
Solving the Continuous Time Multiagent Patrol Problem

Jean-Samuel Marier, Camille Besse and Brahim Chaib-draa

Abstract— This paper compares two algorithms to solve
a multiagent patrol problem with uncertain durations. The
first algorithm is reactive and allows adaptive and robust
behavior, while the second one uses planning to maximize long-
term information retrieval. Experiments suggest that on the
considered instances, using a reactive and local coordination
algorithm performs almost as well as planning for long-term,
while using much less computation time.

Keywords: Multiagent, UAV, Online, Patrol.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are a promising tech-
nology for many information gathering applications. As these
devices become cheaper, more robust and have increased
autonomy, we can expect to see them used in many different
new applications such as surveillance and patrol missions. In
such missions, the status of some sites must be monitored for
events. If an UAV must be close from a location to monitor
it correctly and the number of UAV does not allow covering
each site simultaneously, a path planning problem arises: how
should the agents visit the locations in order to make sure that
the information about all locations is as accurate as possible?

In the last decade, several patrolling algorithms have
been developed to this end. For instance, Santana et al. [7]
proposed a graph patrolling formulation on which agents
use reinforcement learning on a particular Markov Decision
Process (MDP). They defined this MDP over a countably
infinite state space, leading to long and costly computations.
Their approach also assumes that agents communicate by
leaving messages on the nodes of the graph, leading to un-
realistic communication models. On the other hand, reactive
algorithms such as the ant-colony approach from [4] have
been shown to perform well in theory as well in practice.
Such an approach also relies on simplistic communication
models relying on so-called pheromones. The task of pa-
trolling in an adversarial setting is studied in [1].

For the case where all locations are equally important,
Chevaleyre [2] proved that the shortest Hamiltonian circuit
is an optimal solution for a single agent. Moreover, some
grid-based patrolling algorithms have also been explored [3]
that give guarantees on the robustness in the event of UAV
failures. However, as some locations may be more important
than others, not visiting the less important ones from time
to time might be advantageous.

In this paper, we use a model for the patrolling problem
that was introduced in [5]. This model is focused on the

All authors are with Department of Computer Science
and Software Engineering, Laval University, Quebec, Canada.
{marier,besse,chaib}@damas.ift.ulaval.ca

non-adversarial setting. Contrary to previous approaches that
tried to minimize the idleness of the vertices of the graph,
it outlines the information retrieval aspect of the patrolling
problem and the decay of the information value as the age of
the information retrieved increases, thus forcing the agent to
update its knowledge about nodes as frequently as possible.
Our model has a continuous-time formulation, allowing for
real-valued durations, asynchronicity and scenarios where
durations are uncertain.

The focus of this paper is to evaluate algorithms that solve
the patrolling problem under this formulation. Two algo-
rithms are presented. A first reactive one that allows adaptive
and robust behavior in case of UAV failure, online graph
modification or any other non-stationarity in the model, and
a second that tries instead to maximize long-term expected
information retrieved from the nodes of the graph.

The remainder of this paper is structured as follows:
section II presents the model used, section III presents the
multiagent MDP framework and a formulation of the problem
at hand, algorithms for solving the problem are presented
in section IV, and section V presents experiments. Finally
sections VI and VII discuss results and future work.

II. PROBLEM FORMULATION

The patrolling problem has a graphical structure. Let us
use V for the vertex set of that graph and E for its edge set.
Let L be an |V |× |V | matrix, in which Lij is a real number
that represents the time required to go travel from i to j if
[i, j] ∈ E and is infinite otherwise. More generally, Lij is a
probability distribution. Each vertex i has a real non-negative
importance weight, noted wi. We note w the vector of all
such weights. The graph embeds structure in the problem. If
there is no structure at all, the graph is complete.

