
Learning and planning high-dimensional physical trajectories
via structured Lagrangians

Paul Vernaza, Daniel D. Lee, Seung-Joon Yi
GRASP Laboratory

University of Pennsylvania, Philadelphia, PA 19104
{vernaza,ddlee,yiseung}@seas.upenn.edu

Abstract— We consider the problem of finding sufficiently
simple models of high-dimensional physical systems that are
consistent with observed trajectories, and using these models
to synthesize new trajectories. Our approach models physical
trajectories as least-time trajectories realized by free particles
moving along the geodesics of a curved manifold, reminiscent of
the way light rays obey Fermat’s principle of least time. Finding
these trajectories, unfortunately, requires finding a minimum-
cost path in a high-dimensional space, which is generally a
computationally intractable problem. In this work we show
that this high-dimensional planning problem can often be solved
nearly optimally in practice via deterministic search, as long
as we can find a certain low-dimensional structure in the
Lagrangian that describes our observed trajectories. This low-
dimensional structure additionally makes it feasible to learn an
estimate of a Lagrangian that is consistent with the observed
trajectories, thus allowing us to present a complete approach for
learning from and predicting high-dimensional physical motion
sequences. We finally show experimental results applying our
method to human motion and robotic walking gaits. In doing
so, we furthermore demonstrate efficient path planning in a
990-dimensional space.

I. INTRODUCTION

In general terms, our interest in this work is to learn as
much as possible about a physical system from observed
trajectories of the system. We would then like to use what
we have learned to generate new plausible trajectories that
obey certain boundary conditions; i.e., each trajectory should
start at a specified point, and end at another specified point.

In practical terms, Figure 1 illustrates the kind of problem
we might want to solve. In this example, a motion capture
system tracks the positions of 330 reflective markers placed
at specific locations on the body of a human performing
various exercises. Given sequences of this form as training
data, we now wish to specify two new poses, and deduce
a sequence that plausibly interpolates between the two. For
example, if the subject is standing with his hands at his sides
in the first pose, and he is standing with his hands over his
head in the second pose, the training data might suggest
that we interpolate a sequence resembling a jumping jack
between them.

Our approach models the observed trajectories as being
least-time trajectories of what we describe as a kinetic
Lagrangian system. We define a kinetic Lagrangian system
to be one in which the observed D-dimensional trajectories

Original FermatLinear Integrated

(a) Jumping jack

Original FermatLinear Integrated

(b) Side twist

Original FermatLinear Integrated

(c) Knee touch

Fig. 1. Visualization of experiments in producing novel trajectories from
pairs of key frames. Leftmost image in each set is the true, held-out
trajectory. Other images depict the output of different learning methods
applied to reconstruct the trajectory from the key frames, as described in
Section III.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 846

x(t) ∈ RD are extremal with respect to the cost functional

J{x} =
∫ t2

t1

1
2
m(x)‖ẋ‖2dt (1)

over all differentiable trajectories that intersect x(t1) and
x(t2). Learning the parameters of this model is equivalent
to learning the function m(x), which has physical interpreta-
tions that will be described later in this work. Once we have
learned m(x), a feasible trajectory interpolating two new
states can be found by minimizing (1) over all trajectories
x(t).

Although this is an accurate description of our method,
we have not yet mentioned the critical issue of the curse of
dimensionality. In practice, minimizing (1) over all trajecto-
ries x(t) takes time exponential in D. For a path planning
problem with D > 3 or 4, one typically first resorts to
deterministic heuristic search, such as A∗ [1] or weighted
A∗. For larger D, randomized planning algorithms, such as
Probabilistic Roadmaps (PRM) [2] and Rapidly-exploring
Random Trees (RRT) [3] are often useful, though they are
better suited for feasibility problems than cost minimiza-
tion. More recently, R∗, a hybrid randomized-deterministic
planning algorithm has been demonstrated to effectively
minimize cost in a practical problem with D ∼ 10 [4].
Unfortunately, in our application with human motion capture
data, D = 990. Clearly, no generic path planning algorithm
would be suitable for this task.

Moreover, learning the parameters of (1) (i.e., the map
m(x) : R990 → R) is an equally-impossible task if attempted
directly, due to the well-known curse of dimensionality in
machine learning [5].

