electrical outlet and
plug itself in to recharge. A robot that can accomplish these
tasks reliably, without requiring environmental modifications,
represents a step toward long-running autonomous robots that
will serve as a foundation for application development of all
kinds.

In this paper, we present an implemented system com-
prising autonomous navigation, door-opening, and plugging-
in. We have validated the robustness and effectiveness of
this system through extensive experimentation, including a
“challenge” in which the robot was required to plug itself
into ten outlets in ten rooms in an office building, opening
doors along the way. The contribution of our work is four-
fold:

1) demonstration of an integrated mobile manipulation
system that can robustly find doorways, enter rooms,

Fig. 1. The PR2 autonomously plugging in and opening a door.

and plug itself into standard sockets in unaltered indoor
environments;

2) perception algorithms combining vision and laser sen-
sors for robust detection of doors, door handles, and
electrical plugs and sockets;

3) integration of compliant control into motion strate-
gies to simplify manipulation problems and overcome
shortcomings of perception; and

4) a visual differencing approach to high-precision plug
insertion, without a need for high-precision hand-eye
calibration.

The software described in this paper is available under an
Open Source license,1, and we encourage others to experi-
ment with and use our code.

II. RELATED WORK

A. Autonomous Recharging

Previously, researchers have taken two main approaches to
the problem of long term task continuation and recharging
with mobile manipulators:

1http://pr.willowgarage.com/wiki/doors_and_plugs
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• modifying the working environment with a docking
station [1], [2]

• detecting and plugging into a standard wall outlet in an
unobstructed environment [3], [4], [5].

Docking stations are now commonly used as standard tech-
nology in household electronics [6], [7]; however, these
robots are limited to unobstructed areas of the environment.
If the charging station or outlet is in a room obstructed by
a door, the robot will be unable to recharge and continue
working. Many of these robots can recharge, but are designed
for one specific task without generalization towards other
tasks. In contrast, our approach uses a generalized mobile
manipulation platform for navigation, door opening, and
recharging, without specific design consideration for any
single task.

B. Autonomous Door Opening

The door opening task can be broken into two parts: the
detection of doors and door handles, and the opening of
doors. In recent years, door and handle identification has
been widely studied [8]–[12]. Each of these systems uses a
single approach (either image, tactile or 3D data-based) to
detecting doors and handles. In contrast, our system uses a
combination of a laser perception-based approach (presented
in detail in [13]) and an image-based approach (described
later in this paper) to robustly estimate the location of the
handle.

Attempts at solving the door opening problem date back
more than a decade [9], [12], [14], [15]. The system devel-
oped in [11] uses a Cartesian impedance controller with a
mobile manipulator to push doors open, and is probably the
closest to our approach in the use of compliant controllers. It
does not, however, make any attempt at collision avoidance
for the base of the robot, or address doors in different states.
In [16], online estimation of the door model was combined
with a hybrid system model to open doors. In [17], compliant
control was used to open doors using a mobile manipulator.
In contrast to our approach, none of the aforementioned
made an attempt to develop a robust, reliable system that
can smoothly open doors and recover from failures.

III. PROBLEM STATEMENT

We study the problem of enabling a robot to autonomously
perform the following tasks in an unmodified indoor setting:2

• navigate to any reachable location;
• open doors and pass through doorways; and
• plug itself into standard electrical outlets.

In this paper we concentrate on the door opening and
plugging in tasks. We require that the robot be capable of
opening doors in any state, including latched, ajar, partially
open, and completely open. We also require that the robot
recognize when a door is locked and move on to its next
goal. For plugging in, the robot should recognize when it

2We scope our effort to institutional environments that conform to modern
U.S. building codes, chief among them the Americans with Disabilities Act
(ADA), which establishes a variety of constraints, including minimum width
on doorways, and the type and placement of door handles.

has succeeded, and give up after a reasonable period of time
if it cannot.

An instance of the problem is given by a list of outlets
to visit. The robot must visit and plug into each of these
outlets, in any order, opening doors as necessary along the
way. Each outlet is identified by a key that can be used to
retrieve the outlet’s approximate pose from a map.

