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Abstract— The DPC algorithm developed in our previous
work is an efficient way of computing optimal trajecto-
ries for multiple robots in a distributed fashion with time-
parameterized constraints on the distances between pairs of
robots. In the present work we extend DPC to the problem of
multiple task execution. While this extended problem inherits
all the objectives, complexities and constraints of the basic DPC
algorithm, each robot is also given an unordered set of tasks that
it has to execute before it reaches its goal. There is no specific
order imposed on the tasks assigned to a particular robot. The
algorithm decides the order of execution of the tasks such that
an optimal solution is attained while the time-parametrized
distance constraints are satisfied along with successful execution
of the tasks. We solve this problem by designing a “State-task
Graph” that represents a product of the state-space graph and
the task graph. We then develop an efficient heuristic function
for performing searches in this graph.

I. INTRODUCTION

Path planning and coordination among multiple mobile

robots in environments with obstacles is a challenging prob-

lem in robotics. Planning for goal-directed navigation is

often modeled as computing a least-cost path through a

graph generated by discretization of the environment [14].

However in multi-robot problems, for obtaining an optimal

solution, one needs to typically plan in the product of the

state-spaces of the robots (i.e. the joint state-space or the

full configuration space). The increase in the dimensional-

ity of the configuration space increases the computational

expense exponentially with the number of robots. Having

intermediate tasks that the robots need to execute increases

the complexity of the problem even further.

The DPC algorithm developed in our previous work [5]

is an efficient way of solving the problem of multi-robot

path planning under constraints. The problem consists of

path planning for a team of robots with time-parameterized

constraints on the distances between pairs of robots. Both

communication constraints and rendezvous constraints can

be modeled in this form. In order to enable scalability, the

DPC algorithm performs planning in a decentralized fashion,

iterating through each robot planning in its own configu-

ration space, while gradually increasing the penalty due to

violation of constraints. A typical application area is search
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and/or coverage in settings where robots must rendezvous

periodically to exchange information and/or maintain relative

distance constraints to enable communication. Continuous

motion planning is possible for such problems [2], but only

practical in environments with limited complexity. Thus, in

the DPC algorithm, we took a discrete path planning ap-

proach for multiple robots with time-parametrized constraints

on the distance between the robots. The DPC algorithm

decomposes the one-shot joint state-space planning into plan-

ning with a series of lower-dimensional searches converging

to an optimal solution. Such decomposition of high dimen-

sional problems has been studied in [9] using sequential

planning for each agent, but not guaranteeing optimality. The

basic idea in the DPC algorithm is to incorporate constraints

through penalty functions in a fashion that is reminiscent of

augmented Lagrangian techniques [4]. Similar iterative and

distributed techniques have been investigated in the past [11],

but for much simpler forms of constraints, mostly collision

avoidance. The DPC algorithm is provably complete and

returns provably optimal solution when required conditions

are satisfied [5].

A. Motivation

An important extension of the basic constrained planning

problem is the inclusion of multiple tasks along the paths

of the robots. This aspect of the problem is inspired by

the problem of multi-robot mapping of an unknown or

partially known environment, where the robots need to visit

certain points in the environment (the tasks) to explore/map

those regions, and also periodically meet & communicate

their respective findings with each other in order to build a

global map of the environment in a distributed fashion [15].

Assuming that each robot has been assigned an unordered

list of tasks in forms of coordinates in space, in this paper

we investigate how we can make use of the basic concept

of the DPC algorithm to enable the robots execute the tasks,

but still satisfy all the time-parametrized distance constraints

and ensure optimality of the solution. Essentially the tasks

act as additional constraints in the original DPC planning

problem.

B. Related work

Robot path planning is probably one of the most exten-

sively studied problems areas in robotics [14]. Multi-robot

path planning suffers from the inherent complexity resulting

from the necessity of operating in Cartesian products of

configuration and state spaces [7]. Broadly speaking path
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planning algorithms can be divided into two categories: con-

tinuous and discrete. The continuous path planning problem

is difficult to solve in a centralized setting [21], [16] unless

the problem is solved sequentially for each robot [22]. While

completeness results are often possible [1], it is difficult to

respect multi-robot constraints and to establish completeness

and convergence results except in special cases. In most

practical settings, discrete graph search methods have been

shown to be complete and efficient [20].

The order of execution of assigned tasks (or multiple

goals) has been studied using decision theoretic approaches

[10] in cases where the tasks have priorities or weights

attached to them. However in our present problem all the

tasks are considered to be of equal importance and the order

is solely chosen to minimize the trajectory cost and to satisfy

the constraints. Our approach is to integrate the execution

order of tasks as decision variables in the core planning

problem so as to minimize the original objectives.

1) The task allocation problem: One of the first assump-

tions that we start with in the present work is that each robot

has already been assigned an unordered set of tasks that

it needs to execute. The problem of task allocation deals

with assigning the tasks to the the robots. Task allocation

for mobile robots has been extensively studied in the past.

