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Abstract— In this paper, we address the problem of de-
termining the relative position and orientation (pose) of two
robots navigating in 2D, based on known egomotion and noisy
robot-to-robot distance measurements. We formulate this as
a weighted Least Squares (WLS) estimation problem, and
determine the exact global optimum by directly solving the
multivariate polynomial system resulting from the first-order
optimality conditions. Given the poor scalability of the original
WLS problem, we propose an alternative formulation of the
WLS problem in terms of squared distance measurements
(squared distances WLS or SD-WLS). Using a hybrid algebraic-
numeric technique, we are able to solve the corresponding first-
order optimality conditions of the SD-WLS in 125 ms in Matlab.
Both methods solve the minimal (3 distance measurements)
as well as the overdetermined problem (more than 3 mea-
surements) in a unified fashion. Simulation and experimental
results show that the SD-WLS achieves performance virtually
indistinguishable from the maximum likelihood estimator, and
significantly outperforms current algebraic methods.

I. INTRODUCTION AND RELATED WORK

Sensor fusion between multiple mobile robots, enabling

tasks such as cooperative localization [1], mapping [2], or

tracking [3], critically relies on accurate extrinsic calibration,

i.e., the knowledge of the robots’ relative position and

orientation (pose). In the absence of a common, global

frame of reference (e.g., provided by GPS), the robots can

determine their relative pose based on robot-to-robot rela-

tive sensor measurements and odometry. Arguably the most

challenging case of such motion-induced extrinsic calibration

occurs when the robots can only measure distance between

each other. Such distance measurements can be acquired by

various sensors such as sonar, radar, or laser, or indirectly as

a function of the received communication signal. Distance-

based relative pose estimation in 2D is precisely the focus

of this paper (see Fig. 1).

Previous research on leveraging sensor-to-sensor distance

measurements to solve the relative localization problem

has focussed primarily on static sensor networks. These

approaches only determine the position of sensor nodes,

not their relative orientation. Localization algorithms for

static sensor networks infer the node positions using mea-

surements to so-called anchor nodes with known global

position. The position of the remaining sensors in the net-

work can be uniquely determined if certain graph-rigidity

constraints are satisfied [4]. A number of algorithms for

2D node localization have been proposed based on convex

optimization [5], [6], multidimensional scaling [7], sum-of-

squares relaxation [8], or graph connectivity [9]. There also

Fig. 1. Robot 1 (white) and 2 (gray) take N relative distance measurements,
d1, . . . , dN as they move on a plane. The robots know their positions ui,
vi, in their respective global frames, {1} and {2}, e.g., from odometry.
The objective is to determine the translation, p, and rotation, C, between
frames {1} and {2}.

exist methods for simultaneous localization and mapping of

a single mobile robot using range measurements to static

beacons [10].

For many practical applications, such as cooperative track-

ing [3] or sensor fusion [2], knowledge of both relative

sensor position and orientation between multiple robots is

required. Recent work by Zhou and Roumeliotis [11] has

addressed the problem of relative pose estimation based on

distance measurements for two mobile robots moving in a

planar 2D environment. The authors propose computing the

maximum likelihood estimate (MLE) of the relative pose in

a two-step process: First, they derive methods to compute

a coarse estimate for the relative pose, based on solving an

overdetermined system of polynomial constraints using 4 or

5 distance measurements. In a second step, they use the result

as an initial guess in an iterative weighted Least Squares

(i-WLS) optimization. While such a two-step process is a

standard way of solving nonlinear WLS problems, it is well

known that the quality of an iterative WLS optimization

depends critically on the accuracy of the initial guess.

Unfortunately, while exact in the noise-free case, in the

presence of noise, the methods of [11] can produce an initial

guess that is far from the MLE. Moreover, these methods are

incapable of accounting for uncertainty in the measurements.

As a result, the i-WLS refinement can converge to local

minima, can take an excessive number of iterations to

converge, or even diverge completely (see Sec. V).