Experiments in this paper were carried out on an Alpha
prototype of the PR2 mobile manipulation platform (Fig-
ure 1). The PR2 uses an 8-wheeled omni-directional base
to navigate in wheelchair-accessible environments. Equipped
with two 7 degrees of freedom compliant arms, the PR2 is
designed for compliant interaction with the environment.

For navigation, a Hokuyo UTM-30 laser scanner is
mounted at ankle height. A second Hokuyo laser scanner is
mounted on a tilting platform at shoulder-height, providing a
full 3D view. The PR2’s head is a pan-tilt platform equipped
with a high resolution 5 megapixel (MP) camera and, two
stereo camera pairs with different fields of view and focal
lengths.

The software controlling the PR2 comprises many dif-
ferent interacting components: hardware drivers, controllers,
perception algorithms, motion planning, high-level planning,
etc.

To facilitate the computational needs of these components,
and to ensure the scalability of the system, a distributed
computing environment is needed. To accommodate these
communication and distribution needs, we use the open
source Robot Operating System ROS3 for distributed compu-
tation on PR2’s four dual-core computers. ROS components
(called nodes) hide the complexities of transferring data
between processes, regardless of whether the processes run
on the same machine or not [18]. Similarly, to expedite
computer vision tasks, we make extensive use of the Open
Source Computer Vision library OpenCV 4 [19].

A. Supporting infrastructure

Beyond the basic hardware and software described in the
previous section, we rely on two key pieces of supporting
infrastructure: navigation and executive control.

a) Navigation: The PR2 autonomously navigates in an
indoor office environment using a 2D occupancy grid map
built from base laser scans, with 2.5 cm grid resolution [20].
This system combines probabilistic localization, 3D obstacle
detection, and global and local planning to provide a robust,
reliable navigation capability. The navigation performance is
such that we regularly allow the PR2 to drive around our
building unattended. The details of the navigation system
are outside the scope of the present discussion, and will be
presented in a future paper.

As shown in Figure 2, the map is manually annotated with
the approximate locations of outlets and doors, the sides
of the door handles (left/right), and the opening direction

3ROS (Robot Operating System - http://ros.org)
4OpenCV (Computer Vision Library - Open Computer Vision - http://opencv.

willowgarage.com)
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Fig. 2. The 2D map of the office. Light grey is open space, and dark grey
marks obstacles and unknown space. Blue lines mark the doorways with
a large green or red dot marking the hinge. Green hinges open counter-
clockwise, red hinges open clockwise. Blue dots show the goal points that
the robot approaches when it needs to interact with the corresponding door.

of doors (clockwise/counter-clockwise). In a more complete
system, these could be found automatically.

b) Executive control: TREX [21] [22], a model-based
hybrid executive, integrates navigation, door-opening, and
plugging-in capabilities to robustly achieve high-level goals
(e.g. recharge at outlet nr. 6). TREX combines task planning
and execution in a unified framework for real-world domains
with discrete and continuous states, durative and concurrent
actions, and deliberative and reactive behavior.

Actions are the building blocks of TREX programs. An
action is a modular, goal-achieving behavior implemented as
an independent ROS node. An action is active when tasked
to achieve a goal. Otherwise it is inactive, operating at a very
low duty cycle. TREX offers a range of capabilities pertinent
to robust action assembly and execution:

• Automated online planning. Execution is driven by a
set of user-selected, unordered, high-level goals. These
goals are scheduled and transformed into action se-
quences through automated planning.

• Concise specifications for state machines. Robust ex-
ecution strategies can be encoded as state machines,
providing a high-level programming model, and afford-
ing non-linear, reactive approaches to action selection.
These state machines are directly integrated into the
planning framework.

• Ability to express and enforce configuration con-
straints. For example, to avoid collision when driving
around, the tilt laser must be running and the arms
must be stowed. Actions often require specific real-
time controllers: untucking the arms uses a joint-space
trajectory controller, whereas grasping a handle uses an
effort controller.

