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Abstract— Pathological tremor constitutes the most common
movement disorder, and is increasing its prevalence with ageing.
Treatment forms range from drugs to surgery in those patients
refractory to drugs, however, tremor is not effectively managed
in about 25% of patients. According to this, new management
techniques such as wearable robots that take advantage of
selective biomechanical loading seem an interesting alternative.
Our objective is to design robotic exoskeletons which suppress
tremor, letting the user perform a voluntary movement, by
means of intelligent control approaches that include accu-
rate tremor models. In this context, we propose a two–stage
algorithm for real–time estimation of time varying tremor
amplitude and frequency. It is based on the assumption that
tremor alters voluntary motion in an additive manner, and
happens in a higher frequency band. The two–stage algorithm
first generates an estimation of voluntary movement based on
its inherent slower dynamics, and then removes it from the
total motion, directly providing an estimate of tremor. This
tremor estimation is then fed into an adaptive filter, which
provides instantaneous tremor characteristics. Accurate and
robust tremor amplitude and frequency estimates are obtained.

I. INTRODUCTION

Tremor is commonly defined as an involuntary, approx-

imately rhythmic, and roughly sinusoidal motion around

a joint, [1]. It constitutes the most common movement

disorder, and is strongly increasing its incidence and preva-

lence with ageing. Although pathological tremor is not life-

threatening, it is cause of functional disability and social

embarrassment. In fact, more than 65 % of the population

suffering from upper limb tremor presents serious difficulties

in performing their activities of daily living (ADL), [2].

Current strategies in the treatment of tremors are based on

drugs (mainly the front–line agents primidone and propra-

nolol), and surgery (thalamotomy and deep brain stimulation)

in those patients being refractory to drugs. However, 1)

tremor is not managed effectively or sufficiently in about 25

% of patients, 2) the drugs used may be contra–indicated,

or may present potential side effects that make their use

more difficult, and 3) surgery is associated with a risk

of hemorrhage and psychiatric manifestations. Therefore,

further research and new therapeutic options are required to

manage tremor most effectively.
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In this regard, functional compensation of pathological

tremor via biomechanical loading emerges as a promising

treatment alternative. This approach relies on the fact that

most types of tremor respond to modification of the limb

impedance, [2]. In particular, an increase of damping and/or

inertia in the upper limb leads to an effective tremor re-

duction, [3]. Recently, the concept of tremor suppression by

means of a wearable exoskeleton that estimates in real–time

the amount of biomechanical load to be applied, has been

validated both clinically and functionally, [4]. However, the

use of wearable robots as functional compensation devices

often results in bulky and considerably unesthetic solu-

tions. In fact, during the evaluation of the above mentioned

exoskeleton, users reported that such device would cause

social exclusion, [4], and thus were not supportive of using

it outside their houses. According to this, the EU project

TREMOR aims at designing a textile–based wearable robot,

which applies selective biomechanical loads through Func-

tional Electrical Stimulation (FES) to compensate tremor.

Tremor suppression by means of FES has already proven

to be a successful approach. In [5], the authors designed a

controller that stimulated the tremorogenic muscles out of

phase, attenuating the tremor without significantly affecting

concomitant voluntary movement. The TREMOR project

aims at extending this approach by generating dynamic stim-

ulation patterns, which counteract time–varying tremor based

on an accurate model of its instantaneous characteristics,

without impeding the user perform his ADL.

Regarding the state of the art on tremor modelling, most

works focus on suppression of physiological tremor in

human–machine interfaces, e.g. for enhanced precision in

hand held microsurgery, [6], [7]. These approaches rely on

adaptive methods that fit a time varying Fourier series to

an adequately processed input signal. Estimation of tremor

characteristics in patients suffering from pathological tremors

is typically based on off–line analysis of recorded data.

Kinematic (i.e. recorded with accelerometers or gyroscopes)

or electromyographic information is examined in order to

estimate tremor frequency, and less commonly, amplitude.

Signal processing approaches range from classical Fourier

analysis, [1], to adaptive filtering algorithms, [6], blind

source separation, and nonlinear techniques such as Empiri-

cal Mode Decomposition, [8].

This paper presents a two–stage algorithm for estimation

of tremor parameters. It provides robust estimation of instan-

taneous tremor amplitude and frequency with inherent zero

phase. Mean amplitude estimation error is 0.141 rad/s (less

than 10 % of the peak to peak tremor value), and frequency
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estimation coincides with the one observed in spectrograms.

