
Apprenticeship Learning via Soft Local Homomorphisms

Abdeslam Boularias and Brahim Chaib-draa

Computer Science and Software Engineering Department, Laval University, Quebec, G1V 0A6 Canada.

{boularias,chaib}@damas.ift.ulaval.ca

Abstract— We consider the problem of apprenticeship learn-
ing when the expert’s demonstration covers only a small part
of a large state space. Inverse Reinforcement Learning (IRL)
provides an efficient solution to this problem based on the
assumption that the expert is optimally acting in a Markov
Decision Process (MDP). However, past work on IRL requires
an accurate estimate of the frequency of encountering each
feature of the states when the robot follows the expert’s policy.
Given that the complete policy of the expert is unknown, the
features frequencies can only be empirically estimated from the
demonstrated trajectories. In this paper, we propose to use a
transfer method, known as soft homomorphism, in order to
generalize the expert’s policy to unvisited regions of the state
space. The generalized policy can be used either as the robot’s
final policy, or to calculate the features frequencies within an
IRL algorithm. Empirical results show that our approach is able
to learn good policies from a small number of demonstrations.

I. INTRODUCTION

Modern robots are designed to perform complicated plan-

ning and control tasks, such as manipulating objects, navigat-

ing in outdoor environments, and driving in urban settings.

Unfortunately, manually programming these tasks is almost

infeasible in practice due to the high number of related states.

Markov Decision Processes (MDPs) provide efficient math-

ematical tools to handle such tasks with a little help from

an expert. The expert’s help consists in simply specifying a

reward function. However, in many practical problems, even

specifying a reward function is not easy. In fact, it is often

easier to demonstrate examples of a desired behavior than to

define a reward function (Ng & Russell, 2000).

Learning policies from demonstrated examples, a.k.a. ap-

prenticeship learning, is a technique that has been widely

used in robotics. One can generally distinguish between

direct and undirect apprenticeship approaches (Ratliff et al.,

2009). In direct methods, the robot learns a function that

maps state features into actions by using a supervised

learning technique (Atkeson & Schaal, 1997). The best

known example of a system built on this paradigm is

ALVINN (Pomerleau, 1989), where a neural network was

trained to learn a mapping between a road image and a

vehicle steering action. Despite the remarkable success of

the ALVINN system and others, direct methods suffer from

a serious drawback: they can learn only reactive policies,

where the optimal action of a state depends only on its

features, regardless of the future states of the system.

To overcome this drawback, Ng and Russell (2000) in-

troduced a new approach of undirect apprenticeship learning

known as Inverse Reinforcement Learning (IRL). The aim of

IRL is to recover a reward function under which the expert’s

policy is optimal, rather than to directly mimic the actions

of the expert. The learned reward function is then used to

find an optimal policy. Contrary to direct methods, IRL takes

into account the fact that the different states of the system are

related by transition and value functions. Consequently, the

expert’s actions can be predicted in states that are different

from the states appearing in the demonstration.

Unfortunately, as already pointed by (Abbeel & Ng, 2004),

recovering a reward function is an ill-posed problem. In fact,

the expert’s policy can be optimal under an infinite number of

reward functions. Abbeel and Ng (2004) proposed to rather

minimize the worst-case loss in value of the learned policy

compared to the expert’s one. Their algorithm relies on the

assumption that the reward function is a linear combination

of state features, and the frequency of encountering each

feature can be accurately estimated from the demonstration.

This assumption is considered in most of apprenticeship

learning methods, despite the fact that the features fre-

quencies might be poorly estimated when the number of

demonstrations is small, as we will show in our experiments.

In this paper, we propose to use a transfer learning tech-

nique, known as soft homomorphism (Sorg & Singh, 2009),

in order to generalize the expert’s actions to unvisited regions

of the state space. The generalized policy can then be used

to analytically calculate the expected frequencies of the fea-

tures. Contrary to previous direct methods, homomorphisms

take into account the long term dependency between different

states. We will show that combining this transfer method

with other apprenticeship algorithms provides a significant

improvement in the quality of the learned policies.