• Ability to express and enforce timing constraints.
Timing constraints can be used to force preemption of
actions that have not completed within an allotted time.
Timing constraints also arise where actions require con-
current execution (e.g. moving the base while pushing
the door), or where precedence rules apply (e.g. do not
start pushing implies the robot has touched it).

IV. APPROACH

Our approach to the door opening and plugging tasks,
and manipulation tasks in general, uses a methodology for
incorporating robustness and trading off error in perception
and manipulation. The main ideas can be summarized as
follows:

1) Analyze the perception and control requirements for
the tasks, especially with regards to uncertainty in
perception, calibration, and control.

2) Make a realistic error budget that allows for robust
algorithms. For example, in the plugging task, the
distance to the sockets can only be estimated to within
about 1cm using template matching, because the ap-
pearance of the sockets can vary widely.

3) Utilize the strength of compliant control to compensate
for uncertainty. For both doors and plugging, we de-
velop control algorithms that are robust to dislocations
within the error budget.

4) Don’t rely on high-accuracy calibration throughout
the robot. Calibration along long kinematic chains
and several different sensors is difficult to achieve
and maintain, and makes the system brittle. Instead,
for the high-precision plugging task, we use visual
differencing to find the pose of the plug and socket in a
single camera frame, allowing precise relative control.

5) Design of action primitives with cognizant failure
modes and explicit recovery strategies.

We now discuss the application of this design methodology
to the tasks of opening doors and plugging into outlets.

Fig. 3. The state machine used by the door task. Black arrows show state
transitions, red arrows show error recovery.

A. Door Task

We designed 14 door action primitives to complete the
door task. Each door action performs one single task, such
as detecting the door, grasping the door handle, moving the
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mobile base, etc. Figure 3 shows the state machine logic
that stitches the individual actions together into a robust door
detection and opening system. The black arrows show regular
state transitions between actions, while the red arrows show
the recovery logic in case an individual action fails. This
section discusses the most important door actions in more
detail.

1) Door Detection: The door detector operates directly
on a 3D pointcloud acquired by the tilting laser scan-
ner. Figure 4 shows a 3D pointcloud of a door and the
surrounding environment. The displayed cloud density is
obtained by a 10-second sweep of the tilting platform. The
door detection algorithm is based on the segmentation and
clustering approach described in [13] which generates a
set of possible door candidates. For each door candidate
we calculate a set of geometric attributes, such as width,
height, area, etc, and eliminate those that do not comply
with ADA (Americans with Disabilities Act) requirements.
The remaining door candidates are ranked based on their
distance from the expected door location in the 2D map.

Fig. 4. Segmenting the door plane from a 3D point cloud acquired by the
tilting laser scanner.

The door detection is based on geometric features, i.e. it
detects the door plane and its boundaries. This means the
detector requires the door plane to be distinguishable from
the wall plane either because they are offset, there is an edge
around the door, or the door is slightly open. When a door
is completely flush with the wall – within the noise of the
laser scanner – the detector will be unable to distinguish the
door from the wall.

2) Handle Detection: Door handle detection is inherently
difficult because the round metal handle introduces high
inaccuracies in the distance measurements of the optical
sensors, making it hard to distinguish the handle from the
door plane. To achieve robust handle detection, without
knowing the specific geometry of the doors used in the
experiments, we employ two different detection methods in
parallel: one that uses vision and stereo perception, and one
that uses the laser scanner. Both methods need to agree on
the handle location for a successful detection.

This combination of sensors with very different charac-
teristics proved successful and completely eliminated false

positives. However, it required re-trying logic to cope with
failed detections. In order to avoid repeated failures that
would occur when applying the detection algorithms on the
same sensor measurements, every re-try uses new sensor
measurements. After a failure, the robot is again commanded
to its initial pose in front of the door, but because of sensor
noise in navigation and localization, the robot ends up in a
slighty different pose, from where new sensor measurements
are abtained. This results in a 100% success rate within two
cycles of five re-tries in our experiments.

