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Abstract— For a developmental robotic system to function
successfully in the real world, it is important that it be
able to form its own internal representations of affordance
classes based on observable regularities in sensory data. Usually
successful classifiers are built using labeled training data, but
it is not always realistic to assume that labels are available in
a developmental robotics setting. There does, however, exist an
advantage in this setting that can help circumvent the absence of
labels: co-occurrence of correlated data across separate sensory
modalities over time. The main contribution of this paper is an
online classifier training algorithm based on Kohonen’s learning
vector quantization (LVQ) that, by taking advantage of this co-
occurrence information, does not require labels during training,
either dynamically generated or otherwise. We evaluate the
algorithm in experiments involving a robotic arm that interacts
with various household objects on a table surface where camera
systems extract features for two separate visual modalities. It
is shown to improve its ability to classify the affordances of
novel objects over time, coming close to the performance of
equivalent fully-supervised algorithms.

I. INTRODUCTION

The term affordance, introduced by Gibson [1], is used

to characterise the action possibilities that an environment

offers an agent acting within that environment. In this

paper we address the issue of object affordance learning

in a developmental robotic system by developing a self-

supervised classifier that operates across two different sen-

sory modalities mediated by object interactions. The main

idea behind this is illustrated in Fig. 1 and Fig. 2(a). In our

scenario, a robotic arm is mounted on a table surface while

camera systems observe the scene. Objects are placed in the

workspace where the arm is allowed to interact with them

using pushing actions. Object features (e.g. shape features)

derived from image data taken prior to arm-object interaction

provide data for the first sensory modality, hereby referred

to as the input modality. After an action has been initiated

on an object, video footage is recorded of the object in

motion and effect features are extracted from the video

footage, forming the basis of the output modality. Often

when different sensory modalities (or stimulus modalities)

are discussed in the literature, they tend to be modalities

from different sensory systems, e.g. auditory and visual.

Here, instead, we consider two different sensory modalities
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Fig. 1. The main idea of our affordance learning framework.

from the same sensory system (visual) dealing with shape

and motion respectively. Though there is a temporal delay

when gathering data from each modality during an interactive

episode, for the purposes of our discussion here we consider

such data in each modality to be co-occurrences. Given a

series of interactive episodes, the learning task is to find

clusters in the output modality feature space that may be

identified as affordance classes, and use them to train a

classifier in the input modality space. Thus, when the system

encounters novel objects, it can predict their affordance

classes by observing their respective object features.

The main contribution of our algorithm is that it removes

the need for class labels of any kind during the training

stage by introducing a probabilistic heuristic based on the

co-occurrence information. When designing the algorithm,

we were subscribing to an online learning paradigm suitable

for developmental robotic systems. Requirements for such

an algorithm include: 1) No, or limited, access to previously

viewed training samples. 2) An incremental training mech-

anism. 3) Fixed, or limited, memory requirements. To meet

these criteria, we use a cross-modal neural network, as in

Fig. 2(b) consisting of two layers of codebook vectors fully

connected via a Hebbian weight mapping. The codebook

vector layers are of a fixed size, thus meeting the third online

learning criterion. The learning algorithm that we present,

through the use of Kohonen’s self-organizing map (SOM) [2]

method, as well as a variation of Kohonen’s learning vector

quantization (LVQ) [2], does not require access to previously

viewed training samples and can be trained incrementally,

thus satisfying the first and second criteria.
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(a) (b)

Fig. 2. (a) Experimental setup. (b) Our cross-modal neural network.
Two SOM networks operating in separate modalities, fully connected via a
weighted Hebbian mapping.

Perhaps the most closely related work in the literature with

respect to affordance learning to our work is by Fitzpatrick

et al. [3], [4]. The authors trained a humanoid robot to rec-

ognize “rolling” affordances of 4 household objects using a

fixed set of actions to poke the objects in different directions

as well as simple visual descriptors for object recognition.