Instead, in this paper we present a fundamentally different
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way to compute the MLE, by solving the nonlinear WLS

directly for the guaranteed global optimum, in a non-iterative

fashion. The approach is to first determine all stationary

points by solving the first-order optimality conditions, and

then to retain the one with minimum cost function value

as the global minimum. The key difficulty – solving the

first-order optimality conditions – can be overcome if the

optimality conditions can be expressed as (or transformed

into) a multivariate system of polynomials, which can be

solved efficiently due to recent advances in polynomial

system solving [12], [13], [14], [15].

The contributions of this paper are twofold: (i) We present

the nonlinear WLS cost function for the relative pose prob-

lem, and a method to find its global minimum (Section III).

Under the assumption of Gaussian noise, the optimal solution

to the WLS will yield the MLE. We derive the corresponding

first-order optimality conditions and show how to transform

them into a system of polynomials, which can be solved

for all stationary points using homotopy continuation. Our

results show that this method is a feasible approach to

find the MLE for a small number of measurements (N <
5). (ii) In order to efficiently address the case of more

measurements, we present the WLS cost function and the

corresponding first-order optimality conditions for the rela-

tive pose problem using squared distance measurements (SD-

WLS, Section IV). The resulting polynomial system is shown

to have constant solution complexity, independent of the

number of measurements. We describe how to compute all

stationary points efficiently using a hybrid algebraic-numeric

technique based on the eigendecomposition of a generalized

companion matrix [13].

Results from simulations and experiments described in

Sections V and VI show that the SD-WLS estimator signif-

icantly outperforms the linear algorithm of [11], and yields

performance almost indistinguishable from the original WLS

estimator. While computing the global optimum of the WLS

numerically takes several minutes even for as little as 4

measurements, our Matlab implementation can solve the SD-

WLS in 125 ms, irrespective of the number of measurements.

II. GEOMETRIC PROBLEM FORMULATION

As illustrated in Fig. 1, consider two robots moving

in 2D and acquiring robot-to-robot distance measurements

di, i = 1, . . . , N . We assume without loss of generality that

the global frames of each robot, {1} and {2}, are attached

to the points where the first mutual measurement occurs.

Further, we assume that each robot can localize with respect

to its own global frame of reference, for example, using

wheel odometry. Therefore, we assume that at the time the

robots acquire the distance measurements, the coordinates

of the first robot, ui := 1ui, and the second robot, vi :=
2vi, are known.1 The objective is to find the 3 degree-of-

freedom transformation between frames {1} and {2}, i.e.,

1Throughout the paper the notation ip denotes a vector expressed with
respect to frame {i}, and i

jC denotes the rotation matrix that transforms

vectors from frame {j} to frame {i}. Also, in polynomial formulations we
substitute sin(φ) and cos(φ) by the variables sφ and cφ.

the translation p := 1p2 =
[

x y
]T

and rotation C :=
1
2C(φ) =

[

cos(φ) − sin(φ)
sin(φ) cos(φ)

]

.

The robot-to-robot distance di can be expressed as the

length of vector wi, i = 1, . . . , N , connecting the two robots

at the time of measurement (see Fig. 1)

di = ||wi||2 =
√

wT
i wi , wi := p+Cvi − ui (1)

The approach of [11] is to assume noise-free measure-

ments, and to stack the constraints provided by each mea-

surement into the following system of polynomial equations

in the four unknowns x, y, sφ, and cφ:

Deterministic System:

wT
i wi − d2i = 0, i = 1, . . . , N (2a)

s2φ+ c2φ− 1 = 0 (2b)

From [11], it is known that N = 3 measurements are

necessary for this problem to have a discrete set of 6 possibly

complex solutions (minimal problem). Moreover, N > 3
measurements uniquely determine the relative pose.

In practice, however, the robot-to-robot distances di will

have to be replaced by noisy measurements

zi = di + ni, i = 1, . . . , N (3)

n =
[

n1 . . . nN

]T ∼ N (n;0,R) (4)

where we have modeled the measurement noise n as zero-

mean Gaussian, with covariance matrix R. In case of inde-

pendent measurements, R = diag(σ2
1 , . . . , σ

2
N), but in the

presence of correlated noise, R can be full. Replacing di by

the noisy measurements zi, the overdetermined system (2)

with N > 3 will be inconsistent, and no guarantees can be

given for the solutions computed by the polynomial 4-point

or the linear 5-point algorithm in [11]. In particular, these

algorithms will not be able to account for the measurement

noise in a statistically sound fashion. Therefore, they can

only be used to provide an initial guess for a subsequent

i-WLS refinement.

