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Abstract— We present an innovative path following system
based upon multi-camera visual odometry and visual landmark
matching. This technology enables reliable mobile robot naviga-
tion in real world scenarios including GPS-denied environments
both indoors and outdoors. We recover paths in full 3D, making
it applicable to both on and off-road ground vehicles. Our
controller relies on pose updates from visual odometry, allowing
us to achieve path following even when only a joystick drive
interface to the base robot platform is available. We experi-
mentally investigate two specific applications of our technology
to autonomous navigation on ground vehicles - non line-of-
sight leader-following (between heterogeneous platforms) and
retro-traverse to home base. For safety and reliability we add
dynamic short range obstacle detection and reactive avoidance
capabilities to our controller. We show the results for end-to-
end real time implementation of this technology using current
off-the-shelf computing and network resources in challenging
environments.

I. INTRODUCTION
Recent advances in computer vision based algorithms and

the increased availability of low-cost sensors and computers
have accelerated the development of useful autonomous
navigation behaviors for field deployed mobile robots. A key
capability needed by autonomous mobile robots to perform
real-world navigation tasks is to locate themselves in a
previously explored environment. While the current state-of-
art requires collection of visual data from the environment
during exploration by the robot itself, in practice, we may
need to have heterogeneous platforms (or even human agents
carrying sensors) perform the exploration and subsequent
path following tasks. If these robots are to cooperate either
among themselves or with people, they need to be able to
exchange visual information in a mutually understandable
format. Toward this goal, we propose a system that extracts
3D visual landmarks and exchanges them using a unique
visual database structure, allowing automatic alignment of
paths explored by a leader to reference paths for a follower
robot. We investigate two application scenarios: (1) Retro-
traverse - the robot retraces its own path back to a designated
home base location, and (2) Leader-follower - the robot
follows the path traced by a human operator wearing a sensor
pack without requiring direct line-of-sight.

Over the past few years, real-time visual odometry has
been developed as an efficient dead-reckoning system for
global model based visual navigation using a variety of
camera configurations [1], [2], [3]. Visual odometry systems
seek to maintain the vehicle’s 6 DOF pose in a global world
coordinate system (with respect to some initial known posi-
tion). In order to deal with occlusions and failures in feature
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Fig. 1. (Left) The ViewTrek system in action during a leader-follower
experiment. (Center) Mobile robot follower - The sensors are in the white
boxes on the platform and the processor is in a black box visible on the
side of the robot. (Right) Helmet leader - The cameras are visible on the
sides of the helmet. The gray cable connects the sensors on the helmet to
the processor inside the backpack.

tracking, some of the more recent approaches combine the vi-
sual pose estimates with readings from inertial measurement
units (IMU) [4], [5] and GPS [6] using Kalman filters. Pose
estimates of such systems will eventually succumb to drift
in GPS denied environments. Recently, real-time schemes
that include sparse bundle adjustment simultaneously over a
longer sequence of image frames of have been proposed by
[7], [8], [9]. While these lower the drift rate, they introduce
some latency in the final pose output.

To avoid the drift effects of dead-reckoning systems,
techniques in topological SLAM, visual servoing and global
place recognition have been used. Popular appearance-based
approaches for global loop closing and recognition rely on
SIFT features [10] quantized into vocabulary trees proposed
by [11]. Examples of such systems, which also incorporate
geometric consistency, are given in [12], [13], [14]. Another
approach is to directly match features between images using
wide baseline algorithms and directly recover the vehicle’s
position with respect to a target or home image [15]. A
method for navigation using local feature graphs and visual
servoing is proposed in [16] with an application to outdoor
path following as shown in [17].

While some of the current visual path following techniques
closely couple the SLAM module with the actual controller,
others rely on just visual cues for localization and mapping,
allowing well tested nonlinear controllers to achieve robust
path tracking performance. Recently, the DARPA Grand
Challenge provided a good evaluation test bed for the perfor-
mance of path following controllers [18] for off-road driving
at low and moderate speeds. We adapt the asymptotically
stable nonlinear kinematic steering controller from [19] for
our specific vehicle model and system dynamics.