There are two main differences between their method and

ours. Firstly, in [3], [4], the feature associated with the rolling

direction affordance was pre-determined, whereas in our

system, the learning algorithm is provided with a number of

different output features and it must determine for itself the

affordance classes within that feature space. Secondly, their

system used object recognition to identify the affordances

of individual objects, whereas our system determines the

affordance class of objects (grounded in output modality

features) based, not on their individual identity, but on a

broad set of input features (e.g. shape). In [5], the authors

used a humanoid robot to push objects on a table and used

a Bayesian network to form associations between actions,

objects and effects. Though quite similar to our approach,

their learning method may not be as amenable to full online

learning, as they have to gather a certain amount of data

initially to form categories within the various modalities

before the network can be trained.

Saxena et al. [6], [7] used the same robotic arm used in

our work (see Sec. III-A) to attempt to grasp novel objects

based on a probabilistic model trained on synthetic images of

various other objects labeled with grasp points. What differs

in our work is that rather than training our learning algorithm

on synthetically generated object examples, we train on

interactions with real objects. Moreover, their two possible

affordances were specified in advance: graspable or non-

graspable, whereas our system generates its own affordance

classes through interaction with objects. In [8], the authors

describe a mobile robotic system equipped with a 3D laser

scanner that learns to perceive traversability affordances of

various objects, such as spheres, cylinders and boxes in a

room. The robot was provided with a set of seven possible

actions and used its range scanner to gather angle and

distance features aggregated over a grid-division of the range

image. It then learned mappings between environmental situ-

ations and the results of its actions by first selecting relevant

features from the full set, then using support vector machines

to classify the relevant features into affordance categories.

Though good results were acheived, the affordance categories

were, again, pre-defined: traversable or non-traversable.

With regard to our learning algorithm, one of the first ex-

amples of Hebbian-linked SOMs was provided in [9], where

they were used for developing an artificial neural network

model of the mental lexicon. The structure of the network

in [9] is identical to the one presented here: two SOMs fully

connected via weighted Hebbian mappings. Moreover, the

training scheme presented in [9] is the same as our phase

1 training (see Sec. II-B). However, this training scheme by

itself, is not optimized for classification purposes as we shall

see later in Sec. V, and the SOMs do not influence each

other during training. de Sa et al. [10], [11] greatly improved

upon this by creating a cross-modal neural network where

two competitive learning maps in each modality influenced

each others’ training by learning to agree upon common class

labels for co-occurring data samples. Similarly to us, they

employed LVQ to train the maps in each modality based on

the class information. One drawback, however, is that the

class labels have to be determined a priori and maintained

throughout the training process. A SOM with a Hebbian

learning mechanism called a Growing When Required (GWR)

network was used in [12] to aid a simulated mobile robot in

learning affordances of objects with survival values such as

nutrition and stamina so that it could prosper over time in its

environment. The SOM was used to cluster visual sensor data

in the input space where nodes were assigned weights based

on the success or failure of actions. While our method also

uses SOM training, in our case it is used on both the output

data, where the nodes are meta-clustered to form affordance

classes, and the input data, where at a certain point it is

swapped for a variation of LVQ which is better suited for

classification optimization.

II. THE LEARNING ALGORITHM

A classifier could be constructed in either modality by

attaching class labels to the training data and employing

a supervised algorithm, but this is hardly ideal for an

autonomous cognitive system like a robot since it assumes

the existence of an external tutor who is willing to label

the data. However, once we have noted that in this type of

learning scenario correlated training data co-occur in each

modality, this opens up alternative possibilities. For example,

k-means clustering or density estimation might be possible

in the joint feature space, however, as was discussed in [11],

these are not ideal solutions. The problem with simple k-

means clustering or competitive learning in the joint space

is that all feature dimensions would be required for the

classification of test samples; these methods would not be

able to marginalize over the missing dimensions when trying

to predict the outcome of one modality from another. Density

modeling would account for this problem, but requires fitting

many parameters which would become infeasible in high

dimensions. Moreover, neither approach complies naturally

to our online learning criteria. Thus, perhaps a better ap-

proach would be to use the natural structure of the data in

one modality, as well as the co-occurrence information, to
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train a supervised classifier in the other modality. This could

be accomplished, for example, by using an unsupervised

algorithm like k-means to derive clusters in one modality

which could be used as class labels to train a supervised

classifier in the other ([11] provides a similar approach).