As an alternative, we propose to combine the con-

straints (2a) arising from the measurements in a WLS

fashion, thus correctly accounting for the measurement noise.

In what follows, we present two methods to solve the WLS

problem directly for the globally optimal estimate of the

relative pose. The approach is to formulate the first-order

optimality conditions of the WLS cost function as a square

system of polynomials, which can be solved directly to

obtain all stationary points. A desirable property of this

formulation is that without any modification it will yield the

global optimum for the overdetermined system (N > 3), as

well as all 6 solutions to the minimal problem (N = 3),

which will be global minima of the WLS cost function with

cost function value identically equal to zero.

III. WEIGHTED LEAST-SQUARES (WLS) FORMULATION

AND SOLUTION

Ideally, given (1) and (3), we would like to solve the

following WLS problem
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WLS Cost Function:

min
x,y,φ

1

2
eTd R

−1ed (5)

where

ed :=

[√

w
T
1
w1 − z1

√

w
T
2
w2 − z2 . . .

√

w
T
NwN − zN

]T

Taking the gradient with respect to the unknowns and setting

it to zero, we obtain the following first-order optimality

conditions

∇p = eTdR
−1

[

w1√
wT

1
w1

w2√
wT

2
w2

. . . wN√
wT

N
wN

]T

= 0

(6a)

∇φ = eTdR
−1

[

wT
1
JCv1√
wT

1
w1

wT
2
JCv2√
wT

2
w2

. . .
wT

NJCvN√
wT

N
wN

]T

= 0

(6b)

where J =
[

0 −1
1 0

]

.
In order to solve this system of equations and thus

to determine all stationary points, we transform it into a

system of polynomials by introducing auxiliary variables.

Our objective is then to apply efficient polynomial system

solving techniques that can find all roots simultaneously. One

possible choice is to introduce the auxiliary variables

ai =
√

wT
i wi, i = 1, . . . , N (7)

Further, instead of optimizing over φ, we optimize over

the two variables sφ and cφ, related by the trigonometric

constraint

s2φ+ c2φ = 1 (8)

We then rewrite (5) as a constrained optimization problem,

with Lagrangian

L =
1

2











a1 − z1
a2 − z2

...

aN − zN











T

R−1











a1 − z1
a2 − z2

...

aN − zN











+

N
∑

i=1

λi/2(w
T
i wi − a2i ) + µ(s2φ+ c2φ− 1) (9)

Taking the gradient with respect to the unknowns and

eliminating µ, we obtain the following system of 2N + 4
polynomials in the 2N + 4 unknowns x, y, sφ, cφ, and a :=
[

a1 . . . aN

]T
, λ :=

[

λ1 . . . λN

]T
.

WLS First-Order Optimality Conditions:

∇p =

N
∑

i=1

λiwi = 0 (10a)

cφ · ∇sφL− sφ · ∇cφL =
N
∑

i=1

λiw
T
i JCvi = 0 (10b)

∇aL = R−1







a1 − z1
...

aN − zN






−







a1λ1
...

aNλN






= 0 (10c)

2∇λi
L = wT

i wi − a2i = 0, i = 1, . . . , N (10d)

∇µL = s2φ+ c2φ− 1 = 0 (10e)

All polynomials are quadratic, except (10b) which is cubic.

Notice that squaring the constraints on the ai (cf. (7)

vs. (10d)) introduces spurious solutions with erroneous signs.

Therefore, we will only accept real solutions that fulfill the

original constraint (7) as candidate stationary points.