In this work, we give methods to effectively solve the high-
dimensional path planning and learning problems as long as
we make the critical assumption that the cost function for our
path planner (i.e., (1)) possesses a hidden low-dimensional
structure. If it does possess this structure, or it possesses
this structure approximately, we give robust algorithms to
discover it, leverage it to solve the learning problem, and
finally solve the high-dimensional planning problem in a
nearly-optimal way, given certain technical assumptions.

A. Related work

Some similarities might be drawn between our method and
system identification methods in the controls literature [6].
However, our approach distinguishes itself from most system
identification methods by introducing low-dimensional struc-
ture to make the learning and inference problems tractable
for high-dimensional systems. In this way, our method is
similar to LWPR [7], a regression algorithm that learns
representations that are locally low-dimensional in order to
deal with high-dimensional systems. However, LWPR does
not assume a physical basis for the observed data. We show
how making this physical assumption leads to a natural class
of low-dimensional models that describe physical systems
particularly well, in addition to admitting practical learning
and inference algorithms.

Our method also shares some similarities with the recent
work of Sekimoto et. al. [8], which demonstrates that some
human motions are well-modeled by a purely kinetic La-
grangian model with no external forces applied. However,
their method assumes that an accurate physical model of
humanoid motion is already given. Our method learns a
model using only observed trajectories, and can be applied to
any physical system just as easily as it is applied to humanoid
motion. We also note that [8] makes no provision for the
problems that arise with very high-dimensional problems.

We were partially inspired by recent developments in the
learning community that have focused on generating low-
dimensional models of dynamical systems. In particular,
Gaussian Process Dynamical Models [9] (GPDM) model
high-dimensional observed trajectories as images of low-
dimensional latent trajectories under an unknown stochastic
mapping, while another unknown stochastic mapping serves
as a Markov transition function between latent states. These
maps are marginalized over in a Bayesian setting to infer a
probabilistic joint distribution between latent and observed
trajectories.

The crucial difference between our method and assorted
Gaussian process latent variable models [10] is that the
latter fundamentally assume that the observed state itself
has an underlying low-dimensional structure induced by the
fixed mapping from latent to observation spaces, while our
method assumes low-dimensional dependence structure of
the Lagrangian. We would argue that the latter assumption
is a more meaningful assumption to make when one knows
that the system under consideration is physical.

Our work also bears some similarity to maximum margin
planning [11] (MMP), which might be considered to be the
inverse problem of finding shortest paths on a weighted graph
(or Markov decision process), with the further restriction
that the graph weights must be linear combinations of given
features. Although our method also incorporates an inverse
shortest path problem, we consider the case of a continuous
state space as opposed to the discrete state space of MMP.
This allows us to reason about a structured cost function in
a straightforward way—a structured cost function (m(x), in
our setting) is one that depends on a small number of state
variables. By contrast, MMP induces no low-dimensional
structure on the state space, partially because it is not as
straightforward to speak of the low-dimensional structure of
the combinatorial object (i.e, graph) that is the state space
involved in MMP. A practical consequence of this distinction
is that MMP cannot easily be applied to Markov decision
processes with high-dimensional state spaces, due to the
intractability of the associated planning problem.

II. THE METHOD OF FERMAT COMPONENTS

The description of our method proceeds in several parts.
We begin with a brief description of our model and its phys-
ical meaning. We then derive a simple algorithm, which we
call Fermat Component Analysis (FCA), that identifies the
low-dimensional structure of the Lagrangian from observed
trajectory data. Next, we describe our approach to estimating

847

(a) Simulated light rays and discovered directions

(b) Learned cost function: FCA

(c) Learned cost function: PCA

Fig. 2. Simple demonstration of Fermat components applied to a kinetic
Lagrangian system: light rays (dashed lines in 2(a)) traveling through a
medium of varying refractive index. Brigher areas have higher refractive
index (equivalently, higher cost, or lower speed). Light rays turn towards
high-cost regions upon entering them to minimize travel time, in accordance
with Fermat’s principle of least time. Solid arrow shows the first Fermat
component of the data. Dashed arrow shows the first PCA component of
the data. 2(b) shows the underlying one-dimensional cost function learned
by performing regression of the cost function from the Fermat component,
and 2(c) shows the result of regression from the PCA component.

the associated structured Lagrangian. With an estimate of
the Lagrangian, we finally describe how we perform path
planning in the original high-dimensional space in order to
produce new trajectories.