In patrolling literature such as [4], idleness is used as
a performance measure. The idleness of vertex i, noted τi
represents the time since the last visit of an agent to that
vertex. The idleness is 0 if and only if an agent is currently
at vertex i and τ t+∆t

i = τ ti + ∆t if there are no visits to
i in the time interval (t, t + ∆t). Because idleness is an
unbounded quantity, a more suitable quantity is kti = bτ

t
i ,

with 0 < b < 1. We call this freshness. Since kti is always
in [0, 1], it can be seen as the expected value of a Bernoulli
random variable which has value 1 if vertex i is observed
correctly and 0 otherwise. Thus, kti is the probability that this
random variable is 1 at time t. This idea of “correctness” is
fairly general and means that agents have observed what they
should have. At time t, kti is the probability that the state of
vertex i is known. The performance measure is a weighted
(by w) sum of kt.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 941

The probability evolves as kt+∆t
i = ktib

∆t if there is no
visit to i during time interval (t, t + ∆t). If an agent with
noisy observations visits i at time t, idleness becomes 0 with
probability (1 − a) satisfying b < (1 − a) ≤ 1. If n agents
visit vertex i at time t+ ∆t and that there is no visit since
time t:

kt+∆t
i = ktia

nb∆t + 1− an. (1)

To sum up, an instance of the patrolling problem is a tuple
〈L,w, a, b〉, consisting respectively of the matrix L of edge
lengths, the vector w of importance weights and parameters
a (the probability that the idleness does not become 0 when
an agent visits a vertex) and b (the rate at which ki decays
over time). Note that b could be different from one vertex to
another and that a could be different for every agent-vertex
pair. Throughout, we use a single a and a single b for clarity.

III. MULTIAGENT MARKOV DECISION PROCESSES

This section casts the previous problem as a Multia-
gent MDP (MMDP). We assume that the problem state is
fully observable, i.e. every agent has the same complete
information to make its decision. Such problems are called
MMDPs. The actions of each agent have a concurrent effect
on the the environment and they are of different durations.
Concurrency in decision processes is conveniently modeled
with a Generalized Semi-Markov Decision Process (GSMDP),
introduced by Younes et al. [8]. Such decision processes also
generalize MMDPs to continuous-time with asynchronous
events.

The state variables for this problem describe the position
of each agent and the freshness of each vertex (as per
equation (1)). If the total number of agents is N , the state
space is

S = V N × [0, 1]
|V |

. (2)

Given some state s = (v,k) ∈ S, vi is the position of agent
i and ki is the idleness of vertex i. We use st = (vt,kt) for
the state and its components at time t.

At various time points, called decision epochs, the agents
must choose an action. Every agent must be performing
exactly one action at any given time. Furthermore, an agent
may only change its action at its decision epoch. The actions
available to an agent depend on the structure of the graph and
its position: if an agent is at vertex v, it chooses its action
from Av = {u : [v, u] ∈ E}. If an agent chooses action u
from vertex v at time ti, the next decision epoch for that
agent occurs at time ti+1 = ti + Lvu, and vt = v while
t ∈ [ti, ti+1) and vt = u as soon as t = ti+1. If Lvu is
a probability distribution, so is ti+1 given ti.

The problem is concurrent because the decision epochs
of all agents can be interleaved arbitrarily. (Each component
ki of k evolves independently.) Equation (1) was defined in
terms of two time epochs (t and t + ∆t) and the number
of agents (n). Let {tj}j be the non-decreasing sequence
of decision epochs and write nji for the number of agents
arriving at vertex i at time tj . To simplify notation, let
∆tj = tj+1 − tj . We thus have that

kt
j+1

i = kt
j

i a
nj+1
i b∆t

j

+ 1− an
j+1
i .

The reward process R is defined in terms of k. Specifically,
the rate at which reward is gained is given by

dR = w>kt dt. (3)

The discounted value function for a GSMDP is defined by
Younes et al. [8]. In our problem, it becomes:

V π(s) =
(a)

E
[∫ ∞

0

γtdR

]
=
(b)

E

 ∞∑
j=0

γt
j

w>kt
j(bγ)∆tj−1

ln(bγ)

 (4)

where γ ∈ (0, 1] is the discount factor. Equality (a) is the
definition of the continuous-time discounted value function
and (b) is obtained by piecewise integration between decision
epochs. The expectation is taken over action durations. The
sequence of states and decision epochs encountered depends
on the actions chosen by the agents, this is generally called a
policy and is denoted by π. The problem is to chose policies
for all agents that maximize this expectation.

A. Properties of the Value Function for the Patrol Problem

The value function defined in equation (4) has some
properties that general decision problems do not have. All
these properties are derived from equations (1) and (4). They
generalize to more than two agents. We use V π1+π2(s) to
denote the value of having agents 1 and 2 performing π1 and
π2 jointly starting from state s.

