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Abstract— Miniaturization of Programmable Matter is a ma-
jor challenge. Much of the difficulty stems from size and power
requirements of internal actuators. This paper demonstrates
that external energy can be used to both move modules and
actuate their bonding mechanism. It presents a lattice style
Programmable Matter system whose neighbor to neighbor
lattice distance is 14mm. Previous work has shown a chain of
edge connected right angle tetrahedrons can fold to arbitrary
shapes. To form useful shapes such as tools, the chain should be
folded to meet the functional requirements of the task such as
mechanical strength. This paper also introduces the analysis
of the strength of Programmable Matter systems. Module
connections are defined by 6DOF stiffness matrices. The paper
analyzes the strength of a heterogeneous system with some rigid
and some soft connections.

I. INTRODUCTION

The term Programmable Matter has been used in a va-
riety of ways. In [9], Goldstein et al. describe small robot
ensembles that can rearrange themselves to form different 3D
shapes. DARPA has a program called Programmable Matter
[34] in which systems are based on mesoscale particles,
that can reversibly assemble into complex 3D objects upon
external command. In addition, these 3D objects exhibit all
the functionality of their conventional counterparts.

These systems resemble lattice based modular self-
reconfigurable robots in that the robots rearrange their mod-
ules to form different shapes. The modules combine in
almost any fashion so long as the modules lie on a lattice
and remain one connected component. There are several
methods used to reconfigure a module to an adjacent lattice
site including module deformation, cooperation, climbing,
and unconventional methods. [4] explores the kinematics
of reconfiguration and presents a hexagonal metamorphic
module which deforms to reconfigure along the surface
of the configuration. Deforming modules have also been
demonstrated in 2D [20] and in 3D[23], [25]. The ATRON
[15] and Fracta 3D [17] modules bond to neighbors with
mechanical latches and cooperate to reconfigure by moving
another module to a new location. In stochastic systems,
2D modules move randomly on an air table and bond
magnetically [1], [28] and in [27], cube modules float in a
fluid and bond using fluid flow. The Miche [8] system forms
shapes by disassembly: modules not in the desired shape
release magnetic latches and fall off the structure.

One differentiator between the system presented in this
paper and lattice based reconfigurable robots is that the
modules are permanently attached together in a chain that
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Fig. 1: A wrench voxelated by over 400 hexahedrons. Six
right angle tetrahedrons make up each hexahedron.

can be folded into shapes rather than individual blocks.
Intuitively, permanent joints can be made stronger than
temporary bonds. Structures assembled from these chain
systems can exploit these stronger bonds by folding to a
configuration that remains most rigid under a given load.

The main question is then whether adding a chain con-
straint to lattice systems limits the types of shapes that can
be made. In his thesis [11], Griffith shows that in fact, any
arbitrary 3D shape can be approximated with a chain of right
angle tetrahedrons in a space-filling sense.

In the work of Griffith et al.[12], the information for
folding a desired shape is encoded in the order the two
types of right angle tetrahedrons are placed in the chain. This
ordering of types in a given chain hard codes the form of the
resulting unique self-assembled shape. We extend this work
by having the ability to form arbitrary shapes and further
presenting a strength analysis of the conglomerated shape.

A. Size

In Programmable Matter systems, reducing module size
is a goal as this sets the resolution of the system, much
like a computer display is limited in resolution by the pixel
size. Currently, the smallest modules of a reprogrammable
self-reconfiguring system is 40×40×50 mm module called
miniature [33]. The Claytronics project has also shown
planar modules that are 44mm in diameter [9].

On the other hand, arbitrary 3D structures have been
attempted at the sub-millimeter scale. Results in the field of
self-assembly have demonstrated crystalline structures that
are prone to defects and are limited in complexity [32], [13].
[7] presents several methods for forming cellular automaton
patterns by encoding assembly information in DNA tiles.
These are one-time mechanisms that can self-assemble into
one shape that is programmed at manufacture time, whereas
Programmable Matter is aimed at developing systems that
can be reprogrammed and reconfigured to form arbitrary
shapes.