Laser handle detection: The laser handle detection oper-
ates on the portion of the 3D pointcloud that lies within 0.1m
from the door plane, and within the ADA height bounds. The
segmentation of the handle points from the pointcloud is
based on (i) a clustering approach that exploits the intensity
differences between the handle and the door plane and (ii)
an approach that takes into account differences in the local
surface curvature near the door handle. Both approaches are
described in [13].

Vision and stereo handle detection: The vision based
handle detection uses the Viola and Jones object classifier
cascade [23] as implemented by OpenCV’s HaarClassifier-
Cascade methods. The classifier is trained on a set of door
handle images (we used over 200 in our experiments) that
capture different viewing angles and changes in illumination
of the door handles present in our building. We use a low
detection threshold to always detect the handle, at the cost
of a relatively high number of false positives. The 3D range
information from the stereo camera is then used to filter out
the false positives by checking whether 3D points are present
at the detected location. Handles found at the wrong height,
scale, or depth variation are rejected. Finally, we repeat the
detection process across 7 consecutive frames and use spatial
voting to filter out spurious false positives. Figure 5 shows
a visualization of the handle detection process.

Fig. 5. Vision door handle detection. The green box is the final detection
vote over seven frames, with intermediate detections represented by yellow
boxes. The red box is a false detection filtered out by scale considerations.

3) Door Opening: The door opening subtask consists of
approaching the door, grasping the door handle, unlatching
the handle and pushing the door open while driving through.
Each of these tasks uses one or more door actions, as shown
in Figure 3.

Grasping the door handle: The robot approaches the
door to within grasping distance, based on the detected 3D
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door pose. From the approach point, the arm reaches for the
handle to achieve a caging grasp around the door handle.
Note that the pose of the door handle is not re-detected after
the robot approaches the door; rather, the system relies on
accurate wheel odometry to transform the detected 3D pose
of the door handle to the new local robot frame. The grasping
motion is performed without new sensor feedback. Still, the
robot reliably grasps the handle because the grasp tolerances
are much higher than the noise in the perception or arm
calibration errors.

Compliant manipulation: With the end-effector holding
on to the door handle, the motion degrees of freedom (DOF)
of the arm are limited to the two DOF of the door handle:
the rotation of the door around its hinges, and the unlatching
motion of the handle. However, no kinematic model of the
door is available because we attempt to use as little prior
information as possible. To unlatch and open the door under
these constraints, we employ the Task Frame Formalism
(TFF) [24], which is an intuitive interface for compliant and
force controlled tasks in the Hybrid Control Paradigm [25].
The task frame is rigidly attached to the center of the door
handle, with its y-axis along the handle, and its x-axis normal
to the door plane. The pose of the task frame is tracked over
time based on the gripper pose. The translation along the
x axis of the task frame and the rotation around the y axis
are velocity controlled. The remaining four DOF of the end-
effector are force controlled, making the arm compliant to
the motion of the door. As the door opens, the force feedback
loop senses the motion of the door, keeping the end-effector
perpendicular to the door plane as the door opens, without
requiring a geometric door model. To unlatch the handle, a
torque of 3 Nm is applied.

Base-arm interaction: While only the robot arm is re-
sponsible for opening the door, the base moves to increase
the workspace of the arm. The base continuously moves to
within 5cm of the door, edging forward as the door opens
more and more. To avoid collisions between the base and
its environment, the base controller relies on measurements
from the base laser to detect the door pose. The motion of
the mobile base is specified independently of the arm motion;
however, the base and the arm do affect each other through
the environment. When the base moves, the arm senses and
follows the reaction forces of the environment in the DOF
constrained by the door. While the arm pushes the door open,
the space between the base and the door increases, triggering
the base to move forward.

B. Plugging Task

We designed eight plug action primitives to complete the
plugging in task. Each plug action performs a single subtask,
such as detecting the outlet, grasping the plug, moving the
mobile base, etc. Figure 6 shows the state machine logic that
stitches the individual actions together into a robust outlet
detection and plugging system. The plug state logic requires
the robot to be within a 3m x 3m area near an outlet before
starting the plugging task.