II. PRELIMINARIES

A finite-state Markov Decision Process (MDP) is a tuple

(S ,A ,T,R,α,γ), where: S is a finite set of states, A is a

finite set of actions, T is a transition function (T (s,a,s′) =
Pr(st+1 = s′|st = s,at = a),s,s′ ∈ S ,a ∈ A), R is a reward

function (R(s,a) is the reward associated to executing action

a in state s), α is the initial state distribution, and γ is a

discount factor used to weigh less rewards received further in

the future. We denote by MDP\R an MDP without a reward

function. We assume that there exists a vector of k features

φi : S ×A 7→R, and the reward is a linear function of these

features with positive weights wi:

∀s ∈ S ,∀a ∈ A : R(s,a) =
k

∑
i=0

wiφi(s,a) (1)

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2971

The robot decides which action to execute according to

its policy π, defined as π(s,a) = Pr(at = a|st = s). The value

V (π) of a policy π is the expected sum of rewards that the

robot will receive if its actions are sampled according to π.

V (π) = E[
∞

∑
t=0

γtR(st ,at)|α,π,T]

An optimal policy π∗ is one that satisfies π∗= argmaxπ V (π).
The occupancy measure xπ of a policy π is defined as:

xπ(s,a) = E[
∞

∑
t=0

γtδst ,sδat ,a|α,π,T]

where δ is the Kronecker delta. We also define Vi, the

expected frequency of a feature φi, as follows:

Vi(π) = E[
∞

∑
t=0

γtφi(st ,at)|α,π,T] = ∑
s∈S ,a∈A

xπ(s,a)φi(s,a)

Using this definition, the value function of a policy is given

by V (π) = ∑k
i=0 wiVi(π). Therefore, the value is completely

determined by the expected frequencies of the features φi.

III. APPRENTICESHIP LEARNING

The aim of apprenticeship learning is to find a policy π
that is at least as good as the expert’s policy πE , i.e.

V (π) ≥ V (πE). The value functions of π and πE cannot

be compared directly, given that the true reward function

is unknown. As a first solution to this problem, Ng and

Russell (2000) proposed to first learn a reward function,

assuming that the expert’s policy is optimal, and then use

it to find a policy π. However, the assumption that the

expert’s policy is optimal cannot be guaranteed in prac-

tice. Abbeel and Ng (2004) did not consider this assumption,

their algorithm returns a policy π with a bounded loss in

the value function, i.e. ‖ V (π)−V (πE) ‖≤ ε. However, this

algorithm iteratively calls an MDP planner as a subroutine,

which considerably affects its computational efficiency. In

this work, we will adopt a faster algorithm proposed by Syed

et al. (2008), known as LPAL (Linear Programming Appren-

ticeship Learning).

LPAL algorithm is based on the following observation: if

for some policy π we have v∗ = mini=0,...,k−1 Vi(π)−Vi(π
E)

then V (π)≥V (πE)+v∗. This is a direct consequence of the

assumption that the weights wi are positive. LPAL consists

in maximizing the margin v∗, aiming to find policies that

might outperform the expert’s one. The maximal value of v∗

is found by solving the following linear program:

max
v,xπ

v

such that

∀i ∈ {0, . . . ,k−1} :

v≤ ∑
s∈S ,a∈A

xπ(s,a)φi(s,a)−Vi(π
E) (2)

∀s ∈ S ,a ∈ A :

∑
a∈A

xπ(s,a) = α(s)+ γ ∑
s′∈S

∑
a∈A

xπ(s′,a)T (s′,a,s) (3)

xπ(s,a)≥ 0 (4)

The Bellman flow constraints (3) and (4) define the feasible

set of xπ. The learned policy π is given by:

π(s,a) =
xπ(s,a)

∑a′∈A xπ(s,a′)
(5)

As many other algorithms, LPAL requires the knowl-

edge of the features frequencies Vi(π
E) (in equation (2)).

These frequencies can be analytically calculated only when

a complete expert policy is provided. However, the expert

provides only a sequence of M demonstration trajectories

tm = (sm
1 ,am

1 , . . . ,sm
H ,am

H ,). The estimated frequencies V̂i(π
E),

which are used in lieu of Vi(π
E) in LPAL, are given by:

V̂i(π
E) =

1

M

M

∑
m=1

H

∑
t=1

γtφi(s
m
t ,am

t) (6)

There are nevertheless many problems related to this

approach. First, the estimated frequencies V̂i(π
E) can be

too different from the true ones when the demonstration

trajectories are few. Second, the frequencies V̂i(π
E) are esti-

mated for a finite horizon H, whereas the frequencies Vi(π),
given by ∑s∈S ,a∈A xπ(s,a)φi(s,a) and used in the objective

function (equation (2)), are calculated for an infinite horizon

(equations (3) and (4)). In practice, these two values are very

different and cannot be compared as done in equation (2).