One effort to reduce the size of modular reconfigurable
robots has been to simplify the modules. One way to do this
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is to remove the main actuator and use external energy to
cause the modules to move. This can be done with shaker
tables, or with modules suspended in a moving fluid [1], [28],
[27]. [30], [31] demonstrates that using deterministic external
actuation for moving a module facilitates miniaturization.

In scale, the proposed work sits between the onetime pro-
grammable self-assembly work and the lattice-based mod-
ular self-reconfigurable robot work. The actuation system
requires and external energy source much like stochastic self-
assembly systems. However, the external actuation method
purposely attempts to minimize entropy by executing deter-
ministic motions that assemble the module chain in a known
time. In addition, modules connect with reversible latches
allowing the system to reconfigure in the sense of a modular
robot.

In [29], we showed that right angle tetrahedrons can be
combined with external actuation to form arbitrary shapes.
The work in this paper utilizes this external actuation princi-
ple to reduce modules to less than half of the characteristic
length of the system reported in [29].

B. Strength

In Programmable Matter work, Goldstein and Mowry
present an application called telepario [10] in which many
(maybe millions) of millimeter or smaller modules form 3D
shapes for visualization. Much like television or telephone,
telepario transmits shape that moves in real time. On the
other hand, Programmable Matter as proposed by Zakin
at DARPA focuses on functionality, typically mechanical
functionality for example a wrench, rather than real-time
motion.

Mechanical strength in reconfiguring systems is a difficult
issue. Classically, strength of materials is referred to in terms
of yield strength, or Young’s modulus or limit strengths
depending on the application. In Programmable Matter which
is made up of modules that can be rearranged, Young’s
modulus doesn’t make sense since that property assumes
a homogeneous material, not a system made up of units.
A better determination of strength can be seen from a
functional task. For example, what will be the deflection of
the wrench handle of Figure 1 in a typical load case? The
model presented here is a step in the direction of simulating
such behavior.

For most systems assembled from reconfigurable modules,
the compressive strength can be quite large as the material
properties of the modules are the limiting factor. Imagine a
LEGOTMstructure which when compressed is limited by the
geometry and material properties. However, tensile strength
is determined by the bonds which hold the system together.
Since Programmable Matter systems are made to actively
reconfigure, these bonds are typically much weaker than the
compressive strength.

Combining the strength with the desire to make modules
as small as possible makes this problem very difficult.
Utilizing Griffith’s right angle tetrahedron chain idea, we can
make chain hinges that are stronger than the reconfigurable
bonds. Since the system is now composed of heterogeneous
strength characteristics, we need to find the path the chain
makes through the lattice structure that maximizes the needed
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Fig. 2: Chain of two RATChET14mm modules (first (a) and
second (b) generation.) Each module is shown inside a full
radiused right angle tetrahedron.

strength in the needed directions. One step towards this goal
is to determine the strength of a given configuration.

II. RATCHET14MM DESIGN

The major goal of the design process is miniaturization.
When assembled into a shape, the centroids of the mod-
ules presented here are 14mm apart. This section presents
the design of two generations of Right Angle Tetrahedron
Chain Externally-actuation Testbed (RATChET14mm) mod-
ules. The design focuses on a critical aspect of all modular
robots: the latching mechanism that bonds modules together.
The latch must be reversible so that a single chain can be
folded to a desired shape and then reconfigured to another
shape. The key principle is the use of external energy to both
move and actuate modules.

Figure 2 shows two RATChET14mm modules of first
(Figure 2a) and second (Figure 2b) generation systems.
Modules are assembled from 1.5mm thick laser cut acrylic
and joined by two axis hinges.