However, it is computationally expensive to cluster at every

training step in an online algorithm. One alternative, that of

clustering early and maintaining the clusters over time, could

potentially introduce inaccuracies as training progresses if

the sample distribution changes significantly. In the following

we describe a cross-modal neural network and a two-phased

training scheme that aims to address these issues.

A. Cross-modal Neural Network

The structure of our cross-modal neural network is illus-

trated in Fig. 3 (a). Two codebook vector layers, one in

the input modality and one in the output modality, are fully

connected to each other via a weighted Hebbian mapping.

The idea is that the codebook vector layers are trained

to form a representation of the information contained in

their respective modalities, while the Hebbian mapping is

trained on the basis of the co-occurrence of data across these

modalities.

Learning proceeds in two phases. In the first phase of train-

ing, as training samples for each modality are concurrently

presented to the network, the codebook vector layers are

trained separately using the usual SOM algorithm (described

below). While training is ongoing, the Hebbian links that

connect the best-matching unit nodes in each of the codebook

vector layers are then updated appropriately based on co-

occurence. Though SOM training is good for producing low-

dimensional represenations of data distributions, it is not the

best solution for optimizing decision borders, thus we em-

ploy a second phase of training that exploits the co-occurence

information captured by the Hebbian mapping between the

codebook vector layers. In the second phase, the codebook

vector layer in the output modality continues to be trained

in the usual way, as does the Hebbian mapping, while the

codebook vector layer in the input modality is trained using

our variation of LVQ. Rather than using class labels, the LVQ

training rules are selected using a Hellinger distance-based

heuristic that exploits the cross-modal Hebbian mapping to

indicate whether a given codebook vector is of the “correct”

or “incorrect” class for a given training sample.

A classifier can then be formed after training by perform-

ing unsupervised meta-clustering over the output modality

nodes in order to form class labels, although it should be

emphasised that these class labels are not required during

training. It should also be noted that the algorithm, in largely

unmodified form, could also perform regression, though

results for this are not presented in this paper. The training

and classification processes are described in more detail in

the following sections.

B. Training: Phase 1

The following two sub-sections describe how both the

individual modality networks and the Hebbian mapping that

Input BMU
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Sample

Sample

(a)

Input BMU
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Sample

Input-to-output Hebbian
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Output BMU

(b)

Input BMU
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Fig. 3. Training and classification. In each figure, the bottom layer is the
input modality codebook & the top layer is the output modality codebook.
Arrows indicate node movement during training. (a) Phase 1 training: regular
SOM training performed in each modality while Hebbian links are also
updated. (b) Phase 2 training: Hellinger distance heuristic indicates correct
training sample classification based on activation distributions. Input best-
matching unit node (BMU) is moved towards the training sample. (c) Phase
2 training: heuristic indicates incorrect sample classification because the
activation distributions differ significantly. Input BMU is moved away from
the training sample. (d) Classfication: output nodes are meta-clustered and
the cluster with the strongest weighted connections to the input BMU wins.