Finally, a frequency Vi(π
E) cannot even be estimated if the

feature φi takes non null values only in states that did not

appear in the demonstration.

To solve these problems, we propose a new approach

based on transferring the demonstrated actions to the com-

plete state space. The generalized policy π̂E will be used

for calculating the frequencies Vi(π̂
E) by solving Bellman

flow equations (3) and (4), and Vi(π̂
E) will be used as our

estimator of Vi(π
E), i.e. V̂i(π

E) = Vi(π̂
E).

IV. TRANSFER LEARNING

Transfer learning refers to the problem of using the policy

learned for performing some task in order to perform a

related, but different, task. The related task may be defined

on a new domain, or on the same domain but in a different

region of the state space. This problem has been widely

studied in the context of reinforcement learning, and due

to the lack of space, we cannot give an overview of the

literature. The interested reader might find an extended

overview in (Taylor & Stone, 2009).

In this paper, we focus on a transfer method known as

MDP homomorphism (Ravindran, 2004), and more particu-

larly, on soft MDP homomorphism (Sorg & Singh, 2009).

The core idea of this latter approach consists in finding a

function f , called the transfer function, that maps each state

of an MDP model M = (S ,A ,T,R,α,γ) to a probability

distribution over the states of another MDP model M ′ =
(S ′,A ,T ′,R′,α,γ). Additionally, the mapping between the

states of S and S ′ should preserve the transition probabilities:

f : S ×S ′ 7→ [0,1]

∀s ∈ S ,s′ ∈ S ′,∀a ∈ A :

∑
s′′∈S

T (s,a,s′′) f (s′′,s′) = ∑
s′′∈S ′

f (s,s′′)T ′(s′′,a,s′) (7)

2972

The reward function also should be preserved, but we

will not consider this constraint since, in the context of

apprenticeship learning, the reward function is unknown.

Sorg and Singh (2009) showed that soft homomorphisms

can be used to transfer the values of the policies from an

MDP to another. In the next section, we will show how one

can use soft homomorphisms in order to transfer actions from

a subset of a state space to another subset of the same space.

V. APPRENTICESHIP LEARNING WITH LOCAL

HOMOMORPHISMS

Given an MDP model without reward M = (S ,A ,T,α,γ)
and a set of M trajectories provided by an expert, the state

space S can be divided into two subsets: S E , the set of states

that appear in the provided trajectories, and S\S E . For the

states of S E , the expert’s policy πE can be directly inferred

from the trajectories if it is deterministic, or estimated by

calculating the frequencies of actions if it is stochastic. We

will consider the general case and use π̂E to denote the

estimated expert’s policy.

In order to generalize the policy π̂E to S\S E , we first

create a restrained MDP\R M E = (S E
,A ,T E

,α,γ), where

the transition function T E is defined as:

∀s,s′ ∈ S E
,∀a ∈ A :

{

T E(s,a,s′) = T (s,a,s′) if s′ 6= s

T E(s,a,s) = T (s,a,s)+∑s′′∈S\SE T (s,a,s′′)

This function ensures that all the transitions remain within

the states of S E by assuming that any transition that leads

to a state outside of S E has no effect.

The next step consists in finding a lossy soft homomor-

phism between M and M E , where the loss function corre-

sponds to the error in preserving the transition probabilities

according to equation (7). The transfer function f of this

homomorphism is found by solving the following linear

program:

min
f

e (8)

such that

∀s ∈ S ,s′ ∈ S E
,∀a ∈ A :

| ∑
s′′∈S

T (s,a,s′′) f (s′′,s′)− ∑
s′′∈SE

f (s,s′′)T E(s′′,a,s′)| ≤ e

f (s,s′)≥ 0, ∑
s′∈SE

f (s,s′) = 1

The transfer function f corresponds to a measure of

similarity between two states. One can use this measure in

order to define the generalized policy π̂E as follows:

∀s ∈ S\S E
,∀a ∈ A : π̂E(s,a) = ∑

s′∈SE

f (s,s′)π̂E(s′,a)

Unfortunately, this method scales up poorly with respect

to the number of states visited by the expert and the number

of states in the corresponding domain. This is due to the

fact that |S E |× |S | variables are used in this linear program.