The strategy is to roughly locate the outlet from a distance

of up to 3m, move to a location near an outlet, and then
perform precise pose estimation of both the socket and plug
in the same camera frame. This visual differencing step
obviates the need for precise mechanical calibration, which
is difficult to achieve and maintain. This section describes in
detail the key aspects of the plugging task.

Fig. 6. The sequence of actions that comprise the plug-in task. Black
arrows show state transitions, red show error recovery.

1) Farfield Outlet Identification and Localization: To be-
gin plugging in, the robot uses the navigation stack and the
topological map to navigate to within 3 meters of the outlet.
The farfield outlet identification and localization action is
then used to detect the outlet. This action uses the stereo
camera to extract a disparity image which encodes the
offsets between matching texture patches in the left and right
cameras. Outlets create a texture pattern that show up reliably
in the disparity image. For outlet detection, all areas that
have no disparity (blank walls for example) are ignored. The
disparity image is then turned into a depth map and all outlet
candidate locations that are non planar, too large or small,
or too high or low, are rejected.

Next, the base laser scanner is used to find the pose of the
walls, which is used to rectify the candidate outlet patches
into frontal views by removing their perspective distortion.
Template matching is then run on the frontal views of the out-
let candidates (see figure 7), to eliminate the remaining false
candidates. The computed poses of the remaining candidates
are passed to the navigation stack, which drives the robot to
within 0.5m of the closest outlet. During experimental testing
of this action, the outlet detection was successful 84% of the
time (44 of 52 trials). The 8 failures were then used to create
better datasets which resulted in a 100% success rate during
fully integrated trials.
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Fig. 7. Outlet detections with varying pose, illumination, and partial
occlusion. The resulting rectified outlet patch is also shown.

2) Nearfield Outlet Localization: Nearfield outlet detec-
tion determines the precise pose of the outlet. This action
primitive requires the robot’s base to be within 0.5m of the
outlet. The key challenges are camera angle (60 degrees)
and distance from the outlet (∼1.5m). From this viewpoint,
the ground hole on the outlet is approximately seven pixels
in diameter using a 5MP Prosilica camera with a 16mm
lens. The outlet holes tend to be low contrast with limited
resolution and high perspective distortion.

Fig. 8. Processing flow chart for finding outlet pose.

In experiments we used only the 2x2 orange on white
outlets readily available in our building. Figure 8 depicts the
outlet detection algorithm: (a) We adaptively threshold the
grayscale image and look for four socket-sized components
grouped together. If unsuccessful, we morphologically grow
the thresholded image to connect outlet regions potentially
split by lighting or perspective effects. (b) Within each of
the connected components, we search for smaller connected
components (potential outlet holes). We measure the contrast
of the holes by comparing the central pixel intensity Ic

to four surrounding pixels offset by 1.5 times the diam-
eter of the small component. Contrast is defined as c =
1/(4Ic)

∑
k=1..4 Ik. We accept a hole if c > 1.1. (c) We

disregard features outside of the outlet blobs. (d) We group
nearby hole features into potential outlet configurations.
There may be multiple hypotheses within each connected
component. (e) We compute a homography from the centers
of the four outlet blobs and use it to produce a straight-
on rectified view of the outlet. Rectified hole configurations
are verified against an outlet measurement model to reject
configurations with distance between slot holes differing
more than 20% from the expected distance (12mm). (f) If
we have a confirmed outlet region, we solve the planar
PnP problem, with outlet hole locations and measurement
model as inputs, to find the pose of the outlet relative to
the camera. This approach achieved a 100% recognition rate
on the dataset of 87 outlet test images that we collected.
Our technique was fairly specific to the 2x2 orange on white
outlets in our building. We have since switched to the much
more general technique of using geometric hashing to match
a learned outlet template to the outlet being observed.

Fig. 9. Plug localization using a checkerboard. Localizing the outlet and
plug in the same camera frame allows us to use visual servoing.