connects them are trained in the first phase of training. Phase

1 training is illustrated in Fig. 3 (a).
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1) Modality Codebook Vector Layers: In the first phase,

network training in each modality proceeds in accordance

with Kohonen’s original SOM formulation [2] which we

summarise here. The nodes of the network layers of each

modality contain codebook vectors mi = [mi1, . . . ,mid],
where d is the dimensionality of the modality feature vectors,

that are randomly initialized before training begins. At each

training step, a data vector x = [x1, . . . , xd] is is measured

against each codebook vector using the Euclidean distance

metric, as follows:

||x − mi||2 =

d
∑

j=1

wj(xj − mij)
2, (1)

where wj is an element of weight vector w = [w1, . . . , wd]
which is used for a feature selection algorithm in the second

phase of training, described in Sec. II-C. The node that

is closest to the input data vector based on this metric is

called the best matching unit (BMU) and both it and its

neighbouring nodes are updated using the following update

rule

mi(t+1) =

{

mi(t) + αSOM(t) [x(t) − mi(t)] if i ∈ Nc,
mi(t) otherwise,

(2)

operating over all i ∈ [1, n], where αSOM(t) is the learning

rate at time t and Nc is the neighbourhood around the BMU

c.

2) Cross-modal Hebbian Mapping: The following Heb-

bian weight training procedure is taken from Miikulainen

[9]. In order to train the Hebbian mapping, we require a

measurement of the activation of a given modality layer node

ai, formulated as follows:

ai(t) =

{

1 − ||x(t)−mi(t)||−dmin

dmax−dmin
if i ∈ Nc,

0 otherwise,
(3)

where dmin is the smallest and dmax the largest distance of

x(t) to a unit in the neighbourhood.

During training, the link weight changes are made propor-

tional to the product of the activation of the two nodes in

each modality that are being associated, as follows:

∆hkl(t) = αHEB(t)ak(t)al(t), (4)

where ∆hkl is the unidirectional associative weight leading

from node k in the input modality layer to node l in the

output modality layer, αHEB(t) is the Hebbian learning rate,

and ak(t) and al(t) are the activations on the two nodes

at time t. Each link weight hkl is then updated using the

following normalization equation:

hkl(t + 1) =
hkl(t) + ∆hkl(t)

√

∑

l [hkl(t) + ∆hkl(t)]
2
. (5)

The Hebbian mapping, when trained as above, provides

a type of memory of previous training experience in terms

of modality co-occurrences, or of what one modality “looks

like” from the perspective of the other. As we shall see,

this information can be effectively employed to augment

classifier training.

C. Training: Phase 2

After Phase 1 training has proceeded for a reasonable

amount of time, i.e., long enough to provide a robust

Hebbian mapping, Phase 2 training may be initiated. In the

algorithm presented in this paper, the network layer in the

output modality continues to be trained with the usual SOM

algorithm in Phase 2. The network layer in the input modality

however, switches to a modified version of learning vector

quantization (LVQ) [2] training that employs a probabilistic

heuristic. In order to develop this heuristic, we require the

Hellinger distance metric which we discuss next. Phase 2

training is illustrated in Figs. 3 (b) and 3 (c).

1) Hellinger Distance Heuristic: Using the definition

from [13], for a countable state space Ω, given probability

measures µ and ν,

dH(µ, ν) :=

[

∑

ω∈Ω

(

√

µ(ω) −
√

ν(ω)
)2

]
1

2

. (6)

We use the Hellinger distance metric as defined above to

create a heuristic that allows us to measure the similarity

between nodes in the input modality layer and the output

modality layer with respect to the Hebbian mapping. The

Hellinger distance takes values in the bounded interval

[0,
√

2], making it amenable to statistical analysis, e.g. cal-

culating mean distance. Given input modality node k, we

define

fk(t) = {hkl(t) : ∀l in the output modality layer} , (7)

or all the Hebbian link weights that connect node k in the

input modality layer to the nodes in the output modality layer

at time t. We define

g(t) = {al(t) : ∀l in the output modality layer} , (8)

or all the node activations in the output modality layer at

time t.