A. Latch

Modules bond to each other using a mechanical latch.
Each module has two active faces with latches and two
passive faces with notches to receive the latch. As the top
module in Figure 2 rotates beyond 90◦ about the hinge axis
the latch gets pushed up and engages with the passive face
of module below. The curvature of the latch brace is used to
push up a latch when a module rotates into a tightly packed
portion of the configuration. The first generation module
uses a compliant passive latch holder to maintain a latch
connection after it has engaged.

A module unlatches using a Shape Memory Alloy (SMA)
coil spring (Toki Corp.) The 0.15mm wire diameter SMA
coil spring provides approximately 0.3N which is sufficient
to overcome friction and the force of the return spring [26].
The SMA coil spring requires a return spring to stretch it
back to its relaxed length. A first generation module (Figures
2a and 3a, top) utilizes a 250 µm thick compliant return
spring. While providing sufficient return force, they are
susceptible to breaking when handled and deforming when
the SMA springs are heated. A second generation module
(Figures 2b and 3a, bottom) utilizes stainless steel torsion
springs (Century Spring Corp.)
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Fig. 3: (a) First (top) and second (bottom) generation
RATChET14mm modules. (b) External actuation manipula-
tor with six modules.

B. External Actuator

The external actuation system consists of two parts: (1) a
2 DOF manipulator to reposition modules and (2) a heating
source (such as a heat gun or oven) used to actuate the SMA
coil springs.

As in [29], the external actuator uses gravity to latch
modules during the folding process. The 2 DOF manipulator
(Figure 3b) comprises two CKBot [19], [21] motor modules.
One motor module drives a pulley (shown in white in Figure
3b). A truss extends along the pulley axis to the second motor
module with axis parallel to the floor and normal to the pulley
axis. The root RATChET14mm module is mounted to the
second motor module with an acrylic bracket.

The SMA coil spring contracts when heated to 70◦ to
90◦C. To disassemble a configuration, we manually wave
a heat gun across the configuration to actuate the SMAs
and retract the latches. In the case of acrylic modules,
disassembling with an oven is not robust as temperatures
approach the glass temperature of the material. Future work
will explore more localized (e.g. laser) and global (e.g. oven)
disassembly methods with next generation modules.

III. STRENGTH ANALYSIS

In general, the goal of Programmable Matter is to form
arbitrary shapes from a single collection of modules. Many
applications require that the configuration is rigid under
certain loading conditions. In order to find the optimal folded
arrangement that minimizes displacement, it is necessary to
model the configuration’s behavior under load. This section
presents the analysis of a given folded configuration of right
angle tetrahedrons subjected to static loads.

A major assumption of the model is that the modules
in a Programmable Matter configuration are much stiffer
than the connections between modules. We present a lumped
parameter model that considers the stiffness of inter-module
connections. This seems reasonable as the connections be-
tween modules must be able to automatically attach and
detach. It would be difficult to design a system in which
these bonds would be stronger than any other part.

A. Physical Model

There are several requirements for the physical model. It
must have enough degrees of freedom to accurately study the
effects of different methods of joining modules. It must be
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Fig. 4: Model of two tetrahedron modules with centroid
frames A and B and respective center of stiffness frame a
and b. Modules connect with three elastic beams: two hinges
(frames h1 and h2) and a latch catch l. Dashed lines depict
projections of centroid frame position. Hatch denotes fixed
end of beam. Right handed basis annotated for frames a and
b; others not shown for clarity.

computationally efficient so that it can be used in many iter-
ations of an optimization routine. The finite element method
allows for arbitrary modeling of joined modules handling
collision detection between bodies. However, the time cost
for each solution is too great. A lower fidelity method models
the joints as simple zero-length linear springs, but cannot
model arbitrary stiffness matrices [14].

A 6 DOF spring has sufficient degrees of freedom to model
arbitrary connection methods. [6], [35] furthered the methods
of [3], [2] to model elastically coupled rigid bodies. The
model presented in this section is based on the quaternion-
based potential function in [35] and uses notation from [5].