Property 1: Non-negativity: 0 ≤ V π(s), for all π and s.
Property 2: Subadditivity: for all π1, π2 and s,

V π1+π2(s) ≤ V π1(s) + V π2(s).
Two agents in the same environment will not do as good

as the sum of two agents in two identical environments.
Equality is achieved when agents patrol disjoint sets of
vertices. If at least one vertex is visited by both agents, the
inequality holds. The value is not be impacted much if the
time between the visits of two agents is large.

Property 3: Locality: V π1+π2 ≈ V π1(s) + V π2(s) if the
time between the visits of the two agents is large.

Property 4: Lower bound: for all π1, π2 and s,
max {V π1(s), V π2(s)} ≤ V π1+π2(s).

Two agents will never do worse than one agent. The worst
case is attained when both agents visit the same vertices at
exactly the same time. The reward gained is still greater than
the reward gained by one agent.

IV. SOLVING THE PATROLLING PROBLEM

While good performance with regard to the value function
described in (4) is a desirable property, robustness and
low computational cost are also interesting properties. For
instance, consider the case of a fleet of UAVs patrolling an
area. Robustness is important to deal with contingencies,
such as vehicle failures, or the online reconfiguration of the
patrol mission. Low computational costs are important to
allow for cheaper hardware and lower energy consumption.

Online algorithms [6] are a class of algorithms that solve
the problem at hand only for the current state. This is in
contrast with offline algorithms that do so for all states.
Solving for the current state (and a small number of other

942

states reachable from the current state) is typically easier
than solving for all states. For this reason, we present online
algorithms. Another useful property of algorithms is the so-
called “anytime” property. An algorithm is anytime if firstly
it can be stopped at any time (after initialization) and provide
a useful result and secondly running it any longer does not
degrade solution quality. This property is useful to meet
planning deadlines.

A. A Reactive Algorithm

This algorithm relies on the use of augmented states
(s,η), where ηi ∈ R+ is the time remaining before the
next decision epoch of agent i. At any time t, the next
decision epoch happens at time t+ mini {ηi}, at which
point ηi = 0, i ∈ arg min{ηi}. When performing an action
of duration ∆ t, the η component of the augmented state is
updated as

η′i = τ(ηi,∆t) =

{
∆t if ηi = 0,

ηi −∆t otherwise.
(5)

While the agents never know the value of η, these augmented
states are nevertheless useful to describe algorithms. The
available joint actions in an augmented state are∏

i

A(vi, ηi), where A(v, η) =

{
Av if η = 0,

∅ otherwise.

Given an augmented state with possibly ongoing actions,
algorithm 1 returns an action. The evaluation is made ac-
cording to the immediate value of the reached state (w>k
at line 15). When an agent leaves a vertex, the value of ηi
is taken to be the expected travel duration (in the loop at
line 6). To account for the new action as well as for the
currently ongoing actions, the state is updated until all the
current actions have completed (line 12). The state update
operation is denoted by τ(s,∆t). It leaves v unchanged and
updates k and η according to equations (1) and (5).

The state update does not depend on the action, because
the action being evaluated by EVALUATE had its effect
included in the current state at line 8. Agents that have
reached their destination are removed at line 11. If this
was not done, agents would have to choose another action
because they are at a decision epoch.

B. Anytime Error Minimization Search

The previous algorithm is myopic in the sense that it
evaluates actions only up to a near horizon. It should be
compared to an algorithm that looks further ahead. To this
end, we propose a second algorithm that addresses this
issue. It is based on Anytime Error Minimization Search
(AEMS), an online algorithm introduced originally in [6] for
Partially Observable Markov Decision Processes (POMDPs).
It performs a heuristic search in the state space. The search
proceeds using a typical branch and bound scheme. Since the
exact long term expected value of any state is not exactly
known, it is approximated using upper and lower bounds.
AEMS guides the expansion of the search tree by greedily
reducing the error on the estimated value of the root node.

Algorithm 1 REACTIVEALGORITHM

1: procedure REACTIVEALGORITHM(s)
2: return arg maxa∈A(s) EVALUATE(s,a)
3: end procedure
4: procedure EVALUATE(s,a)
5: (v,k,η)← s
6: for i such that ηi = 0 do
7: ∆ti ← E[Lvi,ai] B Expected time for going from vi to ai.

8: (vi, ηi)← (ai,∆ti)
9: end for

10: T ← max{η}
11: while v,η are not empty vectors do
12: (v,k,η)← τ((v,k,η),min{η})
13: Remove vi, ηi from v,η for all i s.t. ηi = 0.
14: end while
15: return w>k
16: end procedure

While we are not in a POMDP setting, the greedy error
reduction is useful. In our problem, actions have the same
interpretation as in a partially observable setting. On the other
hand, observations model the realizations of the stochastic
travel durations. Let us recall briefly how AEMS works.