A. Kinetic Lagrangian systems

As mentioned in the introduction, our model consists of
the assumption that each observed trajectory x(t) is extremal
with respect to the cost functional (1). We now make some
remarks about (1) in order to elucidate the nature of our
model.

First, we observe that the kinetic energy T of a physical
system with (time-invariant) generalized coordinates x can
always be written as a quadratic form: [12]

T =
1
2
ẋT [M(x)]ẋ (2)

We can identify this form with the integrand in (1) to
obtain the relationship

M(x) = m(x)I (3)

where I is the identity matrix. Therefore, we can think of (1)
as the action of a system possessing no potential energy (i.e.,
no external forces), and whose kinetic energy is given by a
diagonal quadratic form in generalized coordinates.

Furthermore, note that we can construct a Riemannian
manifold with M(x) as its metric tensor. The geodesics
of this manifold are the extremal paths x(t) of the cost
functional

J ′{x} =
∫ t2

t1

√
ẋMẋdt =

∫ t2

t1

√
m(x)‖ẋ‖dt (4)

By a trivial application of well-known result [12], the
extremal paths of (4) and (1) are actually the same; i.e.,
the paths taken by the physical system with action given
by (1), are actually geodesics of the Riemannian manifold
with metric M(x).

Finally, we assume that the observed trajectories are least-
time trajectories, in which case we have

m(x) ∝ 1
‖ẋ‖2

. (5)

Note that this assumption effectively allows us to observe
the values of m(x) along the observed trajectories, which
will be useful later on.

A canonical example of our model is therefore the propa-
gation of light rays in optics, which is governed by Fermat’s
principle of least time (Figure 2). In this model, each point
in space is assigned a speed at which light is allowed to
propagate through the point; the inverse of this speed (i.e.,
the index of refraction) is equal to

√
m(x) in our model.

B. Fermat Component Analysis

We now wish to analyze the behavior of our system when
m(x) possesses a low-dimensional structure. Once we know
the expected behavior in this case, we can exploit it to detect
the low-dimensional structure, if present.

We have already mentioned how physical trajectories have
a macroscopic description as those paths that make the action
locally extremal. However, they also have a local description
in the form of the Euler-Lagrange equations [13] of the
calculus of variations. In our case, letting L = ‖ẋ‖

√
m(x)

(c.f. (4)), these take the form

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0 (6)

Denote by xi the ith component of the state vector, and
suppose that m(x) does not depend on xi. For notational
convenience, we write

C(x) =
√
m(x) (7)

Since ∂C/∂xi = 0, it follows from the Euler-Lagrange
equations that

ẋi

‖ẋ‖
C(x) = k (8)

where k is a constant that depends on the initial conditions
of the trajectory. The failure of this conservation law to
hold for some variable xi implies that m(x) must depend

848

on xi. This is the fundamental behavior we exploit to
detect the low-dimensional structure of m(x). Recalling the
example of light propagation, these conservation laws might
be considered a multidimensional generalization of Snell’s
law [14].

Assume now that instead of observing x(t) directly, we
observe a trajectory z(t) = Ux(t), where U is an a-
priori unknown square orthonormal matrix. The previous
conservation law can then be rewritten as(

uT ż

‖ż‖

)
C(z) = k (9)

where u is some column of U .
Note that the only unknowns in the conservation law

above are u and k. If we wish to find a projection that
does not satisfy the conservation law, it seems reasonable
to find a projection that maximizes the inequality of this
expression. Given our assumption that C(x) is given by
inverse speed, and assuming we are given discrete samples
z[i] of the trajectory and its derivative, we therefore propose
the following optimization to find u:

max
‖u‖=1

min
k1...kT

∑
i

(
uT ż[i] − kpi

‖ż[i]‖2
)2

(10)

Note that we have introduced additional k variables in
order to account for the possibility that each sample may
be taken from one of T trajectories—each trajectory may
have a different conserved value k, so we must introduce
an additional k variable for each trajectory given as training
data. pi is assumed to be a function that returns the index of
the trajectory associated with the ith sample.