Once all the stationary points of (5) are found by di-

rectly solving system (10), the final step is to evaluate the

cost function on the candidate points, and to choose the

one with minimum value as the final, guaranteed globally

optimal WLS estimate of the relative pose. The numeri-

cal solution of (10) can be obtained, for example, using

homotopy continuation [16]. System (10) has 70 solutions

for N = 3 measurements, 240 solutions for N = 4, and

784 solutions for N = 5, as determined both through

analysis of the Gröbner basis using Macaulay 2 [17] and

numerically using PHCPack [16]. In our experiments, we

solved example systems with N = 4 measurements in about

2 to 4 minutes (diagonal vs. dense covariance matrix), and

N = 5 measurements in 12 to 20 minutes, using PHCPack

on an Intel T9400 2.53 GHz laptop with 2GB of RAM.

The reason for the increase in time is the introduction of

additional monomials in the polynomial system due to cross-

coupling induced by the off-diagonals of R.

Unfortunately, as evident from these results, this formu-

lation scales quite poorly, because the number of unknowns

(i.e., ai, λi) grows with the number of measurements. The

complexity of solving polynomial systems is exponential

in the number of unknowns [18], rendering this approach

feasible only for small-scale problems. This leads us to

the introduction of an alternative formulation using squared

distance measurements.

IV. SQUARED DISTANCES WLS (SD-WLS)

FORMULATION AND SOLUTION

A much preferable approach from the point of scalability

is to solve the WLS based on noisy measurements of the

squared distance

z′i = d2i + n′

i, i = 1, . . . , N (11)

n′ =
[

n′

1 . . . n′

N

]

∼ N (n′;0,R′) (12)

where for simplicity we temporarily assume that the noise

in the squared measurements is zero-mean Gaussian. Under

this assumption, the corresponding WLS will actually yield

the MLE. We will relax this assumption in Section IV-A.

The idea of applying the LS methodology to squared

distance measurements has previously been used in source

localization, e.g., [6], [8], where the authors solve an un-

weighted LS approximately using convex or sum-of-squares

relaxation.

The cost function of the WLS problem using squared

distances (SD-WLS) is defined as

SD-WLS Cost Function:

min
x,y,φ

1

2
eTsdR

′−1esd (13)

where

esd :=
[

wT
1 w1 − z′1 wT

2 w2 − z′2 . . . wT
NwN − z′N

]T
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Setting the gradient to zero and dividing by constant

factors, we obtain the following polynomial system of 4

equations in the 4 unknowns x, y, sφ, cφ.

SD-WLS First-Order Optimality Conditions:

eTsdR
′−1

[

w1 w2 . . . wN

]T
= 0 (14a)

eTsdR
′−1

[

wT
1 JCv1 wT

2 JCv2 . . . wT
NJCvN

]T
= 0
(14b)

s2φ+ c2φ− 1 = 0 (14c)

The two polynomials (14a) have total degree 3, (14b) has

total degree 4, and the trigonometric constraint (14c) is

quadratic.

Analysis of this system’s Gröbner basis for different

numerical instances using coefficients from a finite field

shows that this system has 28 possibly complex solutions.

This is a general result that holds for all cases of N and R′.

In particular, we prove the following proposition:

Proposition 1: The number of solutions of the sys-

tem (14), and its solution complexity, is independent of

the number of measurements, N , for N ≥ 3, and of the

covariance matrix, R′.

Proof: We base our proof on the following observation:

If for a system of polynomials arising from a specific

problem class, different (non-singular) instantiations of the

problem differ only in the numeric coefficients but not in

the structure of the polynomial system (i.e., the monomials

comprising each polynomial remain the same), the leading

monomials of the corresponding Gröbner basis will generally

also be the same, with the consequence that the standard

basis of the quotient ring and the number of solutions of the

system is constant [19], [14]. We therefore have to show that

the structure of system (14) and the monomials in each poly-

nomial (14a)-(14c) are independent of N and R′ generically.