In all related work where a mobile robot was required to
re-traverse a path, path following strategies have been de-
veloped utilizing image data collected by the same platform
during a prior exploration stage. Our system has the unique
additional capability that two different mobile platforms
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Fig. 2. A chart showing major hardware and software components of
the ViewTrek leader-follower system. Hardware devices are purple, and
algorithm blocks are blue. For retro-traverse the robot can be thought of
as its own leader with no wireless networking requirement, but needing an
additional software module for path reversal.

can do SLAM in the same environment. Further, the only
interface between our visual navigation system and our path
following control is the corrected pose output from the visual
navigation system. We use the term visual path following
since we use sparse visual features both for frame-to-frame
motion estimation (visual odometry) as well as for global
path alignment with drift correction (landmark matching).

We call our multilayer visual navigation system ViewTrek
(shown in action in Figure 1) which incorporates elements of
model-based and appearance-based systems. In the following
sections, we first give a brief description of the visual navi-
gation system (see [20] for vision algorithm details) followed
by our motion control and reactive planning strategies. We
then provide some system integration and operational details,
followed by evaluation of the system’s performance through
a series of real world experiments.

II. VISUAL NAVIGATION SYSTEM COMPONENTS

The vision systems on the leader (helmet) and follower
(robot) consist of 4 wide field of view cameras, arranged
in 2 stereo pairs with one looking forward and the other
backward. Each system also has an inexpensive IMU sensor
which provides local orientation rates at 100Hz. Figures 2
show the functional diagram of our system for the leader-
follower application.

A. Visual Odometry

Our visual odometry system consists of a feature-based,
structure-from-motion scheme for distributed aperture stereo
rigs [4]. For each image frame captured, this system pro-
duces a single 6 DOF projective transformation P , which
defines the position and orientation (pose) of a coordinate
frame the front left camera in the rig with respect to the
previous image frame. At a given time instant tk+1, we have
Pk = P (tk, tk+1). This system operates as follows: for each
calibrated stereo frame Harris corners are computed, and
3D points are triangulated. The pose of the current frame
is computed by a robust resection process, using the Harris

corner locations of the current frame and the corresponding
3D features computed from the previous frame. From the two
estimates (one for each stereo pair), the best one is selected
based on its error with respect to all features in the system
[4].

The visual odomery process is enhanced by the readings
from the IMU via a Kalman filter framework described in [4].
This filter uses the estimated covariances of the visual and
inertial measurements to improve the overall pose estimate.
The output of this filter is a pose estimate with respect to the
location of the first image frame. We refer to these readings
as dead-reckoning visual odometry. The multi-camera visual
odometry frame to frame local pose measurements Pk are
also converted to velocities by extracting the rotation axis
vector corresponding to the rotation matrix Rk, together
with the camera translation given by RTTk, ( where Pk =
[Rk|Tk]) and then dividing by the timestep, ∆tk = tk+1−tk.
These velocity measurements enable kinematic path follow-
ing control without requiring low-level interfaces with the
robot actuators.

B. Distributed Landmark Matching

Once the robot is equipped with the camera rig, the camera
pose output from visual odometry allows the robot controller
to execute maneuvers on the ground in the camera coordi-
nates system. However, this is a local coordinates system
and if we want the robot to follow a human who wears
a helmet-based system, the path planning stage requires an
estimate of robot’s pose in the human’s coordinate system.
This is accomplished through the use of visual landmarks.
As in [13], the visual landmarks are selected from a set
of interesting points extracted from the scene and each
landmark is described by a Histogram of Gradients (HOG)
descriptor in the image. These visual landmarks serve as
the location fingerprints since they encode both the visual
and geometric information about the scene, and are therefore
quite unique. For simplicity, we refer to the robot’s system
as the follower and the human’s system as the leader.

During the operation, in order to maintain the follower’s
pose in relation to the leader, the leader sends its extracted
visual landmarks to the follower. The follower then uses the
received visual landmarks to build up a landmark database,
which will serve as a (sparse) map of the leader’s environ-
ment. Specifically, the landmark database is indexed via a
vocabulary tree structure [13] in the follower’s memory for
fast landmark matching. Given an image snapshot from the
follower, it will be searched against the landmark database
to find a match. When a successful landmark match happens,
a pose Pfinal that aligns the follower into the leader’s coor-
dinates system will be generated. Since the visual odometry
and landmark matching operate in parallel on our system, we
must compute a pose correction as Pc = P−1

f Pfinal, where
Pf is the follower’s pose at the time that the matched frame
was captured. This correction, which is an accumulated error
in pose between the leader and follower, is then applied as
an offset to all subsequent poses until a new match is found
and a new correction calculated. For retro-traversal the robot
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Fig. 3. Drift correction of visual odometry by matching against previously
collected visual landmark database. The helmet operator walks along a
marked path and collects the landmark database. The robot then loads in
this database and runs visual navigation while being manually driven along
the same path.

acts as its own virtual leader and locally stores the landmark
database during the forward journey an matches against it on
the way back. The forward-backward camera configuration
was chosen as it increases the probability of finding landmark
matches during path following. The effect of drift correction
using landmark matching is shown for a controlled path in
Figure 3.