The solution to this optimization problem can be found in
closed form in a manner very similar to the way one might
derive principal component analysis [5]. Given u, we can
solve for the optimal values of each kj . Substituting these k
values in terms of u, we ultimately arrive at the equivalent
optimization problem (defining Q):

Q :=
∑

i

(
ż[i] − µpi

‖ż[i]‖2
)T

(11)

max
‖u‖=1

uTQTQu (12)

where the µj are values obtained by solving for the kj . The
well-known solution to this problem is the normalized eigen-
vector corresponding to the greatest eigenvalue of QTQ.

To summarize, in the noise-free case, if m(x) depends
only on d variables after performing a linear change of coor-
dinates, we will have D−d conservation laws of the form (8).
Each of these will correspond to a zero eigenvalue of QTQ
in the above optimization. The remaining d eigenvectors will
form a basis for the space on which m(x) does depend. We
refer to these projections as the Fermat components of the
data. Figure 2 shows FCA applied to a toy problem.

C. Numerical estimation of the Lagrangian

If the number of Fermat components is far less than
the original dimensionality of the data, finding them can
dramatically alleviate the curse of dimensionality associated

with learning m(x), since we need only perform regression
in a space of much reduced dimensionality. Recalling our
assumption that we are given the values of m(x) pointwise
along trajectories, the only thing that needs to be done in
this step is to regress m(x) from the reduced coordinates.

We have found that a variant of Nadaraya-Watson kernel
regression seems to work well for this purpose. A regulariza-
tion term ensures that the estimate approaches a high value
far from the data.

D. Efficient planning in high dimensions

After performing FCA on the training data and estimating
m(x) in the reduced space, the only task that remains is to
generate new trajectories interpolating given pairs of points.
Again, this is generally a computationally intractable path
planning problem in high dimensions. However, we can in
practice often find a nearly-optimal solution to the path
planning problem in the original high-dimensional space by
solving a sequence of low-dimensional planning problems.
To see why this is so, we revisit the cost functional (1) and
examine the consequences of m(x) depending only on a
small number of coordinates.

At this point, it will be useful to introduce some terminol-
ogy. We refer to that subspace upon which m(x) does not
depend as the cyclic subspace; the remainder of the space is
the acyclic subspace. From now on, let p(t) be the projection
of the trajectory onto the acyclic subspace, and let q(t) be
the projection of the trajectory onto the cyclic subspace. We
can start by making a simple substitution in (4):

J{x} =
∫ t2

t1

‖ẋ‖C(p(t))dt (13)

We can also perform a change of variables to arclength of
the path, via ds = ‖ẋ‖dt:

J{x} =
∫ s2

s1

C(p(s))ds (14)

Our goal now is to turn (14) into a cost functional defined
on paths in the acyclic subspace. Unfortunately, it is not quite
in that form yet because s is the arclength of the original,
high-dimensional path; we would like to change variables
from s to sp, the arc length of p(t).

Let dsq = ‖q̇‖dt be the arclength element of q(t). Since
p(t) and q(t) are orthogonal, ds2 = ds2p+ds

2
q; this expression

allows us to solve for dsp/dt in terms of ds/dt and dsq/dt.
For the purpose of computing an optimal path, we note
that we can assume that ‖ẋ‖ = 1, since the integral is
independent of any particular time parameterization. This
implies that ds/dt = 1, and therefore dsp/dt = dsp/ds.
dsq/dt can be computed by noting that each of the D − d
cyclic coordinates obey a conservation law of the form (8).
Putting this all together yields

dsp

ds
=

√√√√1−
D−d∑
i=1

(
ki

C(y(s))

)2

(15)

849

Knowing dsp/ds, and for now assuming that this quantity
is strictly positive, we can change variables in (14) from s
to sp. This yields the desired expression:

J{p} =
∫ sp2

sp1

C(y(sp))√
1−

∑D−d
i=1

(
ki

C(y(s))

)2
dsp = J{x} (16)

The significance of this expression is that in order to
compute the cost of a high-dimensional path, we need only
be given its projection p(t) onto the Fermat components
and the D− d constants ki associated with the conservation
laws in the other dimensions. Therefore, in order to find a
minimum-cost path, it is sufficient to search over the space
of low-dimensional trajectories and the D − d constants.
However, it is possible to do better than this.