Two elastically coupled modules with centroid frames A
and B each have centers of stiffness located at frames a and
b respectively. Under no load, frames a and b are coincident.
The center of stiffness is analogous to the center of mass. A
small translational displacement of b relative to a results in
a pure force along an axis through the center of stiffness. A
relative rotation between b and a results in a pure moment
about and axis through the center of stiffness. [16] shows
that there may not exist a point that perfectly decouples
translational and rotational stiffness but the center of stiffness
maximally decouples them.

A 6 × 6 stiffness matrix K maps the change in configu-
ration b relative a to equal and opposite wrenches acting on
both bodies. For a relative twist displacement ∆T a

b of frame
b relative to a with respect to a, the wrench wa

b module B
applies to the elastic coupling is given by:

wa
b = K∆T a

b →

[

fa
b

τa
b

]

=

[

Kt Kc

Kt
c Ko

] [

∆pa
b

∆θa
b

]

(1)

where Kt is the translational stiffness matrix, Ko is the
rotational stiffness matrix and Kc is the coupling stiffness
matrix.

For complex connection methods, finite element analysis
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can determine the stiffness matrix [36]. The connections
between RATChET14mm are approximated as beams as
shown in Figure 4. The latch connection beam (with frame l)
represents the catch the paw latches to. We model the latch
catch because it is significantly more compliant than the paw.
The distance between hinge beams (with frames h1 and h2)
is exaggerated for clarity. The stiffness matrix at the free end
of a fixed free beam is given by:

K =

















AE
L

0 0 0 0 0
0 12EI3

L3 0 0 0 −
6EI3

L2

0 0 12EI2

L3 0 6EI2

L2 0
0 0 0 GJ

L
0 0

0 0 6EI2

L2 0 4EI2

L
0

0 −
6EI3

L2 0 0 0 4EI3

L

















(2)
where J = I2 + I3 and dimensions and coordinate systems
for hinge and latch beams are as defined in Figure 4.

A pair of modules connect to each other in one of two
ways. If the modules are chain neighbors, they connect with
a pair of hinges and a latch. Otherwise, they simply connect
with a latch.

Nominally, the latch stiffness matrix Kl and hinge stiff-
ness matrices Kh1 and Kh2 take the form of Equation 2.
However, in the case of the hinge, an angular displacement
about the hinge axis e2 of e.g. h1 causes no moment and
thus Kh1

55
is zero. Due to slip, when the paw of the latch

undergoes a linear displacement along e2 of l or an angular
displacement about e1 or e3 it does not cause the latch catch
to bend. Hence, latch stiffness terms Kl

22
, Kl

44
, Kl

66
, Kl

25

and Kl
52

are zero.
The effective stiffness between hinged modules is given

by the sum of the stiffnesses of each beam. In order to sum
the stiffnesses, they must be transformed to the center of
stiffness frame using [6]:

K = Adt
Hl

a

KlAdHl
a

+ Adt
Hh1

a

Kh1AdHh1
a

+

Adt
Hh2

a

Kh2AdHh2
a

(3)

where frame a is the location of the center of stiffness and
h1 and h2 denote each hinge.

The center of stiffness can be computed similar to the
center of mass. The center of stiffness for modules which
are not hinged together is simply the centroid of the latch
beam. In the case of connections including hinges, solving
Equation 3 such that Kc is symmetric [36] determines the
center of stiffness position.

Under the assumption that the bodies are coupled perfectly
elastically, [35] defines a potential function based on the rel-
ative configuration of the two bodies. The relative orientation
of frame β with respect to α is expressed by a quaternion
qα
β = [ηα

β (eα
β)t]t. [5] proves several useful properties of their

potential function. It is sufficiently diverse and therefore can
model an arbitrary local stiffness. The potential functions
are frame indifferent (i.e. equal and opposite wrenches are
applied to the elastically coupled bodies.) They are also port
indifferent meaning the choice of body A and B does not
matter. The method is valid for small displacements between
the frames.

