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Abstract— In this paper we describe an application of ma-
chine learning to distinguish between seven different mate-
rials, based on their surface texture. Applications of such
a system includes quality assurance and estimating surface
friction during manipulation tasks. A naive Bayes classifier is
used to distinguish textures sensed by a bio-inspired artificial
finger. The finger has randomly distributed strain gauges and
Polyvinylidene Fluoride (PVDF) films embedded in silicone.
Different textures induce different intensity of vibrations in
the silicone. Textures can be distinguished by the presence of
different frequencies in the signal. The data from the finger
is pre-processed and the Fourier coefficients of the sensor
outputs are used to learn a classifier for different textures.
The performance of the classifier is evaluated against a naive
time domain based learner. Preliminary results show that our
classifier performs better.

I. INTRODUCTION

There is increasing interest in humanoid robots that are
intended to work alongside humans in unstructured, “human-
centric” environments. To be able to operate in such en-
vironments, the humanoids need to be able to dextrously
manipulate objects[1]. Humans have sophisticated tactile
perception. They can perform complex tasks such as dis-
tinguishing between different textures, grasping objects of
different shapes and sizes, and avoiding slip while applying
minimal force to the grasped object. The capability for such
a diverse skill-set can be attributed to the well developed
tactile perception at the finger-object contact[2].

We learn much of our tactile perception by interacting
with the environment. Observing the tactile exploration of
children, they carefully interact with the objects in the
world, repeatedly trying to pick up an object, learning to
perceive the world through their tactile sensors. If robots
are to develop similar perception, they must also be able to
learn. Most of the research in tactile sensing has focused on
building and characterising transducers. Very little work has
been done on learning. The major contribution of this paper
is a learning system for an artificial finger to differentiate
between different textures. A bio-inspired robotic finger is
developed to provide the sensory information for the learner.
The finger is made of silicone with randomly distributed
strain gauges and PVDFs. The sensory output from the finger
is used to learn to distinguish between different textures.
Texture classification is based on the Fourier coefficients of
the sensor’s signals.

Results from a preliminary experiment, where the finger
successfully classifies eight different textures is presented.
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The textured surfaces include carpet, two flooring vinyls
with different textures, a tile with smooth surface, a tile with
textured surface, a sponge and piece of wood.

II. BACKGROUND

Our research is comprised of two equally important com-
ponents, the development of artificial tactile sensors and
the design and application of machine learning algorithms
to interpret the sensory information. The following sections
provide an overview of existing work in these two areas.

A. Artificial Tactile Sensors

In an attempt to equip robots with dexterity to match
that of humans, the past three decades has seen increased
research in the development of an artificial sense of touch.
A great deal of effort has been devoted to developing tactile
sensors that can provide sufficient information for dexterous
manipulation. Many physical phenomena have been used
to create tactile sensors. These include capacitive[3], piezo-
resistive1[4], optical[5], [6], [7] and magnetic[8]. Knowledge
of all three components of force plays a crucial role in ac-
quiring tactile perception. Attempts have been made to build
sensors which can provide all three components of force[6],
[8]. However the resultant sensors are hard to replicate or
are too bulky to acquire acceptable spatial resolutions.

Commercial sensors provide good spatial resolution but
they have two major disadvantages. Firstly, they only react
to stimuli normal to the surface of the sensor. Secondly, to
decrease the wiring complexity of the sensors, commercial
sensors apply scanning techniques to acquire data. Hence
increase in spatial resolution is achieved at the expense of
temporal resolution.

Some researchers have taken advantage of Micorelec-
tromechanical Systems (MEMS) to manufacture tactile sen-
sors with capability to provide force and temperature
information[9]. MEMS based sensors are very attractive for
use in robotics because of their small size and capability
to provide multiple modes of transduction. However, their
development is in the early stages and require a lot of
resources to replicate.

The sensors discussed so far are surface sensors i.e. they
are attached to the surface of the robot fingers. Human hands
use multiple sensors at different depths. Using human fingers
as an inspiration, soft fingers with randomly distributed
receptors at different depths have been developed[10]. The
novelty of this approach lies in the absence of any need
for calibration, the robot has to learn how to acquire mean-
ingful information such as slip conditions and object texture
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through the interaction with the environment. These qualities
make this sensor of particular interest for machine learning
experiments.