III. ROBOT MOTION CONTROL AND REACTIVE PLANNING

The landmark corrected globally aligned 6 DOF pose
measurements Pfinal from both the helmet and the robot
visual processing blocks are projected into ground aligned
3 DOF poses (planar position (x, y) and orientation θ) for
robot motion planning and control. For leader following,
since the coordinate systems are aligned, we use the leader’s
trajectory to generate the path plan for the follower. For
retro traverse, the path is always aligned with respect to the
specified start position.

A. Nonholonomic path following controller

Since most real mobile robots are nonholonomic we
choose a representation for the paths that is C2 smooth -
natural cubic splines. We choose a discretization (usually
0.5m) for the collected pose points and fit splines through
them, represented by knot points. This representation allows
us to efficiently locate points on the path as well as evaluate
local tangents and normals. While generating the splines we
also do some minimal spike suppression to reject sudden
jumps in pose - this may happen when a there is a landmark
based pose correction after a long interval, or when the
helmet system makes very small looping motions.

As in [19], due to the low speeds of operation we use a
kinematic vehicle model. We choose to use a car-like model
even though our mobile robots may be tracked or skid-steer
platforms, since this is the limiting case (based on turning
radius and maximum steering angle constraints). Further,
even though theoretically our mobile robots could turn about

Fig. 4. Path following kinematic control for a car-like vehicle using lateral
cross track error from reference path.

a point, this is not true on many high friction surfaces such as
grass. We offset the control point from the center of gravity
of the robot by a distance L. For the robot to track a reference
curve (path), we search for a reference point on the curve
that is closest along the normal to the current robot heading
direction (see Figure 4) using a lookahead distance along the
reference curve.

We use a nonlinear steering controller [19] for path
following using cross track error e(t) as feedback, with
some modifications due to the absence of steering wheels
on our robot. Further, we ignore the effects of car-like
dynamics while tracking curves and drop the non zero steady
state yaw error. If v(t) is the forward speed of the robot
and ψ(t) = (θd(t) − θ(t)) is the heading with respect
to the tangent at the closest trajectory point (Figure 4),
for global asymptotic convergence to zero cross track error
we use the control law: δ(t) = ψ(t) + arctan

(
ke(t)
v(t)

)
+

ksteer (δmeas(i)− δmeas(i+ 1)), with a saturation limit of
±δmax. k is a proportional steering gain and ksteer is a
gain modeling the delay in the steering actuation. Note that
we map the joystick control inputs to approximate measured
effective steering angles δmeas using a lookup table. However
we get actual measures of v(t) and θ(t) from visual odometry
running live on the robot. Our spline representation allows us
to quickly compute tangents to the reference curve at chosen
points and hence θd(t).

The controller compensates for delays in the low level
actuators using the last term in the above equation by
checking the steering inputs. We also use a function to
slow down the robot on tight curves to reduce slip and
transient tracking errors. The path planning and vehicle
control run asynchronously with landmark-corrected visual
pose estimation. The maximum speed of the follower robot
was set at 0.8m/s with lower speeds during turns. For
retro traverse the controller performed adequately (maximum
deviation less than half the robot width) at speeds up to
1.2m/s with appropriate proportional gains.

B. Obstacle avoidance

For safe and reliable operation of the autonomous path
follower we propose two levels of obstacle detection and
collision avoidance strategies (shown in Figure 5). The first
level is the dynamic hard stop which is designed to bring
the robot to an immediate stop if a large obstacle suddenly
appears in its forward path at a close distance (< 2.5m). The
second level is reactive obstacle avoidance which modifies
the follower path locally based on a traversability map of
obstacle free areas up to 5m away.
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Fig. 5. Flow diagram for obstacle detection using sparse and dense
features from a stereo pair. The Harris corner features (outliers removed)
are already available from the visual odometry module so the hard stop
detection happens in the order of 1ms after a frame is processes by visual
odometry. To keep the overall frame rate at 10Hz we subsample the input
images by a factor of 4 before the dense multi-resolution correlation based
stereo computation ([21]). This gives us enough resolution to do obstacle
detection out to 6− 8m.