In AEMS, the error is defined using the upper bound
and the lower bound on the value of some state. We have
L(s) ≤ V (s) ≤ U(s) where V (s) is the actual value of
s, and L(s) and U(s) are the lower and upper bounds
respectively. Given some search tree T, whose set of leaf
nodes is noted F , the bounds for the root node are estimated
recursively according to

L(s)=

{
L̂(s) if s ∈ F
L(s,a)=max

a∈A
R(s,a)+γL(τ(s,a)) otherwise (6)

where τ(s,a) is the next state if action a is taken in state s.
The upper bound, U(s), is defined similarly and depends on
Û(s). L̂(s) and Û(s) are problem-dependent heuristics such
as those described in section IV-C.

An estimation of the error on the value of s is given by
ê(s) = U(s) − L(s). We are interested in expanding the
state at the fringe of the search tree whose contribution to
the error on the root node (s0) is maximal. Since all states
are not reachable with equal probability (depending on the
policy), the contribution of any state s to the error on s0 is
approximated by:

Ê(s0, st,T) = γt Pr(ht0|s0, π̂)ê(st),

where t is the depth of s in T, and Pr(ht0|s0, π̂) denotes
the probability of having history ht0 (the sequence of joint
actions and observations leading from s0 to st), while fol-
lowing policy π̂. The above term describes exactly the error
whenever π̂ = π∗. We are now interested in Pr(ht0|s0, π̂).

If ht0 = a0,o0,a1,o1, . . . ,at,ot, is the joint-action his-
tory for some sequence of states s0, s1, . . . st, then

Pr(ht0|s0, π̂) =

t∏
i=0

Pr(ai = π̂(si)|si) Pr(oi|si,ai).

943

Since we do not know the optimal policy, a heuristic is:

Pr(a|s) =

{
1 if U(s,a) = maxa′∈A U(s,a′)

0 otherwise.
(7)

Given a search tree T, rooted at s0, AEMS tells us that the
next state to expand is

s̃(T) = arg max
s∈F

Ê(s, s0,T).

Each time a node s̃ is expanded, it is removed from F , its
children are added to F and the bounds of s̃ and its parents
are updated. When an agent must choose an action, the action
of maximum lower bound is chosen. This guarantees that in
the limit of considering an infinitely large search tree, AEMS
performs no worse than its lower bound.

C. Bounds for the Patrolling Problem

In order to use AEMS in the patrolling problem, we need
lower (L̂(·)) and upper (Û(·)) bounds for the value of states.

1) Lower Bound: A lower bound (L̂(·)) for the value of
any state is the value of following any policy from that state.
We use the reactive algorithm of section IV-A to generate a
policy. The value is estimated by following this policy for
finitely many decision epochs and assuming a zero reward
from then to infinity. The accuracy depends on how far ahead
in time the value is evaluated. From equation (4), the error
in value incurred for stopping at time T (starting from time
0) is ε ≤ −||w||1γT / ln γ.

2) Upper Bound: An upper bound (Û(·)) is usually ob-
tained by relaxing problem constraints. We can thus upper-
bound the value of a policy by assuming that agents are
ubiquitous: they can be in more than one locations at the
same time. Whenever an agent reaches a vertex, it instan-
taneously multiplies itself and starts heading to adjacent
unvisited locations. This bound estimates the shortest time
that a swarm of agents would take to cover the entire graph
and estimates through the discount factor an upper bound on
the maximum reward obtainable.

The upper bound is derived from equation (4). We assume
that ki = 1 as soon as an agent reaches i. For each vertex,
this amounts to taking a = 0 and b = 1 when an agent
reaches it. If the current time is 0 and the vertex i is first
reached it at time Ti, an upper bound on the value is

V +(k0, T) =
∑
i

wi

[
k0
i

(bγ)Ti − 1

ln bγ
− γTi

ln γ

]
. (8)

D. Extension to Asynchronous Multiagent Setting

1) Extension to Continuous Time: In a discrete-time set-
ting, the depth of a vertex is the number of observation edges
between it and the root of the tree. This can be generalized
by associating a positive real length to all such edges. (The
discrete-time case is where all edges have unit length.)
This allows representing distributions on the durations of
the transitions: each observation edge corresponds to the
duration of the action on the action edge that immediately
precedes it in the tree. Since it is not possible to represent

continuous probability distributions using this scheme, a
suitable discretization of the durations must be used.