To improve the computational efficiency of this approach,

we redefine the function f as a measure of local similarity

Input: An MDP model without reward (S ,A ,T,α,γ), a set of
demonstration trajectories, an error threshold ε, and a
similarity distance d;

Let SE be the set of states contained in the demonstration
trajectories;
Use the demonstration trajectories to estimate the policy π̂E

for the states of SE ;
Let st be the set of states that can be reached from a state s
within t steps, votes a vector containing the number of votes
per action, and c the stopping condition;
foreach s ∈ S\SE do

t← 0,s0←{s},votes← (0, . . . ,0),c← false;
repeat

t← t +1;
if st = st−1 then

c← true,votes← (1, . . . ,1);
else

foreach s′ ∈ st ∩SE do
Let e be the error returned by the linear

program (9) on (M s,d
,M s′,d) ;

if e≤ ε then
c← true;
foreach a ∈ A do

votes(a)← votes(a)+ π̂E(s′,a)

until c = true ;
foreach a ∈ A do

π̂E(s,a) =
votes(a)

∑a′∈A votes(a′)
;

Output: A generalized policy π̂E ;

Algorithm 1: Apprenticeship Learning via Soft Local

Homomorphisms

between two states. We denote by sd the set of states that

can be reached from state s within a distance of d steps, and

by M s,d(sd
,A ,T s,d

,α,γ) the MDP\R model defined on these

states. The transition function T s,d is then defined as:

∀s,s′ ∈ sd
,∀a ∈ A :

{

T s,d = T (s,a,s′) if s′ 6= s

T s,d = T (s,a,s)+∑s′′∈S\sd T (s,a,s′′)

Given a distance d and a threshold ε, two states s and
s′ are considered as locally similar if there exists a soft

homomorphism between M s,d and M s′,d with a transfer
error not greater than ε. This property is checked by solving
the following linear program:

min
f

e (9)

such that

∀si ∈ sd
,sk ∈ s′d ,∀a ∈ A :

| ∑
s j∈sd

T s,d(si,a,s j) f (s j,sk)− ∑
s j∈s′d

f (si,s j)T
s′,d(s j,a,sk)| ≤ e

f (si,sk)≥ 0, ∑
sk∈s′d

f (si,sk) = 1

The principal steps of our approach are summarized in

Algorithm 1. For every state s ∈ S\S E , we create the list st

of neighbor states that can be reached from s within t steps.

The distance t is gradually increased until we find a state

s′ ∈ st ∩S E that is locally similar to s. If st = st−1, i.e. all the

2973

Gridworld Number of Expert policy Full policy Soft local Monte Carlo Maximum Euclidian Regression Manhattan

Size Regions homomorphism Entropy k-NN k-NN

16 0.4672 0.4692 0.4663 0.0380 0.3825 0.4672 0.4370 0.4635

16×16 64 0.5281 0.5310 0.5210 0.0255 0.4607 0.5218 0.5038 0.5198

256 0.3988 0.4029 0.4053 0.0555 0.3672 0.3915 0.3180 0.4062

64 0.6407 0.6386 0.6394 0.0149 0.5855 0.6394 0.5530 0.6334

24×24 144 0.5916 0.5892 0.5827 0.0400 0.5206 0.5890 0.5069 0.5876

576 0.3568 0.3553 0.3489 0.0439 0.2814 0.3114 0.2701 0.2814

64 0.6204 0.6179 0.6188 0.0145 0.5694 0.6198 0.5735 0.6177

32×32 256 0.5773 0.5779 0.5726 0.0556 0.5118 0.5730 0.4372 0.5729

1024 0.4756 0.4778 0.4751 0.0394 0.4482 0.4751 0.4090 0.4706

64 0.6751 0.6751 0.6732 0.0141 0.6234 0.6732 0.6052 0.6653

48×48 256 0.6992 0.7006 0.6909 0.0603 0.6587 0.6999 0.6437 0.6997

2304 0.4950 0.4972 0.4876 0.0528 0.4640 0.4913 0.4437 0.4330

TABLE I

GRIDWORLD RESULTS

states that can be reached from s are already contained in

st−1, and no one is locally similar to s, then we set π̂E(s,a) to

a uniform distribution. Otherwise, for each action a, π̂E(s,a)
is proportional to the weighted votes for a of the states that

are locally similar to s.