Consider the D−d conservation laws of the form (8) that
apply to each component qi of q. If we change variables to
sp, given p(sp), we can simply integrate both sides of the
conservation law to compute qi(sp), since C(x) does not
depend on qi. This results in the following expression for
the trajectories in the cyclic subspace:

qi(s′p)− qi(0) = ki

∫ s′
p

0

dsp√
C(p(sp))2 −

∑D−d
i=1 k2

i

(17)

Since the integral on the right-hand side is independent
of i, this expression allows us to compute any ratio ki/kj

(for kj 6= 0) from the known start and end points of the
curve. Therefore, given any nonzero ki, we can compute all
of the other k values from this expression—the exceptional
case kj = 0 occurs if and only if the net distance traveled in
qj is zero. This allows us to finally conclude that to find a
minimum-cost path in the original high-dimensional space,
it is sufficient to search over the space of low-dimensional
trajectories and a single constant ki, the other k values being
fully determined by ki.

We can formulate this search problem as a one-
dimensional root-finding problem to find the correct value of
ki. Each iteration of the root-finding algorithm finds the low-
dimensional trajectory that minimizes the cost functional (16)
given ki (and the dependent k values). Given this trajec-
tory, the associated high-dimensional trajectory can then be
computed using (17). The value of ki cannot be correct
unless the endpoint of this trajectory is correct. Therefore,
the objective of the root-finding algorithm is to find the
value of ki such that the endpoint of the high-dimensional
trajectory is correct. Furthermore, it is not difficult to show
that the minimum such ki should be found to ensure that the
associated path is of minimum cost.

The computationally intensive part of the planning is
obviously the search for the optimal trajectory in the
low-dimensional space. This step can be accomplished in
O(dαd logα) time (for some constant α) using the Fast
Marching method [15], which finds an approximate solution
to the continuous Eikonal equation [14] on a discretized
domain. The Fast Marching method has the same time

complexity as Dijkstra’s algorithm, and is very similar to
it in most other respects.

Finally, we note that this procedure does not necessarily
find the globally optimal path in the high dimensional space.
This is largely due to the assumption made above that
dsp/ds > 0, which is necessary for the change of variables
to be valid. If the distance traveled in the cyclic subspace
is sufficiently large, the optimal path may require k values
large enough to ensure that dsp/ds = 0 for some portion of
the path; this corresponds to motion contained completely
within the cyclic subspace. In such cases, the algorithm
presented above will find an approximate solution with k
values potentially smaller than that of the globally optimal
solution. Unfortunately, a complete analysis of these issues is
outside the scope of this paper; however, we did not find this
potential suboptimality to be a major problem in practice.

III. EXPERIMENTS

We first tested our method by applying it to human
motion capture data obtained from the CMU Motion Capture
Database. The data consists of the three-dimensional trajecto-
ries of 330 markers placed on a human performing a variety
of different actions, recorded at 120 Hz. For our experiments,
we manually selected a subset of 24 disjoint sequences
depicting one of three actions: jumping jacks, side twists,
and knee-elbow touches. We held out three of these, one for
each action, and trained on the remaining 21 sequences; i.e.,
we found the top three Fermat components of the data, then
learned m(x) in the resulting three-dimensional space with
regularized Gaussian kernel regression.

For each of the three held-out examples, we then found a
new sequence interpolating the start and end poses by finding
a minimum-cost path in the original 990-dimensional space.
In each case, our method (on a 3 GHz Intel Xeon processor)
found the optimal path in about one minute.

We implemented two other simple methods for
comparison—one that takes into account the boundary
conditions, but not the training data; and one that takes into
account the training data, but not the boundary conditions.
The first is simply linear interpolation between the start and
end poses. In the second method (henceforth referred to as
the “integration method”), we first trained a mapping from
poses in the original high-dimensional space to velocities
observed at those poses using nonlinear Gaussian kernel
regression. Given an initial condition, we then integrated
these velocities to obtain a trajectory. Results are shown in
Figures 1 and 3.