If s′ = τ(s, o, a), equation (6) becomes

L(s, a) = max
a∈A

R(a, s) (9)

+ γ−d(s,T)
∑
o∈O

γd(s′,T) Pr (o|s, a)L(s′).

The upper bound U(s, a) is changed similarly. These equa-
tions account for stochastic action duration when a realiza-
tion of its duration is represented by o. These expectations
do exactly the same thing as the original ones, i.e. taking the
expectation with o ∼ Pr (·|s, a). The only difference is that
d(τ(s, o, a),T)− d(s,T) 6= 1, and that it depends on o.

2) Extension to Asynchronous Multiagent Setting: To
extend to multiagent setting, it suffices to have a branch
for each joint action and for each joint observation. This
causes an exponential (in the number of agents) blowup in
the branching factor of the tree. (Section IV-E attempts to
mitigate this.) Asynchronicity is handled with state augmen-
tation: different realizations of the durations have different
augmented states. When a state must be expanded, actions
and observations are added for agents for which η = 0.

E. Coordinating Agents

AEMS can be used to perform online planning for any
subset of agents. However, it is unlikely that any agent can
compute a joint policy, because the complexity is exponential
in the number of agents. We thus coordinate agents locally.
The notion of locality is motivated by property 3: agents
interact more strongly when they may visit the same vertices
within a small time interval. A total order among agents is
defined. We say that an agent is greater than (resp. less than)
another agent if it must choose its policy before (resp. after).

The agents compute their policy according to that order.
Once an agent knows the policies of all greater agents, it
proceeds to compute its policy, and then communicates it
to the lesser agents. Whenever an agent selects its policy, it
chooses the best policy given the policy of greater agents.
This approach can be improved by using altruistic agents.
Loosely speaking, such an agent does not consider only the
value of its own policy. Instead it chooses the best sub-policy
from a small set of joint policies: i.e. the joint policies for
himself and a few lesser neighboring agents.

Algorithm 2 describes the procedure. Operator < is the
order among the agents. This order can change depending
on time or on the problem state, but all agents must use the
same order. The SOLVE(s, i, S, U) routine returns the best
policy for agent i amongst the joint policies for agents S∪{i}
starting from state s, given the policies of the agents in U .
The contrast between policies of the agents in S and those
in U is that the policies of the agents in U are considered to
be fixed, whereas they are free variables for the agents in S.
Parameter n controls how many lesser agents are considered
at once by an agent choosing its policy.

There are
(|L|
n

)
ways to chose S in the loop at line 6.

If each agent can choose among N policies, an agent only

944

has to consider
(|L|
n

)
Nn+1 rather than N |L|+1. In the case

of the patrolling problem, the value of a policy found using
algorithm 2 for some choice of n is never less than that found
using n− 1. It is so because of property 4 of section III-A.

This algorithm has the property that if the SOLVE routine
is online and anytime, algorithm 2 also has these properties.
The algorithm can be preempted at any time, but line 10
has to be executed nevertheless. To realize this, each agent
has a deadline at which it must have chosen its policy. It
is assumed that the communication mechanism is reliable
(i.e. messages sent are received without modification and no
messages are lost). Should an agent fail or a message be lost,
its presence is ignored by its lesser agents.

We name C-AEMS (coordinated AEMS) this algorithm
when it uses AEMS to implement its SOLVE sub-routine.

Algorithm 2 COORDINATIONBYPOLICIES

1: procedure COORDINATIONBYPOLICIES(i, s, n)
2: Let i be the unique identifier of the current agent.
3: Let π̂ be a default policy.
4: U ← {j | i < j}
5: L← {j | i > j}
6: loop
7: Choose S ⊆ L, such that |S| = n.
8: π̂i ← SOLVE(s, i, S, U)
9: end loop

10: Communicate π̂i and {π̂u | u ∈ U} to agents of L.
11: end procedure

V. EXPERIMENTS

We compare the reactive and C-AEMS algorithms on many
instances. There are two classes of experiments. The first
class is on user defined instances. The second class of
experiment is on random instances. Figure 1 shows the five
instances of the first class that we used. The three small in-
stances were chosen for their simplicity. The instances Map-
A and Map-B are two classical instances of the patrolling
literature [7]. All these instances were taken to have c = 1,
w = 1 and unit edges. We have used γ = 0.95 throughout.
The initial state is k = 1 for all experiments and the starting
vertex is shown as filled circles in Figure 1.