The paper is organized as follows. First, the experimental

protocol is briefly summarized, discussing patients, tasks,

and sensor selection. Next the two stage algorithm is pre-

sented and evaluated. Finally, we discuss the results, and

provide conclusions summarizing our work.

II. EXPERIMENTAL PROTOCOL

A representative group of patients affected by the most

common disorders that cause tremor was selected. The group

of patients was compound of four men and one woman,

with an average age of 63 years old. Two of them suf-

fered from essential tremor, and the others from idiopathic

Parkinson’s, extrapyramidal syndrome, and paraneoplastic

syndrome. Tremor severity ranged from 1 to 3 in Faher scale.

All patients agreed to participate in the experiments and gave

written informed consent. Ethical approval for this research

was given by the Ethical Committee of the Hôptial Erasme.

Wrist flexion–extension movement was recorded, because

tremors are more explicit in distal joints, [9]. We employed

miniaturized MEMS gyroscopes as they provide directly

joint angular velocity without any external reference, [8].

MEMS sensors provide a low weight and small size solution,

which is mandatory for our application, as large sensors

interfere with the user’s movement, and the addition of mass

alters the characteristics of tremors. MEMS gyroscopes are

manufactured by Technaid S.L., weigh roughly 40 g, and

provide an orientation error less than 1 ◦. Proper alignment

between the gyroscope axis and the wrist was ensured before

the recordings. Each patient was asked to perform four

tasks, three repetitions each. They were selected because they

constitute typical tasks in functional and clinical assessment

of tremors, as they stimulate the pathologies that cause

different types of tremors, they are: 1) Keeping the arms

outstretched (AO): hold both arms against gravity, 2) Finger

to nose test (FN): touch alternatively the nose and knee with

the fingertip, 3) Resting the arms on the lap (RE), and 4)

Pouring water from a regular bottle into a glass (WG).

III. INSTANTANEOUS ESTIMATION OF TREMOR

PARAMETERS

As tremor is defined as an approximately rhythmic and

roughly sinusoidal motion [1], it seems appropriate to model

it as some kind of oscillator. In fact, most of the algorithms

for real–time tremor tracking are built upon an adaptive

Fourier series, [6], [7]. However, the performance of these

techniques degrades if the input signal is affected by un-

desired sources such as voluntary movement, because the

algorithm attempts to track these low frequency components.

According to this, we propose a two–stage algorithm that first

removes concomitant voluntary motion from the input signal,

and afterwards estimates instantaneous tremor amplitude and

frequency from a clean tremor estimate. The tremor estimate

is immediately obtained after removing voluntary movement

from the input signal, Fig. 1, because from a signal pro-

cessing point of view, tremor alters volitional motion in an

additive manner. Regarding the separation of voluntary and

Voluntary Movement 

Estimation

Total Motion Voluntary Motion
Tremor tracking

Tremor Amplitude

Tremor Frequency

-

Fig. 1. Block diagram depicting the two–stage algorithm for real–time
tremor amplitude and frequency tracking.

tremorous movements, both the literature and our studies

establish that ADL are performed at lower frequencies that

tremors, [8]. For example in [10] it is shown that most of the

activities of daily living involve a frequency range between

0 and 1 Hz. The remainder of the paper presents a detailed

description of the implementation of the two stage algorithm

for online tremor modelling.

A. Voluntary Motion Tracking

As voluntary motion is considered as superimposed to

tremorous motion, and happens in a lower frequency band,

voluntary movement estimation can be assimilated to a track-

ing problem, where only tracking of the slow component of

the signal is sought. As tremor happens at higher frequencies

(3–12 Hz), it will be ignored. The most immediate approach

would be to use digital low pass filters with cut off frequency

2 Hz. However this approach introduces phase distortion in

the signal, degrading the subsequent tremor estimate. Thus

we implemented and evaluated based on adequate figures of

merit, two tracking filter.

1) Metrics for Evaluation of Voluntary Motion Estimation:

Tracking performance is typically assessed by computing

the absolute estimation error (AEE) or root mean square

error between the filter estimation, xk+1,k, and the reference

signal, yk, [11], [12]. These figures of merit, however, do not

provide an insight on the physical cause of the error: they

do not consider whether this error raises from undershoots

or overshoots, estimation delays, or a noisy estimate. In

this regard, the kinematic tracking error (KTE) provides a

better approach, as it evaluates the smoothness, response

time, and execution time of a tracking algorithm, (1), [4].