B. Artificial Tactile Perception

Application of machine learning to tactile sensors is in
its infancy. Some researchers have developed models of
the sensor’s response to physical stimuli and show that the
signals from the actual sensors match that of the model
[11]. Others have demonstrated that in principle, the sig-
nals produced by the transducers can differentiate between
different materials[12]. This work has not found its way
into robotics. These sensors can be integrated with machine
learning to provide far superior performance and equip robots
with tactile perception comparable to that of humans.

The past decade has seen a slow move from pure trans-
ducer manufacturing. Machine learning has been applied
to various physical phenomena such as detection of slip
condition and differentiating between different surface tex-
tures. Artificial Neural Networks (ANN) have been used to
fuse vision and tactile sensory information to improve the
accuracy of 3D object recognition[13], differentiate between
different objects found commonly in a shopping bag[14], and
to detect slip [15], [16].

III. SENSOR DESIGN

A bio-inspired tactile sensor, which mimics human
mechanoreceptors has been developed. In this section we
provide an overview of the human tactile sensors and justify
our choice of artificial finger which will be described later.

A. Biological Tactile Sensors

Human tactile sensors can be divided into two broad
categories namely, slowly adapting, and fast adapting recep-
tors. Slowly adapting receptors respond to low frequency
stimuli. In other words they provide static properties of a
stimulus. On the other hand fast adapting receptors provide
transient properties of the stimulus. The sensors are spread
in two layers and respond to frequencies ranging from DC
to 400Hz[17].

Fig. 1. Human mechanorecpetors2

2Courtesy of http://grants.hhp.coe.uh.edu/clayne/
6397/Unit4_files/image019.jpg

From the biology of human fingers, we learn that a robotic
finger needs two types of sensors, one that responds to
stretch and another one that can respond to vibrations. The
frequency response of these sensors can be limited to a
maximum of 400Hz.

B. Artificial Tactile sensors

Our artificial finger is based on original work by Hosoda,
Tada and Asada[18]. The finger consists of strain gauges
and PVDFs embedded in a silicone finger. The strain gauges
are equivalent to slow adapting mechanoreceptors. These
sensors provide a change of resistance proportional to the
strain applied to them i.e. they respond to lateral stretch. The
PVDFs are equivalent to fast adapting mechanoreceptors.
These sensors provide an electrical charge in response to
the applied pressure. PVDFs are piezoelectric in nature, and
are stimulated by vibrations. Fig. 2 is an illustration of the
artificial finger.

The sensors are randomly distributed in two layers. The
outer layer is harder than the inner layer. The harder outer
layer allows the finger to have a less tacky surface while the
soft inner layer allows the finger to conform to the object in
contact. The back of the finger is made from hard material to
provide structural support. Fig. 3 shows the artificial finger
mounted on a gripper. The prototype finger has two PVDF
sensors and two strain gauges in each layer. The final design
will include sixteen strain gauges and PVDFs.

Placing sensors randomly in the finger has several ad-
vantages. Random placement in the silicone allows the
finger to sense forces in multiple direction. While the basic
sensing elements of the finger respond to stimuli only in
one direction, as a whole the finger can respond to forces in
multiple directions. This is similar to human fingers, where
some afferents respond strongly to a preferred direction
of force[19]. Another advantage of random placement is
ease of manufacture. One may argue particular arrangements
might be more favourable. However precise placement and
modelling of such arrangements may be very difficult and
costly. Random arrangement, which relies on machine learn-
ing algorithms to map the signals to meaningful data provide
rich and robust tactile perception.

Hard back (Bone)

Outer core (Epidermis)

Soft inner core (Dermis)

Strain Gauge

PVDF

Fig. 2. Finger with embedded strain gauges and and PVDFs in two layers
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IV. LEARNING ALGORITHM

The proposed algorithm uses frequency domain analysis
to distinguish between different textures. A surface with fine
textures will stimulate the sensors at a higher frequency than
a surface with coarse textures. In humans, the mechanore-
ceptors thought to be responsible for texture classification
are Meissner’s corpuscles[17]. These receptors respond to
the rate of change of the stimulus. This makes frequency
domain analysis a natural choice.