3) Grasping and Localizing the Plug in the Gripper: The
plug was attached to the base of the PR2 using strong earth
magnets and was placed such that it was only possible to
determine the plugs location using the tilting laser scanner.
The step of remeasuring the plug was necessary during
the experiments because the plug would shift around and
two robots were used with different magnet locations. Plug
detection on the base of the robot is done directly on the 3D
pointcloud from the tilting laser. The centroid of the plug
is detected from a pointcloud collected from a 3-second,
6-degree motion of the tilting laser. This detection method
estimates the plane of the base cover, then clusters all points
above the base plane and returns the centroid of the candidate
plug cluster. The centroid of the cluster is averaged for
accuracy over 4 positive detections and then used to grasp
the plug from the base of the robot. The physical dimensions
of the plug are initially used to determine that the plug is
retrieved from the base. The plug localization step is later
used to judge the quality of the grasp and helps determine
if the plug should be stowed and regrasped to improve the
grasp quality. The detection of the plug on the base during
experimental studies was 100% (48 of 48 trials), grasping
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the plug is 91% (44 of 48 trials). Failure to grasp the plug
from the base of the robot was due to calibration errors,
which were handled by redetecting the plug and attempting
the grasp again. In the four trials that missed grasping the
plug, the second attempt succeeded.

To track the precise pose of the plug in the gripper, we
again use the 5MP Prosilica camera. We installed a small
checkerboard on the plug attached to PR2. Engineering the
checkerboard to fit on the plug involves tradeoffs. Too few
detectable interior corners may make the pose estimation
problem ill-conditioned, with multiple pose estimates fitting
the data about equally well. On the other hand, squares that
are too small result in high relative error in the detected
corner positions. We used a 5x6 (4x5=20 interior corners)
checkerboard with 4.2mm squares. Robustness is improved
by using the pose of the end-effector in the camera frame
as the initial estimate for the plug pose. We gain a speedup
by performing detection on a small region-of-interest within
each 5MP frame surrounding the projected position of the
end-effector. To comfirm the absolute accuracy of the detec-
tor, the plug was moved along a high-precision caliper rig,
showing an accuracy of ± 0.5mm, and ± 3 degrees in yaw.
Additionally, localizing the plug in the gripper was successful
100% of the time (32 of 32 trials).

4) Plugging In: The key challenge for plugging in resided
in the extremely small error budget and the difficulty in
calibrating the robot to the accuracy needed. For success the
center of the ground post of the plug cannot be greater than
2mm from the center of the ground hole in the outlet socket.
The PR2, however, is only able to maintain a camera to end
effector accuracy of approximately 2cm during an open loop
manipulation task. By using relative pose estimates of the
plug and socket in the camera frame (visual differencing),
only a rough calibration is needed to move the arm in a
direction that reduces the difference.

The error contribution from the plug is 0.5mm, and from
the socket it is about 0.5mm in directions perpendicular to
the pointing axis of the camera. Unfortunately, the depth
error along the axis is on the order of 1cm, based on
deviations from the socket template. Direct application of
visual differencing to place the plug was successful approx-
imately 10% of the time (2 of 19 trials), but still reduced
the search space for plugging in by an order of magnitude
over calibration. After attempting direct plugging and not
succeeding, robot behavior defaults to spiralling outward
from the best guess in 2mm increments until timing out or
succeeding. In experimental trials, this alternative brute force
method, in combination with visual servoing, was successful
95% of the time (18 of 19 trials).

V. INTEGRATED EXPERIMENTAL RESULTS

Our primary experimental goal was to verify that the fully
integrated system could robustly open doors, navigate the
building, and plug itself in. The robustness of our system
was demonstrated on 2 occasions where multiple high-level
recharge goals were achieved in a busy office environment
without external intervention. The striking result of these

experiments is that despite repeated failure of a number of
individual components, the overall system was robust enough
to adequately recover, achieving all feasible goals.

The trials were conducted with 10 and 9 outlet goals
respectively. A video of the first trial is included with this
paper. In the first trial, one office was locked and remained
so throughout. In the second trial, four offices were locked,
with one of those locked doors becoming unlocked while
the trial was running. Table I details execution statistics of
selected actions.