Clearly (but in contrast to the polynomial system (10)), the

number of equations and the number of unknowns of (14) is

constant and independent of N and R′. Also, (14c) remains

unchanged for different problem instantiations. To see that

the monomials in (14a) and (14b) are independent of N and

R′, consider rewriting these equations as
∑N

i,j=1 r
′−1
i,j (z′i −

wT
i wi)w

T
j and

∑N

i,j=1 r
′−1
i,j (z′i−wT

i wi)(w
T
j JCvj), where

r′−1
i,j denotes the (i, j)-th entry of R′−1. Generically, the

polynomials z′i−wT
i wi, wi, and wT

i JCvi each contain the

same monomials regardless of i. Analogously, the products

(z′i −wT
i wi)w

T
j and (z′i −wT

i wi)(w
T
j JCvj) each contain

the same monomials generically, regardless of i and j.
Finally, linear combinations of polynomials do not introduce

new monomials, which concludes the proof.

Given the constant structure of the polynomial sys-

tem (14), we can avoid using homotopy continuation meth-

ods, such as PHCPack, and instead apply a hybrid algebraic-

numeric method based on the eigendecomposition of a

generalized companion matrix [13], [15], [12]. In particular,

we employed the normal set-based method, described in

detail in [13], which exploits the specific system structure

to provide all 28 solutions simultaneously, in a fast, non-

iterative fashion.
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Fig. 2. Examples of approximating the pdf of squared distance measure-
ments by a Gaussian. (a) Scalar measurement case, with d1 = 3m and

σ1 = 0.1m. (b) Two distance measurements with d =
[

3m 2m
]T

, and

correlated noise with covariance R =
[

0.12 0.012

0.012 0.082

]

. For small variances,

the approximation is reasonably accurate: for the examples shown here, the
KL divergence is 8.34 · 10−4 and 2.0 · 10−3, respectively.

The idea behind the normal set-based method is to first

expand the polynomial system (14), compactly written as

Ψ(x, y, sφ, cφ) = 0 (15)

by adding new polynomials of the form

ψ′

i = ψi(x, y, sφ, cφ) · xαxyαy (sφ)αs(cφ)αc = 0 (16)

The new polynomials, ψ′

i, are products of the original

polynomials, ψi, with monomials in the unknowns raised

to some power α. For the SD-WLS problem, we chose α
so as to create new polynomials up to total degree 8. As an

example, we created 70 polynomials by multiplying (14b)

with all monomials of total degree 0 to 4. Notice that adding

these new polynomials does not change the solution set, since

all ψ′

i vanish on the roots of the original system, and do not

add new solutions. The next step is to write the expanded

polynomial system in matrix form

Cex = 0, (17)

gathering the monomials in the unknowns in the vector x,

and the numeric coefficients in the expanded coefficient

matrix Ce. From this matrix one can extract a 28 × 28
generalized companion matrix that defines multiplication by

a function (which we chose to be x) within the so-called

quotient ring. An eigendecomposition of this matrix yields

all 28 solutions simultaneously [15], [13].

Our current Matlab implementation requires approxi-

mately 125 ms (as determined by Matlab’s profiler) to solve

an instance of the problem, of which approximately 16 ms

are spent creating the expanded coefficient matrix Ce, which

for this problem is of dimension 532 × 495, with 4% non-

zero entries. Extracting the multiplication matrix and all 28

solutions requires 109 ms.

A. Gaussian Approximation of Squared Noisy Measurements

Notice that if only noisy measurements of the (non-

squared) distance are available, replacing (3) by (11) cannot

be achieved by simply squaring the noisy measurements, i.e.,

z′i 6= z2i . The reason is that z2i = d2i + 2dini + n2
i , and

the corresponding noise term si := 2dini + n2
i is not zero-

mean Gaussian. Indeed, following the standard formulas to
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compute the pdf of functions of random variables [20], the

pdf of the vector ζ :=
[

z21 . . . z2N
]

is given by

p(ζ) =

2N
∑

j=1

1

2N
∏

i

√
ζi
N (γj ;d,R) (18)

where each γj , j = 1, . . . , 2N , is a vector of the form
[

±√
ζ1 . . . ±√

ζN
]T

with one of the 2N possible dif-

ferent sign assignments for its individual elements.

However, the non-Gaussian pdf resulting from squaring

a Gaussian random variable can be well approximated by a

Gaussian pdf with matching first and second order moments.