A. Feature Extraction

The first step in the feature extraction process is to segment
the signals from the sensors into the regions where the sensor
is in contact with the surface. In these experiments, this step
is carried out manually. Each segment, the entire interval
when the sensor is in contact with the object, is transferred
to the frequency domain using Fast Fourier Transform. The
Fourier coefficients are used as features for the classification.

The classification algorithm works by looking at the major
components of the Fourier coefficents. Fig. 4 shows a typical
frequency response for a PVDF sensor, when stimulated by
a particular textured surface. If the algorithm is to pick three
major components from the raw data, all points will lie in
the vicinity of the first peak. It will be more meaningful to
pick the high level peaks as features. An algorithm has been
devised to extract these peaks.

Algorithm 1 is a procedure to detect the peaks in the
frequency domain. The peak detection algorithm divides the
frequency spectrum into n equal regions. The choice of n
depends on the resolution of the frequencies of interest. The
algorithm goes into a loop until it finds the desired number
of peaks. In each iteration of the loop, the algorithm extracts
the region with the highest energy, then it checks if the
current region is contiguous with any existing peaks. If any
such peak is found, the algorithm extends the boundaries of
that peak to include the current peak. If the region is not
contiguous with any peak, a new peak is created. At the end

Fig. 3. The artificial finger mounted on a Robotis 9 degree of freedom
gripper
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Fig. 4. Frequency response of a PVDF sensor when rubbed across a
textured surface. The detected frequency components are marked FC1-FC5.

of the loop, the current region is removed from the list of
regions to be considered and the loop is repeated. Fig. 4
shows five peaks being detected by the algorithm. The peak
frequencies are marked in red.

B. Naive Bayes Learner

All robots are prone to wear and tear. Hence it is crucial to
choose an algorithm that can be trained with a small number
of training data. The naive Bayes classifier is one algorithm
which meets this criterion. In particular, the assumption of
independence between class features means that the model
parameters for each feature can be treated as a one dimen-
sional distribution.

The naive Bayes learner takes as input three frequencies
for each sensor i.e. one frequency for each peak detected. The
value of frequency for each peak is determined by the Fourier
coefficient with the highest magnitude which is contained in
that peak’s region.

V. EXPERIMENTAL SETUP

Seven natural surfaces with different textures were used to
test the learning method. The experimental set up consists of
a Denso robotic arm, an ATI force torque sensor, a Robotis

Algorithm 1 Peak Detection Algorithm
peaks← []
regions← n equal divisions of frequency spectrum
currentRegion← []
repeat

currentRegion← region with the highest energy
if isContiguous(currentRegion) then

peaks← updatePeak(currentRegion)
else

peaks← create newPeak(currentRegion)
end if
regions← remove currentRegion

until desired number of peaks found
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(a) Carpet I (b) Sponge I

(c) Tile I (d) Tile II

(e) Vinyl I (f) Vinyl II

(g) Wood I

Fig. 5. Test Surfaces

9 degree of freedom gripper, the robotic finger and a data
acquisition unit.

A. Textures

The selection of textures deliberately included surfaces
which were made of same material but different textures.
The selected textures include carpet, dishwashing sponge, a
tile with smooth surface, a tile with textured surface, two
flooring vinyls with different surface textures and a piece of
wood(Fig. 5).

The same carpet was used to provide two types of textures.
The threads of most fabrics have a preferred direction.
Humans are capable of making a distinction between the
preferred direction and the non-preferred direction. Dragging
your fingers along the non-preferred direction shows more
resistance than dragging it along the preferred direction. The
robotic finger was dragged in both these direction. Fig. 5(a)
shows in black marking the preferred direction (Carpet I)
and the non-preferred direction (carpet II) in white.

The two tiles selected have a very subtle difference be-
tween them. Tile I has a smooth surface, Tile II has small
indentations. Vinyl I has fine textures compared to Vinyl II.
Sponge I represents a soft surface with a rich texture. Wood
I represents a non sticky, yet smooth surface.