TABLE I
RESULTS FROM TWO INDEPENDENT, FULLY INTEGRATED TRIAL RUNS.

Trial 1: 10 outlet goals, 1 behind locked door, 1 behind open door
Trial 2: 9 outlet goals, 3 behind locked doors, 1 behindopen door

success abort preempt
Door Actions T1 T2 T1 T2 T1 T2
detect door 9 8 5 0 0 0
detect handle 4 5 3 3 0 0
grasp handle 4 5 0 0 0 0
unlatch handle 3 3 0 0 0 0
open door 0 0 0 0 3 3
release handle 4 4 0 0 0 0
touch door 5 5 0 0 0 0
push door 0 0 0 0 5 5
Plug Actions
detect outlet coarse 11 20 0 0 0 0
detect outlet fine 11 7 0 0 0 0
detect plug on base 11 7 0 0 0 0
grasp plug 9 7 2 0 0 0
localize plug 9 7 0 0 0 0
plug in 9 6 0 0 0 1
unplug 9 6 0 0 0 0
stow plug 9 6 0 0 0 0
Navigation Actions
move base 75 86 4 23 0 0
check doorway 26 20 0 0 0 0

The data for the plug in action show that in Trial 1 PR2
plugged in 9 times while in Trial 2 this occurred only 6
times, reflecting the number of locked doors. The push door
and open door actions were always explicitly preempted by
the executive as part of a nominal behavior by executing a
stop action. This is because these actions do not have the
context in which to decide when they are complete. Rather,
completion is determined based on the termination of the
move base door action.

In some cases, a timeout was usefully applied. For ex-
ample, in Trial 2, the plug in action was preempted on one
occasion. The state machine required PR2 to reposition at
the initial pose and retry, which succeeded.

Some actions were prone to failure. Local and global
navigation both suffered from improperly detected obstacles
arising from laser hits on the robot shoulder. Even with the
arm tucked, the shoulder protruded slightly from the robot
footprint, which was not filtered correctly. Door and handle
detection also failed a number of times, despite internally
encoded retry logic. In the case of handle detection, it
was often sufficient simply to re-detect the door, providing
new input for handle detection. Door detection fails when
presented with an open doorway because the laser cannot
see the door plane. This can occur because checking the path
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may erroneously declare the doorway is not clear. Repeated
failure to detect an open door results in temporarily giving up
that goal; when the goal is revisited at a later time, noise in
navigation and localization would result in a slightly different
detection pose.

Observe that unlatch handle always succeeded in the first
trial, despite the door being locked. This is because the
scenarios for success include determining that the door is
locked. Also note that this same action aborted 3 times in the
second trial. In that run, the gripper calibration was slightly
off and the grasp handle action was tending to grasp too far
to the side of the handle, allowing the grasp to slip when
force was applied. Recovery by repositioning the robot and
starting again proved an effective remedy.

When the robot navigates through the building, it crosses
many open doorways. At each doorway, the check doorway
action ensures the door is open before navigating through.

Finally, the second trial illustrated a recovery at the highest
level where an initially locked door was later unlocked. The
executive in this case deferred that goal and succeeded upon
re-trial.

VI. CONCLUSIONS

The overall goal of this paper was to demonstrate a system
capable of reliably navigating a building, opening doors, and
plugging in as needed. These tasks were completed in an
unaltered building environment without the use of a base
or docking station. These claims were confirmed through
two independent trials of the fully integrated system. This
system demonstrated robustness on two levels. The action
primitives used redundant sensor data in combination with
compliant control of the manipulator to achieve successful
detection and manipulation of doors and plugs. The executive
used recovery behaviors and timeouts on action completion
to ensure task level success across action primitives. Our
approach used a generalized mobile manipulation platform,
PR2, for navigation, door opening, and recharging, without
specific design consideration for any particular task.

The results of this paper can be reproduced in sim-
ulation using ROS and Gazebo, an open-source multi-
robot simulator [26]. For instructions visit the Wil-
low Garage wiki at http://pr.willowgarage.com/
wiki/doors_and_plugs.
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