As described earlier, our visual odometry algorithm gener-
ates a set of sparse 3D feature points based on image Harris
corners detected and stereo matching. The hard stop obstacle
detection algorithm fills in a ground aligned Cartesian grid
where each cell stores the height above ground for 3D points
detected at that location. It then aggregates the height statis-
tics for each grid cell within the designated area of interest
(near robot, in its forward path) and applies thresholds for
acceptable sizes of obstacles after some noise removal. Using
this information, the hard stop module reports the presence
of lethal obstacles within the zone being monitored. We
arrived at thresholds for acceptable levels of performance
after extensive in-field trials. Some detection results and
corresponding sparse feature points are shown in Figure 6.

Our obstacle detector [21] determines the location and
severity of obstacles in a scene described by 3D range
data. The range data is derived from a real-time dense
multi-resolution correlation based stereo algorithm and the
camera pose comes from the visual navigation solution.
The algorithm produces an analog output that measures
obstacle severity (in terms of height, slope and size), so
that subsequent thresholding can determine which obstacles
are considered to be traversable, based on the characteristics
of the vehicle. Frame-level obstacle maps are then stitched
together, in real-time, to form a local traversability map that
is provided as input to the planner. The algorithm proceeds
as follows. The stereo range data is pre-filtered to reduce
noise and then transferred to Cartesian ground coordinates
from image coordinates such that ground resolution variation
is accounted for. The data is then analyzed at multiple
resolutions to detect obstacles with varying slopes. The
obstacle height is computed from the heights of points on
the obstacle boundary. The map representing these heights
is merged with the slope contribution to yield a traversability
cost map (see Figure 7). The reactive path planner uses a time
aggregated version of this map to navigate around obstacles
locally.

We represent the accumulated traversability cost map
(within a local window of 5m radius) as an obstacle gridmap
image with each pixel representing a grid cell and compute
its distance transform using a pseudo Euclidean distance
metric for speed. Next, a clearance distance threshold is

Fig. 6. Obstacle detection for hard stop using sparse 3D features. The top
set of four images shows the Harris corner point features which satisfy the
inlier and stereo matching criteria in red. The points that are closer than
2.5m and used by the obstacle detector are circled in green. The bottom
set of plots show the ground plane points in blue and the obstacle points in
red.

Fig. 7. Obstacle traversibilty maps based on dense stereo for a typical
outdoor run. The black regions are unexplored or occluded, the gray region
are best areas to traverse while lighter colors are increasingly hazardous
with white being lethal.

applied to the output of the distance transform based on the
robot’s geometry and maneuverability. This has the effect
of growing the obstacle boundaries to accommodate for the
finite robot size. Figure 8 shows this procedure for one
such planning step. Note that the robot is at the center of
the map here with the heading vector as shown. After the
above step the reactive planner checks the reference path
to see if it will intersect any obstacles within the local
window. When collision with obstacles is locally imminent,
we coarsely sample the reference path ahead, and assuming
the robot heading to be the local path tangents at those
points, we compute a polar histogram (angles as bins) of
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Fig. 8. (Left) Distance transform of obstacle gridmap image with
contours drawn for easier visualization. The red contour marks the clearance
threshold around obstacles. The blue lines show the current field of view
approximation and the green line shows the histogram mode direction.
(Right) Angular clearance histogram showing distribution of obstacle free
points within specified field of view for the images on the left. Green line
shows mode sector. The angular orientations are not aligned with the plots
on the left.

obstacle free pixels within a specified field of view (Figure
8) at each point. The mode of the histogram locally gives
the “best” obstacle free angular sector for that point. We use
this angular direction (from current heading) to search for a
sector with obstacle clearance above a minimum threshold.
We then find the closest point on the reference path along
this vector, while modifying the local path to go along this
vector from the previous point. This process is repeated until
the forward path is locally free of obstacles. We are currently
investigating more optimal re-planning strategies.