Kt11
Kt22

Kt33
Ko11

Ko22
Ko33

w/ hinge 1.6E6 8.3E4 4.6E5 0.14 0.27 3.9
w/o hinge 6.2E3 0 4.2E5 0 0.14 0

TABLE I: Diagonal stiffness terms for modules with and
without a hinge connection. Kt has units of N/m; Ko has
units of Nm.

Using the principal of virtual work, [35] computes the
wrench body B applies to the elastic body with respect to
the global frame as:

fb =
1

2
RaKtp

a
b −

1

2
RbKtp

b
a + ηb

a(Ra + Rb)Kce
a
b (4a)

τb =
1

2
p̃bRaKtp

a
b −

1

2
p̃aRbKtp

b
a + 2Rb(E

b
a)tKoe

a
b

ηb
a(p̃bRa + p̃aRb)Kce

a
b+

1

2
Rb(η

b
a(Eb

a)t
− ea

b (ea
b )t)Kc(I + Rb

a)pa
b

(4b)

where Eb
a = ηb

aI − ẽb
a and p̃ is the cross product matrix.

Though the equation is somewhat complex, it requires only
algebraic operations.

IV. SIMULATION

The simulation written in MATLAB has two main func-
tions: (1) shape2hamiltonian that computes the tetra-
hedron chain path and (2) tet sim that finds the equilib-
rium position of a statically loaded configuration of tetrahe-
dron modules.
shape2hamiltonian voxelates a shape defined by

an STL file (a common 3D file format) superimposed on
a dodecahedron lattice. Each dodecahedron comprises four
hexahedrons. It finds all hexahedrons within the shape and
creates a graph of the hexahedrons. Figure 1 shows an exam-
ple of a wrench shape voxelated by over 400 hexahedrons;
each hexahedron comprises six right angle tetrahedrons. The
path the tetrahedron chain makes through the voxelated shape
is a Hamiltonian path for the tetrahedron graph. [11], [12]
shows the tetrahedron Hamiltonian can be found by taking
the path around the “perimeter” of a spanning tree of the
hexahedron graph.
tet sim determines the stiffness matrix between each

pair of adjacent modules based on whether or not they
are chain neighbors. It uses MATLAB’s nonlinear equation
solver fsolve to determine the equilibrium position and
orientation of each tetrahedron given the load and fixed
boundary conditions using Equation 4.

The model uses the material properties of acrylic (E =
2.4GPa, G = 0.89GPa.) The latch and hinge beam dimen-
sions are respectively L = 8.0mm, W = 1.5mm, H =
1.0mm and L = 8.0mm, W = 1.5mm, and H = 2mm.

Table I reports the diagonal stiffness terms in the center
of stiffness frame for modules connection with and without
a hinge. Comparing the terms indicates hinge connected
modules have significantly higher stiffness compared to
modules that are only latched together. Note that the hinge
provides resistance to linear displacements along e2 of frame
a and angular displacements about e1 and e3. Resistance to
angular displacements is further increased due to the center
of stiffness location between the latch and hinges as shown
as frame a in Figure 4.
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(a) (b)

Fig. 5: Comparison of chain path under given load condi-
tions. The white triangle indicates the fixed module. Hamil-
tonian paths are shown by the dashed lines.
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Fig. 6: Predicted displacement behavior of rigid bar (a) and
arc (b).The white triangle indicates the fixed module and
dark arrow indicates 0.4 N applied load.

The strength of a folded configuration depends on the
path the chain takes through the shape. Figure 5 shows the
displacement for two Hamiltonian cases of a six module
configuration under a given loading. In Figure 5a, the fixed
module (marked with a white triangle) is a chain neighbor
to the module where the load is applied. Because it shares
a relatively stiff connection with the fixed neighbor, the
configuration displaces an order of magnitude less than the
same loading case with a different Hamiltonian (Figure 5b.)