Specifically, computing the mean, s̄i, and covariance, Σ, of

si yields

s̄i := E[si] = Rii (19)

Σii := E[(si − s̄i)
2] = Rii(4d

2
i + 2Rii) (20)

Σij := E[(si − s̄i)(sj − s̄j)] = Rij(4didj + 2Rij)

We can now approximate (11) by setting

z′i ≃ z2i − s̄i (21)

R′ ≃ Σ (22)

where we replace the distances di in the expression for Σ

by their noisy measurements zi.
As illustrated in Fig. 2, using (21), (22) to approximate the

non-Gaussian pdf (18) by a Gaussian is reasonably accurate,

particularly for high signal-to-noise ratios.

V. SIMULATION RESULTS

We compared the performance of the WLS, the SD-WLS,

and the linear algorithm of [11] for the overdetermined case

where N > 3 noisy (but outlier-free) measurements are

available.2 Specifically, we conducted Monte Carlo simula-

tions using N = 5 measurements, measurement noise with

diagonal covariance matrix R = σ2
dI for different values of

σd, and 1000 trials per setting. The trajectories were chosen

so that the robot-to-robot distances varied randomly between

1-2 m, and the displacement between measurements varied

between 3-6 m. The parameters z′i and R′ were determined

based on the approximations (21) and (22).

The results are shown in Fig. 3. As evident, SD-WLS con-

sistently and significantly outperforms the linear algorithm.

From the doubly logarithmic plot one can deduce that the

median position error of the linear algorithm in [11] with

respect to the true solution is approximately twice as large

as the WLS and the SD-WLS error, and the orientation error

approximately 3.5 times as large, independent of the mea-

surement noise standard deviation. Even more remarkable is

the fact that the performance of the SD-WLS is virtually

indistinguishable from that of the true WLS, despite it not

being optimal in the maximum likelihood sense (due to the

approximation of Section IV-A). Only for large noise levels

does the performance start to degrade slightly.

2If outliers are present, one should first perform RANSAC with the
solutions of the minimal problem for outlier rejection.
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Fig. 3. Simulation results from 1000 trials for each noise setting,
comparing WLS, SD-WLS and the linear algorithm of [11], using 5 distance
measurements corrupted by zero-mean Gaussian measurement noise with
covariance R = σ2

d
I. Plotted are the median and the 25% and 75%

quantiles. The accuracy of the WLS and the SD-WLS formulation is almost
identical, and higher than that of the linear method by a constant factor. The
SD-WLS solution is close to that of WLS particularly for small noise values.
(a) Norm of position error with respect to ground truth. (b) Difference in
position with respect to WLS. (c) Orientation error with respect to ground
truth. (d) Difference in orientation with respect to WLS.

If despite the demonstrated performance of SD-WLS the

actual MLE were required, one could use the result from

SD-WLS as an extremely accurate initial guess for i-WLS

refinement. We tested the performance of initializing Gauss-

Newton-based i-WLS with the linear solution, the SD-WLS

solution, and with ground-truth. The results shown in Fig. 4

confirm that SD-WLS-based initialization outperforms linear

initialization in terms of required iterations, instances of di-

vergence, and number of inconsistent estimates. Particularly
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Fig. 4. Comparison of i-WLS initialized with the result of the linear
algorithm of [11], that of SD-WLS, and with ground truth. (a) Number of
iterations to convergence (median and 25% / 75% quantiles). (b) Percentage
of diverged cases (> 1000 iterations). (c) Percentage of inconsistent cases
(error > 3σ). (d) Percentage of cases where i-WLS converges to an
optimum with lower WLS cost function value, depending on initialization.
The notation c(SD-WLS) refers to the WLS cost function after i-WLS
convergence when initialized with the method inside the parentheses, here
the SD-WLS algorithm.

interesting is the fact that initializing i-WLS with the less

accurate solution of the linear method can indeed lead to

convergence to a local minimum, as illustrated in Fig. 4(d). In

contrast, this happens only extremely rarely when initializing

using the SD-WLS solution. In fact, in the presence of large

noise, even the ground truth might not reside within the

basin of attraction of the global WLS optimum, and i-WLS

initialized with the SD-WLS solution can achieve a lower

cost function value than i-WLS initialized with ground truth.