fk can be thought of as a distribution of the Hebbian map

activity from node k in the input layer projected onto the

output layer. Loosely put, this gives us a picture of what

the output map looks like from the perspective of node k
in the input map based on previous training experience. g,

on the other hand, gives us a distribution of the output map

activity with respect to the current training sample. Thus,

when given a training sample for the input modality, if we

employ the metric dH(fk(t), g(t)), we can get an impression

of how well its best matching unit node in the input modality

layer predicts the activity of the output modality layer given

its co-occurring training sample. This heuristic can of course

be used in the opposite direction, from the output modality

layer to the input modality layer, but for the algorithm we

present in this paper it is employed strictly in the above way

to augment the training of the input modality layer. Now

that we have the necessary tools in place, we may proceed

to present our modified LVQ algorithm.
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Fig. 4. Examples of image and range data taken with the stereo camera for two different types of objects: a book which slides when pushed by the robotic
arm, and a Pepsi can which rolls when pushed by the arm. From left to right: intensity image, range data of the scene, segmented object, segmented object
range data, object range data with a fitted quadric surface.

2) Learning Vector Quantization Without Class Labels:

In traditional LVQ training [2], codebook vectors are given

fixed class labels a priori. Subsequently, as training sam-

ples are presented with accompanying class labels, the best

matching codebook vectors are updated according to a set

of rules. If the best matching codebook vector class label

matches that of the training sample, the codebook vector is

moved towards the sample. If the labels do not match, the

codebook vector is moved away from the sample.

In the modified form of LVQ we present here, which is the

main contribution of this paper, we refrain from labeling the

codebook vectors altogether. Codebook vectors are updated

based on the heuristic presented in the previous section.

Given the best matching node c in the input modality layer

for a given input modality training sample x, we apply the

following update rule:

mc(t + 1) =























mc(t) + (1 − γ)αLVQ c [x(t) − mc(t)]
if dH(fc(t), g(t)) < ǫ

mc(t) + (γ − 1)αLVQ c [x(t) − mc(t)]
otherwise,

(9)

where, assuming dH(fc(t), g(t)) is normalised, ǫ is usually

set to its mean value over all t, and γ is set to either 0 or

2dH(fc(t), g(t)) if the rule is to be applied in either a binary

or fuzzy fashion respectively.

In more simple terms, the effect of applying the above

rule is that, when the output modality appears to have the

same activity distribution as predicted by the best matching

node in the input modality based on past experience, the best

matching node in the input modality is moved closer to the

training sample. Conversely, if the output modality appears to

have a significantly different activity distribution, it is moved

away from the training sample. These two alternative cases

are visualised in Figs. 3 (b) and 3 (c).

Note that the above also incorporates optimized-learning-

rate learning vector quantization (OLVQ), where separate

αLVQ c are stored and updated for each node. See [2] for

more details.

3) Feature Selection: As alluded to in Sec. II-B.1, we

also employ a feature selection method to boost classifier

training. We use the relevance determination learning vector

quantization (RLVQ) algorithm from [14] to do this. Given

the best matching node c in the input modality layer for a

given input modality training sample x at time-step t, we

perform the following operation on the wj from (1). For

each feature dimension j:

wj(t + 1) =























max {wj(t) − αF(t)|x(t) − mc(t)|, 0}
if dH(fc(t), g(t)) < ǫ

wj(t) + αF(t)|x(t) − mc(t)|
otherwise.

(10)

We then normalise, as follows: for all j, wj := wj/|w|.

D. Classification

After training, a classifier may be formed from the network

by performing unsupervised meta-clustering over the nodes

of the output modality codebook layer. To this end, we used

k-means with automatic selection of k based on votes from

the following validity indices: Davies-Bouldin [15], Calinski-

Harabasz [16], Dunn [15], Krzanowski-Lai [16] and the

silhouette index [16], [15]. These clusters define the output

modality categories to be used for classification purposes.