To compare the model with the physical system we loaded
two configurations of six modules as shown in Figure 6.
The simulation predicts loaded module in the rigid bar case
(Figure 6a) and the arc case (Figure 6b) displaces 0.8mm and
1.8mm respectively due to a 0.4 N load. This corresponds to
an apparent stiffness at the load point of 500 N/m and 222
N/m respectively in the load direction.

The stiffness model so far assumes modules are in con-
tact and apply forces that elastically deform configurations;
however, nonzero clearance between components is needed
to allow modules to move during assembly. Future work
will incorporate such non-linearities into the model. To
experimentally determine the stiffness of the physical config-
urations corresponding to Figures 6a and 6b, we first apply
a 0.5 N preload. We then apply an additional 0.4 N load and
observe the displacement. The rigid bar displaces 0.9 mm
corresponding to a stiffness of 444 N/m; the arc displaces
1.9 mm corresponding to a stiffness of 211 N/m.

Comparing experiment and simulation results indicates
the model accurately predicts the rigid bar configuration is
approximately twice as stiff as the arc. In addition, absolute
errors for the line and arc cases are 11% and 5% respectively
validating the analytical approximations.

V. DEMONSTRATION

To demonstrate the capabilities of the RATChET14mm
system, a module chain is folded into a rigid bar configura-
tion (Figure 7), heated to reconfigure back to the chain, and
folded into an arc configuration.

The external actuator motion planning is similar to [29]
however the current workspace is less constrained. Given
a reconfiguration motion plan, an active research topic [18],
[20], [22], [24], the goal is to find a external actuator motion
path to fold the chain to the desired shape. During the folding
process, one module moves at time. To fold module i+1 to
module i above it, the manipulator positions the root module
such that the hinge axis between i and i + 1 is parallel to
one of the motor modules axes which then rotates latching
i to i + 1.

A 24g weight attached to the end of the chain (Figure 7a)
provides sufficient force to engage a latch. The weight and
relative slow motor speed mitigates oscillations that could
cause unintended latching. Assembly of a six module chain
takes approximately 100 seconds.

Figure 7 depicts the assembly sequence of first genera-
tion modules for a rigid bar configuration. The first motor
module (driving pulley) rotates the root RATChET14mm
module approximately 120◦ to engage the root module’s
latch with the module below (Figure 7b) and then back
to 90◦. This process continues (Figures 7c through 7g)
until the line configuration is completely folded (Figure 7h.)
After assembly, a heat gun is manually waved across the
configuration activating the SMA coil springs and retracting
the latches. The disassembling process takes approximately
40 seconds. The same chain is subsequently folded to an arc
configuration.

The supplemental video shows rigid bar assembly, external
heat to disassemble and arc assembly with second generation
modules. To test reliability, we successfully ran 20 trials
between assembing into rigid bar and arc shapes.

VI. CONCLUSION

This paper addresses two important design issues for de-
veloping functional Programmable Matter: size and strength.

The external actuation method presented demonstrates that
module size can be significantly reduced using external
energy. The RATChET14mm system improves on the work
of [29]: the module size is reduced by a factor of two and
the latching mechanism is reversible. The design focuses on
a fundamental aspect of modular self-reconfigurable robots
and Programmable Matter: a reversible bonding mechanism.
Repeated trials demonstrate the mechanism’s reliability in
latching and unlatching.

Programmable Matter structures to be used in the physical
world must meet some mechanical functional requirements.
Comparing the strength of configurations requires a simu-
lator that accurately models how modules are mechanically
connected. This paper presents a simulator that models an
inter-module connection with a 6 DOF generalized spring.
The frameworks is sufficiently expressive to model arbitrary
connection methods.

This paper shows that folded chain structures exhibit
heterogeneous stiffness properties. Such properties can be
exploited to form structures the best suit the task.
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Fig. 7: Demonstration reconfiguration sequence for chain of seven modules forming a rigid bar.

Future work will use the simulator to find the optimum
folded structure given functional requirements. Future work
also includes finding new methods for externally actuating
module bonding mechanisms and further module miniatur-
ization.
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