As these figures attest, only the knee-touch behavior is
adequately described by linear interpolation. Linear interpo-
lation on the jumping jack produces an unnatural motion
that lifts the hands vertically up, staying close to the body. It
also fails to reconstruct the small hop present in the motion,
as can be seen by observing the trajectories of the feet. In
the side twist, linear interpolation causes the arms to shrink
together, meet at the center of the body, and expand out
again. The integration method completely fails to produce
a plausible trajectory for the knee touch, getting stuck in

850

an unlikely pose. Its performance is better in the other two
cases, although it never attains the final pose, as seen clearly
in Figure 3. The individual appendages also appear less
coordinated in this method; in the jumping jack, the right
arm initially falls slack by the side, and lags behind the
left. During the side twist, the arms initially twist out of
the desired plane of rotation before rotating about the desired
axis. The integration method did seem to capture some initial
small details of the knee-touch well, but completely failed
to reconstruct the main knee-touching behavior.

The results obtained with FCA address most of these
issues. In each case, the trajectories reached the end point
with very little error, and the interpolating sequence captured
the main features of the motions very well. The arcs traveled
by the arms are well-defined, as well as the small jump
evident in the feet, though it is not quite as pronounced as
in the original sequence. The rigid relative positions of the
arms are preserved well in the side twist, and the nearly-
linear knee touch motion is also executed well, except for
some incidental nonlinear motion of the arms.

We additionally attempted to use FCA to reconstruct a
novel action sequence not present in the original training set.
The initial pose given was the initial pose of a jumping jack,
and the final pose was the final pose of a side twist. The result
is shown in Figure 4. As expected, the resulting sequence
resembles half of a jumping jack, followed by a side twist.
The sequence appears mostly natural, except that the right
arm bends backward in an awkward way upon starting the
side twist.

Finally, we applied FCA to data collected from a realistic
physical simulation of a humanoid robot based on the Open
Dynamics Engine. A hand-coded controller guided the robot
through a normal walking gait as we logged the Euclidean
coordinates of major joints on the robot. We then partitioned
the data at each footfall, training on individual steps made in
the course of the gait. We held one of these steps out from
the training set and subsequently synthesized the motion
between two footfalls based on our learned model via high-
dimensional planning.

Linear interpolation actually managed to account for much
of the overall motion, which would seem to explain the
minimal quantitative difference between linear interpolation
and our method (Figure 6). However, visualizing the resulting
synthesized trajectories shows that linear interpolation failed
to reconstruct the parabolic trajectory of the flight leg,
resulting in the foot dragging on the ground. Our method
was able to successfully capture this important detail by
finding a nonlinear trajectory interpolating the start and end
poses. The integration method produced results that rapidly
diverged from a feasible gait, as seen in Figure 6.

IV. CONCLUSIONS

We have presented a two-step approach aimed at solving
the high-dimensional learning and planning problems associ-
ated with modeling physical trajectory data. First, we find the
hidden, low-dimensional structure of a kinetic Lagrangian
with FCA; then, we exploit this structure to solve the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3 x 107

Normalized time

Su
m

 s
qu

ar
ed

 e
rro

r

Linear
Forward integration
Fermat

(a) Jumping jack

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3 x 107

Normalized time

Su
m

 s
qu

ar
ed

 e
rro

r

Linear
Forward integration
Fermat

(b) Side twist

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3 x 107

Normalized time

Su
m

 s
qu

ar
ed

 e
rro

r

Linear
Forward integration
Fermat

(c) Knee touch

Fig. 3. Sum of squared errors between true pose and corresponding poses
in the reconstructed sequence. Boxes mark the trajectory obtained with
linear interpolation, triangles mark the trajectory obtained with the nonlinear
regression + integration method, and circles mark the trajectory obtained via
FCA.

(a) Front (b) Rear (c) Top

Fig. 4. A few views of an experiment reconstructing a novel action
sequence. Sequence begins with a jumping jack and ends with a side twist.

851

Original FermatLinear Integrated

(a) Whole-body view

(b) Closer view of legs

Fig. 5. Visualization of experiment reconstructing a portion of a robot gait
sequence from starting and end poses. Note especially the trajectories of
the left foot.