Given an input modality test sample to be classified, the

best matching node in the input modality layer is found and

its Hebbian weight links are mapped to the output modality

layer. The weights for the links connecting to each cluster

are summed, and the cluster with the highest score is deemed

to be the winning class for that input test sample.

III. SYSTEM ARCHITECTURE & SETUP

A. Robotic Arm

In our system, we use a Neuronics Katana 6M robotic

arm which features 5 DC motors for main arm movement,

as well as a 6th motor to power a 2 fingered gripper that

houses both infrared and haptic sensors (note: these sensors

are not used in the experiment presented here). The base of
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Fig. 5. An example of the object tracking mechanism described in Sec. IV-B using the images in the first row show a progression of frames tracking
a Sprite can being pushed by the arm. The outer rectangle is a likelihood window around the object obtained using the particle filter tracker. The inner
rectangle is the result of using histogram back-projection within that window to localise the object. The second row of close-up images shows how the
appearance of the object within the inner rectangle changes during the course of object motion.

the arm is mounted on a flat table with a wooden laminate

surface, and the arm is allowed to move freely in the area

above the table surface, avoiding collisions with the table

through the use of specialized control software. The arm

control software that was used for this work is a modified

version of Golem 1, control software for the Katana arm.

Given desirable parameters, Golem uses forward kinematics

to generate arm joint orientations and motion paths, then

uses cost functions and searches to select the ones that most

closely fit the parameters. In order to ensure that the actions,

and by extension the object affordances, that are available

to the system are as consistent and learnable as possible, we

optimized for a linear end-effector motion trajectory when

moving between workspace positions.

B. Camera Systems

2 Point Gray Research cameras- the Flea monocular

camera (640x480 @ 60FPS or 1024x768 @ 30FPS) and the

Bumblebee 2 grayscale stereo camera (640x480 at 48FPS or

1024x768 at 20FPS) were used to gather intensity images,

range data and video for the experiment listed in Sec. V.

IV. VISUAL FEATURE EXTRACTION

A. Input Modality Feature Extraction

With regard to the input modality features, for the purposes

of this particular affordance learning scenario, we are mostly

interested in extracting features that describe the global shape

of an object as they are likely to be most relevant for

determining how the object will behave. However, in theory,

any types of features that describe properties of the objects

under consideration could be used here.

1) Range Data: We have developed a method for seg-

menting the object from range images that uses RANSAC

(RANdom SAmple Consensus) [17] to fit a plane to the

table surface for removal, then mean-shift clustering [18]

as well as a graph-cut segmentation in the corresponding

1Golem was developed by researchers at the University of Birmingham
who kindly provided us with a copy for our research. More information can
be found at: http://www.cs.bham.ac.uk/˜msk/ .

intensity image to isolate the object range data with minimal

noise. The graph-cut segmentation method we used was from

[19], which uses the min-cut/max-flow algorithms oulined in

[20], [21], [22] to apply the standard graph cut technique to

segmenting multimodal tensor valued images. A quadratic

surface may then be fitted to the object range data to derive

curvature features from the object surface. We derive 2

curvature features in this way from the coefficients of the

polynomial of the fitted quadratic surface that provide a good

description of the global curvature of the object. This surface

fitting technique is illustrated on the two objects shown in

Fig. 4.

2) Image Data: The segmentation technique produces

reasonably good intensity image segmentations of objects.

These are then used to calculate the following 10 shape

features: area, convex area, eccentricity, equivalent cicular

diameter, Euler number, extent, filled area, and the major

axis length.

B. Output Modality Feature Extraction

After an arm action has been performed on an object, the

resulting videos of the interaction are processed for output

modality features. This is primarily acheived by tracking the

object in motion using a probabilistic tracker from [23].

This tracker is in essence a colour-based particle filter,

which also makes use of background subtraction using a pre-

learned background image. Background subtraction by itself

is insufficient to localise the object in our experimental setup

due to changes in lighting and the motion of the arm, but

it is helpful in reducing ambiguities for the tracker. Object

shapes are approximated by elliptical regions, while their

colour is encoded using colour histograms. The dynamics

of objects are modeled using a dynamic model from [24],

which allows for tracking with a smaller number of particles,

and consequently, near real-time tracking performance.