In conclusion, the simulation results confirm the superior

accuracy of SD-WLS over the linear method. However, par-

ticularly for low measurement noise, the linear method yields

surprisingly accurate results that may very well be acceptable

for some applications, especially given its considerably lower

computational complexity.3

VI. EXPERIMENTAL RESULTS

We have also tested the algorithms experimentally, us-

ing two Pioneer-II robots moving randomly in an area of

4 m × 5 m (see Fig. 5(a)). Each robot estimated its position

from 10 Hz wheel odometry, using a differential drive

kinematic model with noisy wheel velocity measurements

having standard deviation of σv = 8 mm/s. The ground truth

was established from observations using a calibrated ceiling-

mounted camera. These data also provided synthetic relative

distance measurements by adding white, zero-mean Gaussian

noise with standard deviation σd = 0.05 m.

We compared the estimates of the initial relative pose

obtained using the SD-WLS, the linear algorithm with 5

measurements, and the i-WLS initialized with SD-WLS.

For the SD-WLS solution we processed two iterations. The

first accounted only for noise in the distance measurements,

and its optimum was used as linearization point for the

Jacobians with respect to the robot positions, in order to

correctly account for uncertainty due to odometry in the

second iteration. We see that SD-WLS is significantly more

accurate than the linear method, almost independently of

the number of measurements, since the growing position

uncertainty due to integrated odometry errors cancels gains

from processing additional measurements. The errors after

i-WLS refinement are in the order of 10 cm for position and

3 degrees for orientation.

VII. CONCLUSIONS

In this paper, we have presented two methods to estimate

the relative pose between two robots based on robot-to-

robot distance measurements and knowledge of the robots’

egomotion. In particular, we have solved for the global

optimum of the corresponding WLS problem by finding

all stationary points as the roots of a square multivariate

polynomial system. We have shown how to construct this

polynomial system for the WLS of the original problem,

which is also the MLE for distance measurements corrupted

by Gaussian noise. The complexity of this system was

shown to scale very poorly, since the number of variables

grows with the number of measurements. On the other

hand, the alternative SD-WLS formulation using squared

distance measurements was shown to have constant solution

complexity, independent of the number of measurements or

the structure of the covariance matrix. Solving the problem

is carried out very efficiently using recent hybrid algebraic-

numeric techniques to solve multivariate polynomial systems

based on the eigendecomposition of a generalized companion

matrix [13]. Our algorithm can find the six solutions of

the minimal problem (N = 3 measurements) or the unique

3In our Matlab implementations, the linear method takes approx. 0.11 ms,
and a single iteration of i-WLS requires approx. 0.15 ms.
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Fig. 5. Experiment with two Pioneer robots equipped with markers for optical tracking using an overhead camera. (a) The camera images provided ground
truth for relative pose, and served to create 7 synthetic relative distance measurements at the marked points (for clarity, only the first two measurements
are drawn as dotted lines). (b) Error in relative pose as a function of the number of measurements. Shown are i-WLS refinement of SD-WLS (blue x) and
corresponding 3σ-bounds (red +), as well as the output of pure SD-WLS (magenta square) and the linear algorithm (black star, for 5 measurements only).

solution in the overdetermined case (N > 3 measurements)

in a unified framework.
Despite losing optimality in the MLE sense, the squared

WLS method performed almost indistinguishably from the

WLS estimate in simulation, and was shown to be approxi-

mately two (for position) or three (for orientation) times more

accurate than the linear method presented in [11] when using

5 measurements, over a wide range of noise levels.
In a broader context, this paper demonstrates that the

newly available tools for polynomial system solving allow

moving away from iterative optimization schemes towards

global optimization, if the first-order optimality conditions

can be transformed into polynomial form. Moreover, we have

provided an example that for overdetermined systems, com-

bining polynomial constraints in a Least Squares formulation

is far more accurate than solving the system of polynomial

constraints deterministically.
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