The KTE is an aggregate error composed by ϕ|b∗|, the mean

of the absolute estimation error, and σ2
b∗ , its variance. The

former measures how fast the algorithm is capable of reacting

when the velocity changes, whereas the latter quantifies the

smoothness or filtering of the variable, [4]. Selection of filter

parameters and comparison among tracking algorithms is

carried out based in these figures of merit.

κ =
√

ϕ2
|b∗| + σ2

b∗ (1)

2) g–h Filters: g–h filters are simple recursive filters that

estimate the future position and velocity of a variable based

on constant velocity dynamic model. Measurements are used

to correct these predictions, minimizing the estimation error.

Despite of assuming zero acceleration, they provide good

performance when this assumption is not fully satisfied.

As in our case the sampling period is just 1 ms, and the

second derivative of the angular velocity of the wrist during

voluntary motion has a maximum of 2.5339 · 10−4 rad/s−3,
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Fig. 2. Critically Dampened filter (a) and Kalman filter (b) estimation of voluntary movement during a finger to nose test performed by patient 04. The
upper plot shows the real voluntary motion (VM) obtained off–line and voluntary motion estimation for five different parameters. The lower plot shows
the absolute tracking error for each case.

this assumption is satisfied, [12]. The g–h filter is formulated

as follows:

xk,k = xk,k−1 + gk(yk − xk,k−1) (2)

ẋk,k = ẋk,k−1 +
hk

Ts

(yk − xk,k−1) (3)

xk+1,k = xk,k + Tsẋk,k (4)

ẋk+1,k = ẋk,k (5)

Where xk,k, ẋk,k, stand for the current position and

velocity of the variable, and are estimated based on pre-

dicted position and velocity, xk,k−1, ẋk,k−1, having current

measurement yk into account. Confidence on the measures

is weighted by the gains gk and hk.

However, there exists a wide number of theoretically

derived relationships to simplify selection of gains gk and hk.

Among them, after a preliminary evaluation, the Critically

Dampened Filter provides the best performance for our appli-

cation. It provides better tracking than other algorithms such

as the Benedict Bordner Filter, [4]. The Critical Dampened

Filter (CDF) is based on finding the least-squares fitting line

of the previous measurements, [12], giving the old data lesser

significance when formulating the total error by weighting

them by a factor θ, (6). Fig. 2(a) depicts CDF tracking of

voluntary motion during a finger to nose test. CDF estimation

for five different gains is shown. Computing the amplitude

spectra, it is observed that the larger θ is, the smaller

bandwidth the filter tracks. AEE and KTE were computed for

five values of gain θ. The KTE for all gains is very similar

(average around 0.6 rad/s), but the AEE increases with θ.

According to this, the optimal gain is θ = 0.995, because it

provides the best trade–off between low KTE and low AEE.

g = 1 − θ2 (6)

h = (1 − θ)
2

3) Kalman Filters: A Kalman Filter (KF) to estimate

voluntary motion ignoring faster tremorous movement is

developed. We define a state vector x(t) that includes a first

order model of voluntary motion, composed by the variable

to be estimated, i.e. velocity of the voluntary component of

motion, and its derivative, (7). Prediction equation, is given

by: H(k) =
[

1 0
]

.

x̂k,k−1 =

[

1 Ts

0 1

]

x̂k−1,k−1 (7)

As we aim at tracking voluntary motion, it is assumed

that tremor is just sensor noise, thus the variance of the

tremorous motion is employed to estimate the measurement

covariance R(k) = σ2
ω = 0.0643 rad2/s−2. It is also

hypothesized that process noise is related to voluntary motion

velocity changes due to tremor. A piecewise constant white

acceleration model, which assumes that voluntary motion

undergoes constant and uncorrelated acceleration changes

between samples, is considered, (8), [11]. σ2
ν is the variance

of the random velocity component. The value of σ2
ν that

defines process noise is sought within the 0.5maxẍ ≤
|σν | ≤ maxẍ interval as recommended in [11]. Calculation

of the maximum acceleration yields maxẍ = 0.1042 rad/s−3.