1) Global Object Motion Features: The following 9 fea-

tures are calculated from the particle filter tracker output

data: total distance traveled in x-axis, total distance traveled

in y-axis, total Euclidean distance traveled, mean velocity in
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x-axis, mean velocity in y-axis, velocity variance in x-axis,

velocity variance in y-axis, final x position, final y position.

2) Object Appearance Changes: To estimate how the

appearance of the objects change during motion, we chose

to calculate the average difference of both colour and edge

histograms between video frames of the objects, the aim

being to detect both motion blur and the texture changes

characteristic of many rotating objects. This required an

extension to the particle filter tracker previously described.

The tracker by itself is sufficient for tracking the motion of

objects, but it is slightly inaccurate at times. For example, if

an object is rolling and stops suddenly, the tracker sometimes

briefly overshoots the object before returning to it a few

frames later. To avoid this, we use the output of the tracker

to define a broad window around the object in the video

frames, before using colour histogram back-projection [25]

to localise the object within the window. Histogram differ-

ence averages are then calculated from the start of object

motion until the end. See Fig. 5 for sample frames from

an interaction with an object that illustrates this technique

at work. We derive 3 output modality features from this

procedure: average colour histogram difference, average edge

histogram difference, and the product of these two values.

V. EXPERIMENTS

To test our affordance learning system, the experimental

environment was set up as previously described and as shown

in Fig. 2(a). During experiments, objects were placed at a

fixed starting position prior to interaction. Two cameras were

used to provide both sufficiently detailed close-up range data

of the object surfaces and a sufficiently wide field of view to

capture object motion over the entire work area. To achieve

this, the stereo camera was positioned above the object start

position, while the monocular camera was positioned at a

higher position in front of the workspace.

We selected 8 household objects to be used in the ex-

periments: 4 flat-surfaced objects; a book, a CD box, a box

of tea and a drink carton, and 4 curved-surfaced objects;

a box of cleaning wipes, a Pepsi can, a Sprite can and a

tennis ball box. Each of these objects was placed centred

at the start position with a consistent orientation, and the

robotic arm pushed the object at a fixed speed using a fixed

pushing action. During trials, the curved objects would tend

to roll after being pushed, whereas the flat objects would stop

suddenly after the push. Before an action was performed on

an object, both intensity and range images were gathered

from the stereo camera. This data was then processed to

produce the 12 input modality features discussed in Sec. IV-

A. After an action was performed on an object, images were

gathered and passed to the tracking system described in Sec.

IV-B to produce 12 output modality features.

To evaluate the algorithm, we first collected a dataset as

follows. 20 object push tests were carried out for each of

the 8 objects listed previously and the resulting data was

processed, leaving 160 data samples. The samples were then

hand-labeled with two ground truth labels: rolling and non-

rolling. In the following evaluations, leave-one-out cross

validation was performed by splitting the dataset into a

training set of 140 samples consisting of all data for 7 of

the objects and a test set of 20 samples consisting of all

data for the remaining object. The classification task was

then to train on 7 objects, find the affordance classes in

the output modality and try to classify the remaining object

on that basis. In the experiments for this paper, the training

set was doubled and randomized, effectively allowing for 2

epochs of training over the training set, i.e. training over 280

samples. Cross validation was performed by using each of the

8 objects in turn as the test object and averaging classification

scores across all 8 subsequent training and test sets and the

20 test samples contained therein. Fig. 6 shows the results of

incrementally cross-validating 6 algorithms every 20 training

steps and averaging over 40 trials. In 4 of the algorithms,

each of the two codebook vector layers in the input and

output modalities contained 100 nodes arranged in a 10×10
hexagonal lattice with a sheet-shaped topology. In the other

2 algorithms, the codebook vector layers contained 5 nodes

arranged in a 1 × 5 linear topology.