IV. SYSTEM INTEGRATION AND TESTING

In the ViewTrek system shown in Figure 1, the leader
and the follower use similar sensors. The hardware details
are provided in [20], we briefly highlight some key parts.
The follower system communicated with the robot via a
wired serial interface. In both the helmet and the robot
systems the cameras point toward the ground at an angle
of approximately 15 degrees from horizontal in order to
capture nearby features. Since the helmet-based leader sys-
tem needs to keep up with fast motions, its dead reckoning
navigation was operating at 15 Hz, while the slower moving
robot system operated at 10Hz, with the extra processing
time used by the dense stereo based obstacle detection and
reactive planning. Both systems generate, wirelessly transfer
and match landmarks asynchronously at 1Hz. The average
bandwidth use for our system is about 100KB/s.

A. System operation

The ViewTrek system was field-tested for autonomous
retro-traverse as well as leader follower modes. For retro-
traverse, the operation proceeded as follows: (1) The operator
turns on robot and waits for visual navigation system to
initialize. (2) The operator manually drives robot using

Fig. 9. Results of a typical retro-traverse run showing ground aligned 3
DOF pose derived from 6 DOF visual navigation pose output. The start
(and return) position of the robot is at the origin for each plot. Note the
path goes along a narrow sidewalk and over grass through bushes on either
side. We have achieved similar results indoors in corridors as well.

joystick control, selects a starting “home” position for the
robot and continues driving. (3) Once the robot has reached
its final destination, the operator initiates retro-traverse by
pressing a joystick button. (4) The robot pauses and then
turns around and starts following its path back to the home
base.

For the helmet leader-follower system the operation pro-
ceeds as follows: (1) The operator puts on the helmet system
and stands next to the robot. (2) The operator activates the
navigation systems of the leader and the follower via a
tablet computer interface. (3) The operator moves his head
until the field of view of the helmet and the robot overlap
sufficiently to establish a landmark match, synchronizing the
coordinate systems (the operator is notified of this event). (4)
The operator is now free to move about in the environment,
making sure to move only in places where the robot can
operate safely - he can look around freely, kneel, run, walk
backwards and sideways. (5) Once the operator comes to
a stop, the robot traverses the remaining distance, and then
stops at a safe distance from the operator (if the operator
chooses to start moving again, the robot follows). (6) Upon
reaching the destination, the operator deactivates the system
via the tablet computer interface.

At the beginning of each leader following run, the operator
wearing the helmet should stand alongside the robot for
initial synchronization. This makes it easy to overlap the
fields of view of the robot and helmet. The synchronization
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TABLE I
EVALUATION OF ACCURACY FOR VISUAL ODOMETRY (VO), LANDMARK

MATCHING (LM) AND THE COMBINED 3D POSITION (VO+LM).

Min (m) Max (m) Median (m) Mean (m) Length (m)
111.9

0.00089 0.69675 0.08804 0.14325 VO
0.00002 0.23349 0.01296 0.01973 LM
0.00028 0.39436 0.04246 0.05718 VO+LM

253.66
0.000136 1.06107 0.33095 0.36808 VO
0.00003 0.29118 0.02032 0.03025 LM
0.00014 0.52447 0.05307 0.08575 VO+LM

266.62
0.00027 0.91672 0.32611 0.34266 VO
0.00020 0.31580 0.01716 0.02550 LM
0.00142 0.34655 0.07399 0.09577 VO+LM

usually happens within a few seconds following system
activation. In both autonomous path following modes the
obstacle detection and avoidance can be activated. Further,
the operator can take over control at any point using the
joystick, drive the robot a short distance and then resume
path following for the remaining path. The operator can
choose the path following speed and standoff distances via
configuration files before the start of each run.

B. Results

We first experimentally tested the accuracy of the pose
output from each component of our visual navigation system
under controlled conditions, followed by closed loop testing
of the entire ViewTrek path follower system in various
outdoor environments.

1) Visual Odometry and Landmark Matching Accuracy:
In order to evaluate the accuracy of the visual odometry
and landmark matching modules, a set of experiments are
performed on the mobile robot. The ground truth positions
are obtained via a Leica Total Station surveying device
with automatic tracking capability. Specifically, a prism is
installed on the top of the visual sensor rig and the relative
pose between the prism and the visual sensor is calibrated.
During these experiments, the operator drove the robot
along a set of predefined paths. Along each path, the Total
Station device tracks the prism automatically to obtain its
3D position while the robot is moving. Meanwhile, the 3D
positions from the visual navigation system are also recorded.
Since the visual sensor rig is synchronized with the Total
Station device, each location has a pair of total-station and
visual navigation system position measurements.