The generalized policy π̂E can be either considered as the

robot’s policy, or used to calculate the features frequencies

V̂i(π
E) for another algorithm, as LPAL.

VI. EXPERIMENTS

To validate our approach, we experimented on two simu-

lated navigation domains. The first one is a gridword problem

taken from (Abbeel & Ng, 2004). While this is not meant to

be a challenging task, it allows us to compare our approach

to other methods of generalizing the expert’s policy when

the number of demonstrations is small. The second domain

corresponds to a racetrack.

A. Gridworld

We consider multiple x by x gridworld domains, with x

taking the following values: 16, 24, 32, and 48. The state of

the robot corresponds to its location on the grid, therefore,

the dimension |S | of the state space takes the values 256,

576, 1024, and 2304. The robot has four actions for moving

in one of the four directions of the compass, but with a

probability of 0.3 actions fail and result is a random move.

The initial state corresponds to the position (0,0), and the

discount factor γ is set to 0.99. The gridworld is divided

into non-overlapping regions, and the reward function varies

depending on the region in which the robot is located. For

each region i, there is one feature φi, where φi(s) indicates

whether state s is in region i. The robot knows the features

φi, but not the weights wi defining the reward function of

the expert (equation (1)). The weights wi are set to 0 with

probability 0.9, and to a random value between 0 and 1 with

probability 0.1.

The expert’s policy πE corresponds to the optimal de-

terministic policy found by value iteration. In all our ex-

periments on gridworlds, we used only 10 demonstration

trajectories, which is a significantly small number compared

to other methods ((Neu & Szepesvári, 2007) for example).

The length of the trajectories are 50 for the 16 by 16 and

24 by 24 grids, 100 for the 32 by 32 grid, and 200 for the

48 by 48 grid.

The robot is trained by using LPAL algorithm. However,

as already mentioned, this algorithm requires the knowledge

of the frequencies Vi(π
E), which is not the case in our

experiments since the demonstration covers only a small

number of states. Instead, we used the following methods

for learning a generalized policy π̂E , and provided the

features frequencies of π̂E to LPAL. Except for Monte Carlo,

the frequencies Vi(π̂
E) are calculated by solving the flow

equations (3) and (4).

Full policy: the complete expert’s policy πE is provided to

LPAL.

Soft local homomorphism: The generalized policy π̂E is

learned by Algorithm 1, the threshold ε is set to 0 and the

distance d is set to 1.

Maximum entropy: The generalized policy π̂E is set to a

uniform distribution on the states that did not appear in the

demonstration.

Euclidian k-NN: The generalized policy π̂E is learned by the

k-nearest neighbors algorithm using the Euclidian distance.

The distance k is gradually increased until encountering at

least one state that appears in the demonstration trajectories.

Manhattan k-NN: the Manhattan distance from state si to

state s j is the number of states contained in the shortest path

from state si to state s j on the MDP graph.

Nonlinear regression: The occupancy measure xπ̂E
is con-

sidered as a linear function of a polynomial kernel defined

on the horizontal and vertical coordinates of the robot’s

position. In other terms, for each state s = (si,s j) we have

∑a∈A xπ̂E
(s,a) = α0 + α1si + α2s j + α3s2

i + α4s2
j + α5sis j +

ε(s). We use a linear program to minimize ∑s |ε(s)| under

Bellman flow constraints, the states that appear in the demon-

stration are constrained to have the same action as the expert.

Finally, π̂E is extracted from xπ̂E
according to equation (5).

Monte Carlo: This is the method used in the literature, the

frequencies V̂i(π
E) are estimated directly from the trajecto-

ries, according to equation (6).

2974

Starting line

Finish line

(a)

Finish line

(b)

Fig. 2. Racetrack configurations and a demonstration of the expert’s policy.
In racetrack (b), the car starts at a random position.