In the random instances, both the vertex weights and the
edge lengths were generated randomly. The vertex weights
were sampled from a beta distribution with parameters
α = β = 0.5. The edge lengths were taken to be the length
of the edges of a random graph. The graphs were constructed
using Delaunay triangulation over a set of vertices sampled
randomly on the unit square. The position of the vertices was
generated using an iterative rejection sampling procedure that
would resample the position of a vertex with high probability
if was too close from another vertex. This procedure yields
vertices that are more evenly spread around the unit square
than uniform sampling. Figure 2 shows some examples of
such randomly generated problem instances.

We have performed experiments with both deterministic or
stochastic travel durations. The travel times for an edge of

(a) Wheel

0

(b) Cloverleaf (c) Cuboctahedron

(d) Map-A (e) Map-B

Fig. 1. Patrolling instances. Start vertex is filled, edges have unit length
and vertices have unit weight unless otherwise noted.

(a) (b) (c)

Fig. 2. Random instances. Start vertex is filled, edge length is proportional
to travel time and vertex radius is proportional to the importance weight.

length µ were modeled as a non-negative truncated normal
distribution of mean µ and variance σ2 = νµ. The degenerate
case ν = 0 shall mean deterministic durations. For C-AEMS,
the distributions were discretized by splitting the mass in
either one or three equal parts, and representing the mean of
each with a point mass.

Results presented in Table I show the performance of the
two algorithms for two agents. The steps column shows,
for C-AEMS, the number of states that each agent was able
to expand in the tree. This is typically determined by the
time at which the algorithm is preempted to meet a planning
deadline. The run time column shows the average CPU time
used for each decision epoch. For the random instances, the
results are the average for 10 instances.

VI. DISCUSSION

The experiments suggest that the two algorithms offer
similar performance with regard to the objective that they
are optimizing. In general, C-AEMS offers slightly superior
performance. This was expected, because it is non-myopic
and can escape local minima. For a small number of state
expansions, AEMS does not perform as well as the reactive
algorithm which is its lower bound. This is because the value
is not well approximated when the search tree is small. The
relatively good performance of the reactive algorithm is not
surprising either, because it is in essence very similar to ant-
colony approaches which are known to perform well [4]. In
the case where the duration density was discretized as 3 point
masses, the longer run time is explained by the increased
branching factor. This also explains why, for the same

945

TABLE I
RESULTS FOR 2 AGENTS

b Steps Total Reward Average Run Time (s)
Wheel (50 time units)
C-AEMS 0.9 163.5 3.44 · 10−1

Reactive 162.7 7.66 · 10−5

Clover (50 time units)
C-AEMS 0.9 172.2 2.68 · 10−1

Reactive 171.9 7.69 · 10−5

Cuboctahedron (50 time units)
C-AEMS 0.9 202.3 1.39 · 10 0

Reactive 201.2 9.06 · 10−5

Map-A (200 time units)
C-AEMS 0.95 200 5859.2 2.13 · 10 1

Reactive 5788.5 1.40 · 10−4

Map-B (200 time units)
C-AEMS 0.95 200 5608.5 9.87 · 10 0

Reactive 5243.5 1.11 · 10−4

10 Random Instances (ν = 0, 100 time units)
C-AEMS

0.95

2 582.8 5.08 · 10−2

5 583.2 1.29 · 10−1

10 584.1 2.68 · 10−1

25 584.9 6.83 · 10−1

50 585.2 1.40 · 10 0

Reactive 584.0 4.70 · 10−5

10 Random Instances (ν = 0.5, one mass, 100 time units)
C-AEMS

0.95

2 570.1 5.29 · 10−2

5 571.0 1.32 · 10−1

10 571.8 2.40 · 10−1

25 572.9 6.74 · 10 0

50 573.6 1.39 · 10 0

Reactive 574.1 4.96 · 10−5

10 Random Instances (ν = 0.5, 3 masses, 100 time units)
C-AEMS

0.95

2 570.6 1.65 · 10−1

5 571.6 3.94 · 10−1

10 571.8 7.50 · 10−1

25 572.2 2.11 · 10 0

50 573.3 4.29 · 10 0

Reactive 574.1 4.96 · 10−5

number of state expansions, the algorithm does not perform
quite as well as it’s counterpart without discretization.