An example of application of the KF to voluntary motion

estimation is shown in Fig. 2(b). Voluntary motion estimation

yielded by the KF is less smooth than g–h filter estimation.

This happens because the KF adapts in real–time its gain in

order to minimize the a posteriori estimation error, whereas

the CDF counts with a constant gain. On the contrary, the KF

reacts faster to changes in voluntary motion. Its performance

for different process noise covariances differs only in the
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filter transient. As expected, the KF provides almost exact

results for the different measurement covariances, because

it continuously adapts its gain to minimize the a posteriori

error. Thus, small deviations among parameters are compen-

sated by the filter itself. The only noticeable difference is the

settling time at when the estimation begins. Values σ2
ν=0.08

rad2s−6 and σ2
ω=0.0642 rad2s−2 are selected as they provide

almost the minimum KTE with low AEE.

Q = σ2
ν

[

T 4
s

4

T 3
s

2
T 3

s

2
T 2

s

]

(8)

4) Filter selection and conclusions: Comparing the per-

formance of the CDF and the KF for the above selected

parameter(s), we observe that KTE values are very close.

However, differences among AEE’s are more significant.

The lower figure for the KF is related to the fact that it

yields a noisier estimation of voluntary motion as observed

in Fig. 2(b). Moreover, computation of the power spectra

demonstrates that KF estimation has a considerably large

peak at tremor power, whereas this phenomenon is not

observed for the CDF. Therefore, the CDF emerges as the

optimal algorithm for voluntary movement estimation.

B. Tremor Tracking

As adaptive algorithms for real–time tremor modelling rely

on a time varying Fourier representation of the process, input

signals must not be corrupted by volitional movement, which

will cause a bias on the adaptation. Moreover, algorithms

built upon the least–mean–square (LMS) recursion [13], have

inherent zero phase, which make them suitable for estimation

of tremor parameters for our FES based wearable robot. In

this section, we implement and evaluate two algorithms for

tremor modelling, tune them, and compare their performance

based on adequate figures of merit.

1) Metrics for Evaluation of Tremor Modelling: Accord-

ing to the goal of this paper, the absolute tremor estimation

error (AEE) does not provide the most appropriate figure of

merit, as it does not account for how the divergence affects

the final result. Punctual overshoots, or a small phase differ-

ence between the real and estimated tremor can yield very

large AEE’s, shadowing a good overall performance, and

making a given configuration appear as worse than a filter

that provides a worse estimate, [14]. Thus, we have to first

align the estimated tremor signal with the reference tremor,

and afterwards, calculate the delay corrected estimation error.

This figure of merit is called the Filtered Mean Square Error

with Delay Correction, (FMSEd), [14], and is given by:

FMSEd =

√

(

sk − t
k−d̂k

)2

(9)

Where sk represents the input tremor signal to be esti-

mated, and t
k−d̂k

stands for the delay compensated tremor

estimation. Instantaneous delay d̂k is calculated by means of

an adaptive algorithm that minimizes the mean square error

function based on a LMS–like recursion.

2) Weighted Frequency Fourier Linear Combiner: The

Weighted Frequency Fourier Combiner (WFLC) is the most

spread algorithm for tremor modelling. The WFLC consists

in an extension of the classical Fourier Linear Combiner

(FLC) [13] to track tremor frequency based on the LMS

method. As a consequence, the WFLC is capable of adapting

in real-time its amplitude, frequency and phase, [6].

xrk
=







sin
(

r
∑k

t=1
ω0t

)

, 1 ≤ r ≤ M

cos
(

r
∑k

t=1
ω0t

)

, M + 1 ≤ r ≤ 2M
(10)

εk = sk − WT
k Xk − µb (11)

ω0k+1
= ω0k

+ 2µ0εk

M
∑

r=1

r (wrk
xM+rk

− wM+rk
xrk

)

(12)

Wk+1 = Wk + 2µ1εkXk (13)

The WFLC is formulated in Equations (10) to (13).

Equation (10) represents the frequency varying sinusoidal

terms of the Fourier series, whereas (11) defines the error

that the LMS minimizes. Equation (12) depicts the frequency

adaptation, and (13) the amplitude weights adaptation. The

WFLC has four parameters to tune: the amplitude and

frequency gains, µ0 and µ1, the number of harmonics, M

and a bias weight µb that can be included to minimize

the error of lower frequency components, [6]. Normally the

number of harmonics is set to 1, i.e. M = 1, [4], [6].