Once we collected the synchronized position measure-
ments for all the paths, the accuracy of both visual odometry
and landmark matching could be evaluated. For the visual
odometry accuracy, the error was computed directly as the
difference between the total-station position measurements
and the visual sensor position measurements at each location.
For the landmark matching accuracy, the accuracy was
computed for a location only when there was a successful
landmark matching at that location. Specifically, the distance
between the reference landmark location and the current
(matched) landmark location was measured independently
for both the total-station and the visual sensor. The difference

Fig. 10. Leader and follower paths for a typical run. Landmark match and
hence pose correction locations shown on follower’s path - note the jumps
when there is a match after a longer interval.

between these two distances is defined as the landmark
matching error. As shown in Table I, without the landmark
matching, the average drift rate of the system with visual
odometry (multi-camera and IMU) system alone was found
to be less than 0.15% of travelled distance. The average
landmark matching error was found to be around 3cm.

2) Field tests for retro-traverse and leader-follower oper-
ation modes: The ViewTrek system has undergone extensive
field testing for performance as well as reliability. It proved
to be quite reliable throughout the day and on multiple
surfaces, including sand, asphalt and grass. We performed
retro-traversal tests both indoors and outdoors along narrow
passages, including a week long testing involving rough
terrain at a military location. A sample run at our suburban
campus is shown in Figure 9. One major challenge for
the leader-follower mode of the system is its handling of
different height disparities between the operator and the
robot. The helmet was worn by people with heights ranging
from 1.62m to 1.83m, giving us a disparity range of 0.42m
to 0.63m without impacting performance. The most common
cause of failure during field demonstrations was loss of
power, followed by the loss of network connectivity. The
robot never visibly strayed from the path traversed by the
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TABLE II
EXPERIMENTAL RESULTS FOR VARIOUS PATH FOLLOWER RUNS.

Duration Length Avg. Error Max. Error Avg. Speed
(s) (m) (m) (m) (m/s)

1101 868 0.21 1.9 0.53
1187 673 0.25 2.5 0.54
942 400 0.15 0.81 0.64
925 346 0.15 1.3 0.64
641 309 0.22 1.2 0.70
700 305 0.18 1.3 0.66
725 280 0.11 0.89 0.56
454 135 0.22 0.96 0.62
658 229 0.34 2.1 0.50
327 106 0.31 1.1 0.60
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Fig. 11. Path of leader (blue) and follower (red) over a long run of 868m.

operator.
In practice the landmark matching system never confused

one place for another, even on asphalt. This can be explained
by the abundance of Harris corners (even in the afore-
mentioned environments) combined with the discriminative
power of HOG features and uniqueness of 3D configurations
of features (even planar). In areas with a shortage of usable
landmarks (such as when a person is looking off to the
side), the dead-reckoning visual odometry system allows the
robot to follow for 10s of meters (see [4] for a quantitative
evaluation) without registering a landmark match. Figure
10 shows the leader and follower paths highlighting the
locations on the follower’s path where landmark matching
occurs and the pose correction jumps.

Various runs, with several different operators and including
ones in a suburban environment (see Figure 9) are shown in
Table II. The last 2 runs were in a desert environment. The
longest recorded run of 868m is shown in 11. These results
clearly show robustness and consistent performance under a
variety of circumstances.

V. CONCLUSIONS

We presented a system capable of autonomous follow-
ing and retro-traverse maneuvers. While the global drift
introduced by dead reckoning algorithms is an important
factor in applications such as place recognition and loop
closing, it is not a big factor in ours. A follower robot
must only maintain its pose with respect to the leader’s
traversed path, not the global coordinate system. Similarly,
for a robot doing retro-traverse, pose has to be maintained

with respect to the starting (home base) position. Thus the
visual odometry pose only serves as input to global landmark
matching and to maintain the vehicle’s pose in the short term
in absence of landmark matches. The novel feature of our
leader-follower application is in the live, automatic sharing
of visual landmarks between the operator wearing a sensor-
equipped helmet and an autonomous robot. This technology
can also be used to lead convoys of autonomous vehicles,
each following its leader’s landmark trail.
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