Finding an optimal allocation is strongly NP-hard [17]. Since

typically the total number of available tasks is small, integer

and linear programming approaches have been effectively

used to solve the problem [3], [6]. In similar lines, auction-

based and market-based approaches have been used exten-

sively [23], [13], [8] to improve the task completion time and

reduce the communication overheads. The problem can also

be translated into a version of the traveling salesman problem

(TSP) with the robots being represented by multiple salesmen

following paths instead of tours [19]. Distributed algorithms

using Voronoi diagrams have been implemented for assigning

tasks to multiple agents [18]. Thus the problem of allocating

the tasks to multiple robots has been well-studied, and hence

is not a focus of the present work. However typically these

solutions don’t take into consideration the other constraints

on the robot trajectories, such as time-parametrized distance

constraints in our case. As we’ll see in the first example

under the “Results” section, the DPCT algorithm proposed

in the present paper considers different orders of execution

of the assigned tasks to ensure optimality.

II. PROBLEM DEFINITION

The problem consists of path planning and execution of as-

signed tasks for a team of N robots with time-parameterized

constraints on the distances between pairs of robots. This

particular type of constraint has a broad scope in multi-

robot coordination problems, which includes, but is not

limited to, the problem of rendezvousing in order to exchange

information and the problem of maintaining communication

while executing tasks. In our problem each robot is given a

goal coordinate. The constraints are defined between pairs

of robots and are modeled as the minimum distance of

separation between the robots as a function of time.

Our approach towards solving the problem is to make

sure that we get an optimal or near-optimal solution without

needing to perform a search in a joint state-space of the

robots. We use an iterative approach using soft constraints

to attain this. For just a single robot we can construct a search

graph by discretizing space and time and use A* algorithm

to plan an optimal path to the goal. When there are multiple

tasks for the robot, the search graph can be extended by

adding an additional dimension for keeping track of the tasks.

In case of a multi-robot scenario we start off by planning

the unconstrained optimal paths for each robot, and then

gradually increase the weight on the penalty for violating

the constraints, as we keep on iterating among the robots,

with each robot planning paths that minimize the sum of

its path’s cost and the weighted penalties for the constraints

that it violates. The idea is to make the robots adjust their

trajectories gradually in order to satisfy the constraints so

that optimality is achieved. The benefit of such approach is

that it allows us to complete planning and reach an optimal

solution that satisfies all the constraints, without having to

perform planning in the joint state-space of all the robots. We

have also shown that the algorithm, under certain conditions

on our choice of incrementing the penalty weights and the

choice of the cost functions, is complete and will return an

optimal solution [5]. The tasks are in the form of coordinates

in space that the robots need to visit. However there is no

specific order imposed on the tasks assigned to a particular

robot.

A. Graph Construction

Planning for goal-directed navigation for an individual

robot Ri, 1 ≤ i ≤ N is often modeled as computing a least-

cost path through a graph Gi formed by discretization of

the configuration space. Each state s ∈ V(Gi) is given by

{x, y} coordinates of the corresponding cell. For permissible

and neighboring states, s and s
′ (free states inside the

configuration space) the edge s → s
′ ∈ E(Gi) is associated

with a strictly positive cost c(s, s′). A common choice for

the costs is the Euclidean distances in between the centers

of the corresponding cells.

In addition we augment each state in the graph Gi with

an additional variable - time index t, such that a state in the

augmented graph becomes {s, t}. Edges in this augmented

graph (a directed graph) Hi = Gi×{0, 1, · · · , T} are defined

such that a particular state {s, t} connects only to the states

{s′, t + 1}, such that the state s
′ ∈ V(Gi) is either same as

s, or s → s
′ ∈ E(Gi). Planning in such an Hi ensures that

the planning is done both in space and time, and the time

parametrized trajectory returned by the planner is consistent

with the fact that the robots can move only forward in time.

Such planning enables us to incorporate time-paramertized

distance constraints.

We assume that all trajectories of interest to us are at most

T timesteps. Thus, the solution to a typical planning problem

for a single robot is a T -step path in Hi from {Starti, 0}
to {Goali, T}, and can be represented by the ordered set

πi = {s0 = Starti, s1, . . . , sT = Goali}. Thus, πi(t) refers
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to the coordinate st (in other words, the robot Ri is at this

location at time t when following path πi). The cost of a

path is given as c(πi) =
∑

j=1...T c(sj−1, sj).

B. Introducing the Tasks

The robot Ri has Mi tasks assigned to it denoted by

τ0
i , τ1

i , · · · , τMi−1
i , where each task is a coordinate in space,

and more specifically is a node in the graph Gi. Thus,

τ j
i = (xj

i , y
j
i ) ∈ V(Gi). The planning needs to be done

in such a way that the planned trajectory of robot Ri

passes through each of τ0
i , τ1

i , · · · , τMi−1
i , i.e. τ j

i ∈ πi∀j =
0, 1, 2, · · · , Mi − 1. The order of execution of the tasks is

obtained as part of the solution to the planning problem.

To model the tasks and in order to incorporate them in the

search graph we first define a fourth state coordinate (after x,

y and t) and call it “task indicator”, β, which is essentially a

variable that we will represent as a binary number consisting

of Mi bits (for robot Ri), each bit being the flag or indicator

of whether the corresponding task has been completed. For

notational convenience we define a function B such that

β = BM ({j1, j2, · · · , jk}) is a M -bit long binary number

with 1’s at the positions j1, j2, · · · , jk, and 0’s at the rest.