The other parameters were adjusted in an iterative manner:

first, using as input signal a series of synthetic signals

produced to simulate tremor, and afterwards fine–tuned with

the recorded signals. Fig. 3(a) shows the performance of the

WFLC with a tremor recording of patient 01. The findings

agree with those reported in the literature. First, tremor

frequency varies between tasks or even repetitions of the

same task, but remains quite constant during one trial, overall

after the oscillation reaches the steady state. Also tremor

amplitude is more prone to change as WFLC tremor tracking

demonstrates. Evaluation of the WFLC yields the smallest

value of FMSEd when parameters are set to: µ0 = 5 · 10−4,

µ1 = 2 · 10−2 and µb = 1 · 10−2, pointing out that

the inclusion of a bias weight µb to compensate for low

frequency components of error enhances the performance of

the filter. The low AEE (average around 0.6 rad/s) proves

the good performance of the WFLC for amplitude tracking.

Fig. 4 shows tremor frequency estimation. Robust estimation

is observed, as WFLC output agrees with the spectrograms.

3) Bandlimited Multiple Frequency Fourier Linear Com-

biner: The Band Limited Multiple Fourier Linear Combiner

(BMFLC) is a more recent extension of the FLC. It emerged

to compensate for the limitations of the WFLC to track

physiological tremor when two or more frequencies are

present or when frequency variations are very fast, because

both phenomena make the WFLC performance degrade, [7].

The BMFLC consists of a bank of FLCs that can track the

input signal based on multiple frequency components, [7]. A

frequency interval is thus defined with the upper and lower
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(b) BMFLC tremor estimation

Fig. 3. WFLC (a) and BMFLC (b) estimation of tremor recorded during a finger to nose test performed by patient 01. The upper plot shows the input
signal and the filter estimation, the estimation error is plotted below. Lower panels present frequency adaptation.

(a) AO, WFLC estimation. (b) WG, WFLC estimation. (c) AO, BMFLC estimation. (d) WG, BMFLC estimation.

Fig. 4. WFLC (a, b) and BMFLC (c, d) estimation of tremor frequency (solid line) compared with power spectra (colored surface) for two tasks performed
by patient 01: keeping the arms outstretched (AO), and pouring water from a bottle into a glass (WG).

frequency of the FLCs bank, ω0 and ωf . The number of

FLCs to be placed in between is defined by parameter G.

xrk
=

{

sin
(

ω0 +
(

ωf − ω0

)

r−1

G+1
k
)

, 1 ≤ r ≤ M

cos
(

ω0 + (ωf − ω0)
r−1

G+1
k
)

, M + 1 ≤ r ≤ 2M

(14)

εk = sk − WT
k Xk − µb (15)

Wk+1 = Wk + 2µεkXk (16)

The BMFLC is formulated in Equations (14) to (16). The

sinusoidal terms of BMFLC tremor model are included in

(14), whereas Equation (16) represents the amplitude weights

update based on the LMS recursion of error, (15). Again,

the BMFLC has a series of parameters to be adjusted. First,

the lower and upper frequencies of the FLCs bank, ω0 and

ωf , and the number of FLCs to be placed in between,

G, need to be selected. Afterwards, the harmonics of each

FLC, M , and its adaptive amplitude gain, µ, are defined. A

bias weight µb to minimize the low frequency drift of the

LMS recursion is also included. Although the BMFLC does

not aim at frequency tracking, an equation to calculate the

current frequency of the signal based on the contribution of

each FLC to the instantaneous signal estimate can be derived.

For a first order Fourier series (M=1) it becomes:

ωk =
G+2
∑

r=0

(

a2
r + b2

r

)

ωr
∑G+2

r=0
(a2

r + b2
r)

(17)

As for WFLC, the BMFLC was first tested with synthetic

tremor signals in order to tune its parameters and test its

performance. Fig. 3(b) shows the results obtained with a

tremor recording from patient 01. Tremor tracking perfor-

mance is comparable to that obtained with the WFLC, Fig.