B. Data Acquisition

Acquisition of the data involves conditioning of the trans-
ducer’s signals to a format that can be digitised. The signals
produced by the strain gauges and the PVDFs have very
small magnitudes. The sensors are mounted on a robotic
arm, which produces a significant amount of electromagnetic
interference. These factors make it necessary to design and
implement signal conditioning units that can amplify the
small signals with a high signal to noise ratio.

Differential amplifiers are used to convert charges pro-
duced by the PVDFs into a voltage (Fig. 6(a)). This helps
in reducing noise of the system by common mode rejection.
A buffer is used to isolate the signals from the rest of the
system, such as analog to digital converters.

An Anderson loop [20] was realised to acquire signals
from the strain gauges (Fig. 6(b)). The Anderson loop
works by sending a fixed current through the strain gauge,
which also passes through a reference resistor. The difference
between the voltage across the strain gauge, and the voltage
across the sense resistor is proportional to the value of strain
on the gauge. The signals provided by Anderson loop show
much lower drift rate than traditionally used methods such
as Weatstone bridge. The analog signals are digitised at
a sampling frequency at 2.5KHz. The final stage of both
amplifiers employ a low pass filter, which has a 3dB point
of 500Hz, to avoid aliasing during the digitisation process.

C. The Learning Task

The learning task is to differentiate between different
textures using signals from the developed finger. Fig. 7
illustrates the setup for data collection. The finger is attached
to a Robotis 9 degree of freedom gripper, which in turn is
attached to a Denso arm. The textured surface is mounted
on the force torque sensor. The force torque sensor is used
to monitor the total force applied to the surface.

The robot drags the finger across each material at a con-
stant speed. Each run starts with the finger being positioned
above starting point. The finger does not make any contact
with the surface. Then the finger is moved to make contact
with the surface and reach a total force of approximately 1N.

ATI Force/Torque Sensor

Silicone Finger

Denso Arm

Textured Surface

Fig. 7. Experimental Setup
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Fig. 6. Data Acquisition Unit

With the force being kept constant, the finger moves towards
the end point. The traversed path is a straight line. Once at
the end point, the finger is lifted and moved to the starting
position. There is a slight delay between two runs to make
sure all of the sensors have reached their idle state.

Throughout the experiment, the total force applied to the
surface of each material and the distance between the starting
point and the end point across all materials is kept constant.
This procedure is repeated fifty times for each material.

VI. RESULTS

A naive Bayes classifier was trained using Weka[21],
with fifty samples for each texture. The features for the
classifier were the first three major Fourier components
of each sensor. These features were extracted using the
algorithm described in Section IV. The classifier was capable
of predicting textures with an accuracy of 78% using 10-fold
cross-validation.

Table I shows the confusion matrix for the classifier. A
careful study of the confusion matrix reveals some interesting
points. The majority of the misclassifications are between
materials which share common properties. Carpet I is mis-
classified as Carpet II and vice versa. These objects are made
of the same material. The only difference between them
is the direction in which the artificial finger was dragged.
Similarly the classifier is confused between Tile I and Tile
II. Textures that are common between the two materials is
overwhelming the difference between them. This is reflected

TABLE I
CONFUSION MATRIX FOR NAIVE BAYES LEARNER WITH THREE

FOURIER COEFFICIENTS. CLASSIFICATION ACCURACY 78%.

C1 C2 S1 T1 T2 V1 V2 W1 Class
38 7 4 0 0 0 1 0 C1 = Carpet I
3 46 1 0 0 0 0 0 C2 = Carpet II
7 9 33 0 0 0 0 1 S1 = Sponge I
0 0 0 42 7 0 1 0 T1 = Tile I
0 0 0 11 37 0 2 0 T2 = Tile II
0 0 1 0 0 40 1 8 V1 = Vinyl I
0 0 1 0 1 1 39 8 V2 = Vinyl II
0 0 4 0 0 7 2 37 W1 = Wood I

in the frequency domain by having a large magnitude for the
Fourier coefficients of those frequencies. Since the algorithm
picks only the first three major components to differentiate,
more subtle features will not be noticed unless the number
of Fourier coefficients used to classify are increased. Table II
shows the results from a naive Bayes learner where five
Fourier coefficients were used to build a classifier. The
prediction accuracy of the learner is increased from 78%
to 83.5%. This is a good result, even human subjects will
find it hard to classify between these materials with 100%
accuracy. Human studies will be carried out in future.