0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 x 10−3

Normalized time

Su
m

 s
qu

ar
ed

 e
rro

r

Linear
Forward integration
Fermat

Fig. 6. Quantitative results from the gait reconstruction experiment. Plot
shows sum of squared errors between true pose and corresponding poses in
the reconstructed sequences.

otherwise intractable planning problem for such a system.
We see a few different potential research directions stemming
from this work.

Simple physical models with few degrees of freedom have
been invaluable in the analysis of the dynamics of complex
biological ([16]) and robotic locomotion ([17] [18]). At
present, however, these models are usually derived through a
combination of inspiration and laborious analysis of models
from first principles. Ultimately, it is our hope that FCA or a
similar method may eventually evolve into a tool that might
aid researchers in this task by identifying low-dimensional
views of physical trajectory data that are the most salient for
the purpose of predicting physical behaviors.

We also hope that the general idea of identifying structure
in cost functions for path planning, and exploiting it to vastly
simplify the problem, will stimulate additional research along
these lines, as it has proved extremely useful in our specific
application.

Finally, there are more short-term desiderata that we would

like to address. For instance, a limitation of our method in
its current incarnation is that its application is limited to the
case where a single linear change of coordinates renders the
Lagrangian independent of most of the coordinates. We are
currently considering extensions that will weaken this linear
assumption. For instance, many additional Lagrangians could
be modeled well as being only locally dependent on a few
variables. In these cases, we hope that we will be able to find
ways to partition space intelligently and apply our method
to each partition. We believe that taking such an approach
will vastly expand the applicability of our method to real
systems.

V. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
many insightful comments.

REFERENCES

[1] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions of Systems
Science and Cybernetics, 1968.

[2] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, 1996.

[3] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2000.

[4] P. Vernaza, M. Likhachev, S. Bhattacharya, S. Chitta, A. Kushleyev,
and D. D. Lee, “Search-based planning for a legged robot over rough
terrain,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2009.

[5] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning. Springer, 2001.

[6] J. Sjberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P.-Y.
Glorennec, H. Hjalmarsson, and A. Juditsky, “Nonlinear black-box
modeling in system identification: a unified overview,” Automatica,
vol. 31, no. 12, pp. 1691 – 1724, 1995, trends in System Identification.

[7] S. Vijayakumar and S. Schaal, “LWPR : An O(n) algorithm for
incremental real time learning in high dimensional space,” in Proc.
of Seventeenth International Conference on Machine Learning, 2000.

[8] M. Sekimoto, S. Arimoto, S. Kawamura, and J.-H. Bae, “Skilled-
motion plannings of multi-body systems based upon Riemannian
distance,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2008.

[9] J. Wang, D. Fleet, and A. Hertzmann, “Gaussian process dynamical
models,” in Advances in Neural Information Processing Systems 18,
Y. Weiss, B. Schölkopf, and J. Platt, Eds. Cambridge, MA: MIT
Press, 2006, pp. 1441–1448.

[10] N. D. Lawrence, “Gaussian process latent variable models for visual-
isation of high dimensional data,” in Advances in Neural Information
Processing Systems 16, S. Thrun, L. Saul, and B. Schölkopf, Eds.
Cambridge, MA: MIT Press, 2004.

[11] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum
margin planning,” in ICML ’06: Proceedings of the 23rd international
conference on Machine learning. New York, NY, USA: ACM, 2006,
pp. 729–736.

[12] H. Goldstein, Classical Mechanics. Addison-Wesley, 1980.
[13] V. I. Arnold, Mathematical Methods of Classical Mechanics.

Springer-Verlag, 1989.
[14] E. Hecht, Optics. Addison Wesley, 2001.
[15] J. A. Sethian, “A fast marching level set method for monotonically

advancing fronts,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 93, no. 4, pp. 1591–1595, 1996.

[16] R. Blickhan and R. Full, “Similarity in multilegged locomotion:
Bouncing like a monopode,” Journal of Comparative Physiology A,
1993.

[17] D. E. Koditschek and M. Buhler, “Analysis of a simplified hopping
robot,” The International Journal of Robotics Research, 1991.

[18] T. McGeer, “Passive dynamic walking,” The International Journal of
Robotics Research, 1990.

852