The goal of the evaluation was to compare the performance

of our self-supervised algorithm to fully-supervised learning

using ground truth labels. In the case of the self-supervised

algorithms, classification of a test sample was deemed to

be correct if the output modality meta-cluster (c.f. Sec. II-

D) matched the ground truth (c.f. [26] for more details

on matching the meta-clusters to ground truth labels). Of

the 6 algorithms evaluated, 2 were variations on fully-

supervised LVQ1, OLVQ1 with 100 nodes and OLVQ1 with

5 nodes, while the remaining 4 were variations of self-

supervised cross-modal learning. Of the 4 variations of cross-

modal learning, one was cross-modal SOM training as in

[9] with 100 nodes and the other 3 were modifications of

our proposed heuristic-based LVQ algorithm: fuzzy heuristic

OLVQ1 with RLVQ feature selection (HeurORLVQ), binary

HeurORLVQ with 100 nodes, and binary HeurORLVQ with

5 nodes. For each of these, the initial αSOM learning rate in

each modality was set to 1 with a linear profile descending

to 0 over the 280 timesteps in the output modality and 140
timesteps in the input modality. The RLVQ αF learning rate

was set to a constant 0.1. Training shifted from Phase 1 to

Phase 2 halfway through the training set (140 timesteps), In

Phase 2, αLVQ was set to a constant 0.3. These learning rates

were selected both through trial and error, and as advised by

[2].

As can be seen in Fig. 6, the fully supervised algorithms

performed the best, as expected, with the 5-node OLVQ

reaching a correct classification rate of 97.11% by the end

of training, and the 100-node OLVQ reaching a score of

93.53%. Of the self-supervised cross-modal classifiers, 100-

node Fuzzy HeurORLVQ performed the best, reaching a cor-

rect classification rate of 91.64%, while 100-node HeurOR-

LVQ and 5-node HeurORLVQ reached rates of 90.16% and

86.67% respectively. The cross-modal SOM finished with

a score of 81.91%, thus justifying our two-phased learning

approach. Our algorithm works best when there are enough

nodes in the network to give a decent approximation of the
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Fig. 6. Incremental leave-one-out cross-validation evaluation averaged over
40 trials (c.f. Sec. V). The switch from Phase 1 training to Phase 2 training
(c.f. Sec. II) is indicated by the vertical dotted line.

sample density in the output modality, thus providing a more

accurate Hellinger distance heuristic. The results show that,

when evaluated with such a number of nodes, our algorithm

performs almost as well as fully-supervised OLVQ1 using the

same number of nodes. On the other hand, OLVQ1 works

best when the number of training steps is 30 to 50 times the

number of codebook vectors [2], i.e. for our small training

set size of 280 samples, the number of codebook vectors

should be low, e.g., 5. However, even when using such a

small number of nodes, in this 2-class learning scenario

our algorithm performed robustly, and still produced better

results than the 100-node cross-modal SOM.

VI. CONCLUSION

In conclusion, we have presented a robotic system that

uses a novel self-supervised cross-modal online classifier

training algorithm to learn basic object affordances. We have

shown that it can be successfully trained to learn affordances

of household objects by interacting with them, and subse-

quently predict the affordance classes of novel objects by

observing their object features, e.g. shape. The experimental

results also demonstrated how the system, through the use

of the proposed novel algorithm, can start learning with

little or no experience, and improve results over time to the

point where the classification rate is close to that of a fully-

supervised system. Although the results presented here only

account for one type of action, multiple classifiers may be

trained to account for different types of actions. We aim to

improve on this in future work by modifying the algorithm

such that actions may be parameterized, perhaps in a separate

modality. We would also like to test the algorithm on more

challenging problems where there are more than two classes

present in the training data.
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