It is intriguing that the rate of confusion between Vinyl
I and Vinyl II is very low. A closer inspection of the
surfaces reveals that while these two objects are made of
same material, the surface textures are significantly different,
which are present throughout the material.

To provide a baseline for measuring performance of this
classifier, a simple learner was built. The richer the texture,
the higher is the rate of vibration in the signal. This in-
formation can be encapsulated in the average amplitude of
the signal over a fixed window. Each trial run is divided
into three equal parts - initial contact, middle and lift off
region. The fixed window was taken from the middle region.
This ensures that the feature is not affected by the variations
induced by the initial contact and lift off. The width of the
the window was chosen to be the average length of the
middle region of all trials. A feature vector is generated
by averaging the signals of each sensor over the selected

TABLE II
CONFUSION MATRIX FOR NAIVE BAYES LEARNER WITH FIVE FOURIER

COEFFICIENTS. CLASSIFICATION ACCURACY 83.5%.

C1 C2 S1 T1 T2 V1 V2 W1 Class
41 4 2 0 0 0 0 3 C1 = Carpet I
6 42 1 0 0 0 0 1 C2 = Carpet II
2 0 39 0 0 4 0 5 S1 = Sponge I
0 0 0 42 6 0 2 0 T1 = Tile I
1 0 0 4 44 0 0 1 T2 = Tile II
0 1 1 0 0 47 1 0 V1 = Vinyl I
2 0 0 0 0 1 40 7 V2 = Vinyl II
1 0 1 0 0 9 0 39 W1 = Wood I
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TABLE III
CONFUSION MATRIX FOR NAIVE BAYES LEARNER WITH AVERAGE

AMPLITUDE IN A FIXED WINDOW. CLASSIFICATION ACCURACY 65.75%.

C1 C2 S1 T1 T2 V1 V2 W1 Class
34 14 0 0 2 0 0 0 C1 = Carpet I
4 42 0 0 0 4 0 0 C2 = Carpet II
0 0 41 0 0 1 1 7 S1 = Sponge I
1 0 2 32 8 4 1 2 T1 = Tile I
2 2 4 15 17 5 0 5 T2 = Tile II
0 1 1 2 2 35 6 3 V1 = Vinyl I
0 0 3 0 0 7 33 7 V2 = Vinyl II
0 1 8 0 2 6 4 29 W1 = Wood I

window, resulting in an eight dimensional vector. A naive
Bayes learner produced predictions with an accuracy of
65.75% with 10-fold cross-validation.

The method based on the frequency features provides
much better predictive power than the naive time domain
based classifier. Table III shows the confusion matrix for the
naive classier. There is no evidence that the classification is
based on the textures. For example Tile II is misclassified as
Carpet II and Sponge I and Title I Vinyl I and Wood II.

VII. CONCLUSION AND FUTURE WORK

We have presented a successful application of machine
learning to classify surface textures based on the Fourier
coefficients. The main contribution of this work is a learning
method that can classify different textures without making
any prior assumptions about the materials. It has been
demonstrated that with only fifty training samples, a learning
algorithm can be trained to make reasonable predictions. We
have presented a comparison with a simpler time domain
method and shown that our method produces predictions with
higher success rate.

Future experiments will investigate the elimination of the
external force/torque sensor and the effect of different speeds
on the prediction accuracy.

The Fourier transform does not provide information on
how the frequency content changes over time. The change
of textures over time is an important distinguishing factor
between surfaces with irregular texture. To this end, applica-
tion of Short Term Fourier Transform and Wavelet transform
may be studied.

The number of Fourier components needed for classifica-
tion is dependent on the complexity of the surface texture.
Complex surfaces, with subtle differences will require more
Fourier components to capture the differences. This is not
preferred as the number of training data required to train the
learning algorithm has to be increased. Another interesting
avenue to explore is the use of symbolic approaches. If
the time series is converted in to a series of symbols, one
might look for symbol patterns which represent different
textures. In our view, these methods should provide more
robust classifiers with higher prediction capability.
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