Table I shows the average reward per step of the robot’s

policy, averaged over 1000 independent trials of the same

length as the demonstration trajectories. Our first observation

is that LPAL algorithm learned policies just as good as the

expert’s policy when the features frequencies are calculated

by using the expert’s full policy, but remarkably failed to do

so when the frequencies are learned from the demonstration

by using a Monte Carlo estimator. This is due to the fact that

we used a very small number of demonstrations compared

to the size of these problems. Second, LPAL returns better

policies when the frequencies are analytically calculated

by using maximum entropy technique than when they are

estimated by Monte Carlo. This is because Monte Carlo

estimates the frequencies for a finite horizon. Given that the

expert’s actions cannot be explained by only the vertical and

horizontal coordinates, the regression method also failed to

outperform the maximum entropy method. We also remark

that Euclidian and Manhattan k-NN performed similarly due

to the similarity between these two distances in the context of

flat grids. They both succeeded to learn policies with values

close to the optimal value. Finally, our approach performed

just as k-NN in this experiment. In fact, since there are no

obstacles on the grid, most of the states are locally similar,

even for neighbors of a long distance.

B. Racetrack

We implemented a simplified car race simulator, the

corresponding racetracks are showed in Fig. 2. The states

correspond to the position of the car in the racetrack and

its speed. We considered two discretized speeds, low and

high, in each direction of the vertical and horizontal axis,

in addition to the zero speed in each axis, leading to a

total of 25 possible combinations of speeds, 5900 states for

racetrack (a), and 5100 states for racetrack (b). The controller

can accelerate or decelerate in each axis, or do nothing.

The controller cannot however combine a horizontal and a

vertical action, the number of actions then is five. When the

speed is low, acceleration\deceleration actions succed with

probability 0.9, and fail with probability 0.1, leaving the

speed unchanged. The success probability falls down to 0.5

when the speed is high, making the vehicle harder to control.

When the vehicle tries to move off-road, it remains in the

same position and its speed is reset to zero. The controller

receives a reward of 5 for each step except for off-roads,

where it receives 0, and for reaching the finish line, where

the reward is 200. A discount factor of 0.99 is used in order

to favour shorter trajectories.

In this experiment, we compared only the methods that

performed well in the gridworld domain, which are LPAL

with a full policy, LPAL with soft local homomorphisms,

and LPAL with k-NN using the Manhattan distance, since the

Euclidian distance considers only the position of the vehicle

and not its speed. We also compared k-NN and soft local

homomorphisms without LPAL.

Figures 2 (a-f) show the average reward per step of the

controller’s policy, the average number of off-roads per step,

and the average number of steps before reaching the finish

line, as a function of the number of trajectories in the demon-

stration. For racetrack (a), the car always starts from the

same initial position, and the length of each demonstration

trajectory is 20. For racetrack (b) however, the car starts at a

random position, and the length of each trajectory is 40. The

results are averaged over 1000 independent trials of length

30 for racetrack (a) and 50 for racetrack (b).

Contrary to the gridworld experiments, LPAL achieved

good performances only when the features are calculated

by using the complete policy of the expert. For clarity, we

removed from Figures 2 (d-f) the results of LPAL with k-NN

and with soft local homomorphisms, which were below the

performances of the other methods.

As expected, we notice the significant improvement of our

algorithm over k-NN in terms of average reward, average

number of off-roads per step, and average number of steps

to the finish line. This is due to the fact that, contrary to

k-NN, homomorphisms do take into account the dynamics

of the system. For example, when the car faces an obstacle,

the local MDP defined around its current position is similar

to all the local MDPs defined around the positions of facing

an obstacle, the optimal action in these states, which is to

decelerate, can then be efficiently transferred.

VII. CONCLUSION

The main question of apprenticeship learning is how to

generalize the expert’s policy to states that have not been

encountered during the demonstration. Previous works have

attempted to solve this problem by considering the state as

a vector of features of a smaller dimension, and classifying

the states accordingly. However, an expert’s policy is a much

more complicated function than it can be explained by only

immediate features.

Inspired by the intuition that the states that are locally

similar have the same optimal action in general, we intro-

duced a new technique for generalizing the expert’s policy

2975

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2 4 6 8 10 12

A
v
e

ra
g

e
 r

e
w

a
rd

 p
e

r
s
te

p

Number of trajectories in the demonstration

Expert
LPAL with a complete expert policy

Soft Local Homomorphism
k−NN

LPAL with Soft Local Homomorphism
LPAL with k−NN

(a) Average reward per step in racetrack (a).