On the other hand, the reactive algorithm and C-AEMS
have their total run times differing by many orders of
magnitude. It is interesting that a reactive algorithm, while
much simpler can perform about as well on the selected
instances. This suggests that on this model, there is not
a great incentive to use a more computationally expensive
algorithm such as C-AEMS. An important feature of the
reactive algorithm is that since planning is quick, replanning
is quick as well. This is important in practice, because the
algorithm can be executed closer from the decision epoch.

Our experiments do not highlight very well how important
fast replanning is. Typically, there is uncertainty about the
time at which the agents will reach their destination. This
uncertainty is reduced as the next decision epoch gets closer.
If the replanning is long, such as in the case of C-AEMS, the
initial state used for planning is likely to be less accurate. The
planning algorithm can thus find a good policy for a state
that no longer the current state. This plan is bound to be
worse than expected if the state changes in the meantime.
C-AEMS does not perform well in that respect. While it

is an online anytime algorithm, the AEMS running on one
agent must be preempted early enough to give the other
agents enough time to compute their policy. Because the
greatest agent has to preempt its planning process early, it
is likely that it computes a plan for an inaccurate state. This
inaccurate plan will then impact all the other agents as their
policy depends on it. Because of this, it is expected that the
performance of C-AEMS will not scale well to many agents.

AEMS spends much time evaluating its lower bound
(evaluating the reactive policy up to a given horizon) even
though our software implementation is efficient. We tried
approximating the lower bound with Support Vector Machine
regression. This offered similar performances (albeit much
faster), the benefits will not scale to more agents. While the
coordination algorithm we propose is a step in alleviating
the complexity issues of multiagent planning, C-AEMS still
has a complexity exponential in the number of observations
(which depends on the particular discretization of duration
outcomes) and exponential in the number of agents. Hence-
forth, while C-AEMS scales better in the number of agents
than a joint AEMS would, it does not scale well to fine-
grained discretizations of the travel durations.

VII. CONCLUSION

In this paper, we compared two online algorithms to solve
a multiagent patrol problem with uncertain durations. Results
suggest that the planning algorithm (AEMS) performs better
than the reactive algorithm when its search space is small,
such as the case where durations are deterministic. As the
number of agents and duration discretizations increase, the
time needed to run AEMS (and C-AEMS) also increases. In
a setting where the time available to make each decision is
limited, this also impacts the performance in value. Future
work includes designing a multiagent approximate online
planning algorithm that scales better with the number of
agents and the number of discretizations in order to preserve
the benefit of using a non-myopic algorithm.

REFERENCES

[1] N. Agmon, V. Sadov, G. A. Kaminka, and S. Kraus, “The impact of
adversarial knowledge on adversarial planning in perimeter patrol,” in
Proc. of AAMAS, 2008, pp. 55–62.

[2] Y. Chevaleyre, F. Sempé, and G. Ramalho, “A theoretical analysis of
multi-agent patrolling strategies,” in Proc. of AAMAS’04, 2004.

[3] Y. Elmaliach, N. Agmon, and G. A. Kaminka, “Multi-robot area patrol
under frequency constraints,” in Proc. of ICRA, 2007.

[4] A. Glad, O. Simonin, O. Buffet, and F. Charpillet, “Theoretical study
of ant-based algorithms for multi-agent patrolling,” in Proc. of ECAI,
2008, pp. 626–630.

[5] J.-S. Marier, C. Besse, and B. Chaib-draa, “A Markov Model for
Multiagent Patrolling in Continuous Time,” in Proc. of ICONIP, 2009,
pp. 648–656.

[6] S. Ross and B. Chaib-draa, “AEMS: An Anytime Online Search
Algorithm for Approximate Policy Refinement in Large POMDPs,” in
Proc. of IJCAI’07, 2007, pp. 2592–2598.

[7] H. Santana, G. Ramalho, V. Corruble, and B. Ratitch, “Multi-agent
patrolling with reinforcement learning,” in Proc. of AAMAS’04, 2004.

[8] H. L. S. Younes and R. G. Simmons, “A formalism for stochastic
decision processes with asynchronous events,” in Proc. of AAAI Work.
on Learn. and Plan. in Markov Processes, 2004, pp. 107–110.

946