3(a), although frequency estimation provides poorer results

as it changes more abruptly than in reality. Fig. 4 shows the

performance of the BMFLC as frequency estimator, proving

that BMFLC based frequency estimation also provides good

qualitative results, although the estimated frequency is less

smooth than for the WFLC. This is due to the fact that tremor

frequency is calculated as the instantaneous contribution of

each FLC to tremor amplitude estimation. The performance

of the BMFLC as mesured by the FMSEd improves as

the amplitude gain increases. Moreover, inclusion of a bias

weight µb does not modify the performance of the algorithm.

Thus, the best performance of the BMFLC depends only on

the amplitude gain µ, and is optimized when µ = 4 · 10−2.

Higher amplitude gains made the filter become unstable

during tremor transients.
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4) Algorithm selection and conclusions: The BMFLC

provides a more accurate tremor model than the WFLC, as

the FMSEd is smaller for all tasks, being always around

0.02 rad/s. Moreover, looking at the transient response, the

BMFLC also adaptats faster, as its AEE is always smaller,

showing a more dramatic improvement in the “more dy-

namic” tasks, i.e. the finger to nose and glass of water tests.

Looking at frequency estimation, Fig. 4, demonstrates that

both algorithms provide robust tremor frequency estimation,

although WFLC yields a smoother estimate. However, we

could implement a low pass filter to overcome this drawback.

According to this, the BMFLC is chosen as the optimal

tremor modelling algorithm in the context of this work.

IV. DISCUSSION

The objective of TREMOR project is to develop a smart

wearable robot that suppresses tremor letting the user per-

form his (hers) ADLs. Thus, generating accurate tremor mod-

els is mandatory to achieve selective tremor compensation.

As pathological tremors are time varying oscillations, they

can be fully parameterized by their instantaneous amplitude

and frequency. This paper focuses on the design of a two-

stage tremor modelling algorithm to achieve accurate and

robust tremor characterization. To do so, adequate figures

of merit are employed, first, for tuning of filter parameters,

and afterwards, for algorithm selection. Algorithm evaluation

yields that the Critically Dampened Filter (CDF) constitutes

the optimal volitional movement estimator, as it provides

short delay and smooth response. This has a series of

implications in the nature of the estimated signal. First,

analysis of the recorded data agrees with the literature: there

exists a clear separation in frequency between tremorous and

volitional movements, and accelerations when performing

ADLs are almost constant, which is consistent with previous

findings that demonstrate that fluctuations on acceleration

worsen accuracy of upper limb movements, overall in the

elder, [15]. Regarding the implementation of tremor mod-

elling algorithms, the fact that the BMFLC outperforms

the WFLC implies that (at least) for the recorded patients,

tremor characteristics change more rapidly than in the case

of physiological tremor. As a matter of fact, observation

of WFLC and BMFLC results yields that tremor frequency

during the same task keeps relatively constant, although it

varies among patients and pathologies, [9], but amplitude

changes are considerably more frequent and unpredictable.

As the BMFLC counts with multiple harmonics at close

frequencies it can adapt quickly to these variations, whereas

the WFLC will try to adapt its only harmonic to this change,

which seems likely to take more time. Regarding the overall

performance of the algorithm, we observe that it worsens

for more “dynamic tasks”, i.e. those that imply performing

more abrupt voluntary movements, such as the finger to

nose test. This is due to the fact that voluntary movement

estimation degrades due to the presence of more transitory

periods, but also does tremor estimation, as tremor seems

more prone to change dramatically during kinetic tasks. In

fact, assessment of how different tasks impact the same types

of tremor remains as a topic of future research.

V. CONCLUSIONS

This work presents a two–stage algorithm for real–time

estimation of instantaneous tremor parameters in the context

of robotic suppression of tremors. The core of the method is

to isolate tremorous movement from concomitant volitional

motion, in order to provide an adaptive algorithm with an

uncorrupted estimation of tremor. In a second stage, tremor

amplitude and frequency are estimated from this isolated

tremor signal. Voluntary movement estimation is carried out

with a Critically Dampened Filter, a special type of g–h

filter, which provides good transient response and smooth

estimation. Next, the Bandlimited Multiple Fourier Linear

Combiner tracks tremor characteristics. As the input signal

is not contaminated with undesired components (voluntary

motion in this case), the algorithm yields accurate and robust

tremor amplitude and frequency estimation. Average tremor

estimation error is less than 0.141 rad/s (less than 10 % of

the peak to peak value), and frequency estimation coincides

with the results provided by spectrograms.
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