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 2 4 6 8 10 12

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
s
te

p
s

Number of trajectories in the demonstration

Expert
LPAL with a complete expert policy

Soft Local Homomorphism
k−NN

LPAL with Soft Local Homomorphism
LPAL with k−NN

(b) Average number of steps before reaching the
finish line in racetrack (a).

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
h

it
te

d
 o

b
s
ta

c
le

s
 p

e
r

s
te

p

Number of trajectories in the demonstration

Expert
LPAL with a complete expert policy

Soft Local Homomorphism
k−NN

LPAL with Soft Local Homomorphism
LPAL with k−NN

(c) Average number of off-roads per step in race-
track (a).

 0

 5

 10

 15

 20

 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 r

e
w

a
rd

 p
e

r
s
te

p

Number of trajectories in the demonstration

Soft Local Homomorphism
Expert
k−NN

(d) Average reward per step in racetrack (b).

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
s
te

p
s

Number of trajectories in the demonstration

Soft Local Homomorphism
Expert
k−NN

(e) Average number of steps before reaching the
finish line in racetrack (b).

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
h

it
te

d
 o

b
s
ta

c
le

s
 p

e
r

s
te

p

Number of trajectories in the demonstration

Soft Local Homomorphism
Expert
k−NN

(f) Average number of off-roads per step in race-
track (b).

Fig. 1. Racetrack results

based on soft local homomorphisms. Unlike other methods,

our approach considers the long term dependency between

different states, rather than just immediate features. We also

showed that using homomorphisms leads to a significant

improvement in the quality of the learned policies.

However, our approach lacks of a theoretical guarantee

beyond the intuition. In fact, control policies are local and

reactive in most states, such as avoiding obstacles during

a navigation task, but there are always some critic states

where the optimal actions cannot be explained by only the

local dynamics of the system. Distinguishing between these

states is crucial for providing a theoretical guarantee of

our approach in a future work. Another interesting research

avenue is to consider using graph kernels (S. V. N. Vish-

wanathan & Schraudolph, 2007) for imitation learning. In

fact, local homomorphisms can be seen as a special graph

kernel measuring the similarity between two nodes, and other

types of graph kernels can be used for the same purpose.

REFERENCES

Abbeel, P., & Ng, A. Y. (2004). Apprenticeship Learning

via Inverse Reinforcement Learning. Proceedings of the

Twenty-first International Conference on Machine Learn-

ing (ICML’04) (pp. 1–8).

Atkeson, C., & Schaal, S. (1997). Robot Learning From

Demonstration. Proceedings of the Fourteenth Interna-

tional Conference on Machine Learning (ICML’97).

Neu, G., & Szepesvári, C. (2007). Apprenticeship Learning

using Inverse Reinforcement Learning and Gradient Meth-

ods. Conference on Uncertainty in Artificial Intelligence

(UAI’07) (pp. 295–302).

Ng, A., & Russell, S. (2000). Algorithms for Inverse

Reinforcement Learning. Proceedings of the Seventeenth

International Conference on Machine Learning (ICML’00)

(pp. 663–670).

Pomerleau, D. (1989). ALVINN: An Autonomous Land Ve-

hicle in a Neural Network. Neural Information Processing

Systems (NIPS’89) (pp. 769–776).

Ratliff, N., Silver, D., & Bagnell, A. (2009). Learning

to Search: Functional Gradient Techniques for Imitation

Learning. Autonomous Robots, 27, 25–53.

Ravindran, B. (2004). An Algebraic Approach to Abstraction

in Reinforcement Learning. Doctoral dissertation, Univer-

sity of Massachusetts, Amherst MA.

S. V. N. Vishwanathan, K. B., & Schraudolph, N. N. (2007).

Fast Computation of Graph Kernels. Neural Information

Processing Systems (NIPS’07) (pp. 1449–1456).

Sorg, J., & Singh, S. (2009). Transfer via Soft Homomor-

phisms. Proceedings of The Eighth International Con-

ference on Autonomous Agents and Multiagent Systems

(AAMAS’09) (pp. 741–748).

Syed, U., Bowling, M., & Schapire, R. E. (2008). Appren-

ticeship Learning using Linear Programming. Proceedings

of the Twenty-fifth International Conference on Machine

Learning (ICML’08) (pp. 1032–1039).

Taylor, M. E., & Stone, P. (2009). Transfer Learning for

Reinforcement Learning Domains: A Survey. Journal of

Machine Learning Research, 10, 1633–1685.

2976