Thus B7({2, 4, 5}) = 0110100 and B3({0}) = 001. Note

that BM ({j1, j2, · · · , jk}) in fact represents the state in

which only the tasks τ j1 , τ j2 , · · · , τ jk have been executed.

We define the inverse function of B to be the one that

returns the indices of the non-zero bits in a given β, i.e.,

B−1(β) = {j1, j2, · · · , jk}
We define a task graph Υi for robot Ri such that the

vertices of Υi are Mi-bit binary numbers. Connection be-

tween two vertices of Υi exist iff the vertices differ by

exactly one bit, and the edge points from the vertex with

lower value to the one with higher value. An example of

such a graph for Mi = 4 is shown in Figure 1. For a

robot Ri with Mi tasks to execute, the starting value of

“task indicator” will be BMi
({}) which represents the state

where no task has been executed, and its goal value will be

BMi
({0, 1, 2, · · · , Mi−1}) which represents the state where

all the tasks have been executed. Since the tasks are executed

one at a time, the two vertices β1 and β2 can be connected

if and only if β1 and β2 differ by a single bit.

However we also note that the jth
l bit in the state co-

ordinate β is to be turned on for robot Ri only when the

robot executes the jth
l task assigned to it, i.e. when the

spatial coordinate of the robot is s = τ jl

i . Using this fact

we construct the State-task Graph Ki for robot Ri such that

{s, t, β} ∈ V(Ki) are the vertices of the graph representing

the full states of the robot. The graph Ki is defined such

that,

i.
V(Ki) = V(Hi) × V(Υi)

= V(Gi) × {0, 1, · · · , T} × V(Υi)
ii. An edge from vertex κ1 = {s1, t1, β1} ∈ V(Ki) to

vertex κ2 = {s2, t2, β2} ∈ V(Ki) exists iff exactly one

of the following holds

a. {s1, t1} → {s2, t2} ∈ E(Hi),
and s2 /∈ {τ l

i | lth bit of β1 is 0},

and β1 = β2.

1111

0000

0001 0010 0100 1000

0011 0101 0110 1001 1100 1010

0111 1101 1011 1110

Fig. 1. The task graph Υi showing the possible transitions of the task
indicator value, β for robot Ri with four tasks

b. {s1, t1} → {s2, t2} ∈ E(Hi),
and s2 ∈ {τ l

i | lth bit of β1 is 0} with s2 = τλ
i ,

and β1 → β2 ∈ V(Υi) such that the λth bit of β2

is 1.

The cost of an edge {s1, t1, β1} → {s2, t2, β2} ∈ E(Ki)
is same as the cost of the edge {s1, t1} → {s2, t2} ∈ E(Hi)

Any possible state of the robot Ri defined by its spatial

coordinates, time and tasks executed can be represented by a

state in the graph Ki. The connection between the states of

Ki define how the transition from one state to another can

take place.

III. ALGORITHM

A. Graph Search

1) The constraints: We represent constraints between pair

of robots, Ri and Rj , as time parametrized functions of

maximum distance between them. For any pair of states

s ∈ V(Gi), s
′ ∈ V(Gj), where i 6= j, we define a dis-

tance d(s, s′) as a non-negative finite scalar-valued function

satisfying commutativity (e.g., d(s, s′) = d(s′, s)). Thus,

in case graphs Gi were derived from a 2D grid-world, the

distance function d(s, s′) can be a simple Euclidean distance

in between the centers of the cells that correspond to state s

for the first robot and state s
′ for the second robot. In other

cases, the distance function can model more complex factors.

We thus specify time-parameterized distance constraints

between all pairs of the robots φi,j for all i 6= j. Thus, φi,j

is a vector of T non-negative scalar values such that φi,j(t)
implies that the distance d(·, ·) in between robots Ri and Rj

at time t should be no more than φi,j(t). The φi,j(t) = ∞
therefore implies the absence of any constraint in between

these robots at time t.
2) Objective function: Given our formulation of the prob-

lem, the goal of an optimal planning algorithm would be to

find N paths π∗
i (1 ≤ i ≤ N ) through the corresponding

graphs Gi such that:

{π∗
1 , . . . , π∗

N} = argminπ1...πN

P

j=1...N
c(πj) (1)
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subject to the constraint that

d(π∗
i (t), π∗

j (t)) ≤ φi,j(t) (2)

∀ 1 ≤ t ≤ T, 1 ≤ i ≤ N, 1 ≤ j ≤ N, i 6= j

and

τ
j
i ∈ πi ∀ j = 1, 2, · · · , Mi, and 1 ≤ i ≤ N

3) Search in the State-task Graphs: We can

formulate the above mentioned problem equivalently

as a search in the product of the N State-task

Graphs [K1, K2, · · · , KN ] from the initial state of

[{Start1, 0, BM1
({})}, · · · , {StartN , 0, BMN

({})}] to the

final state of [{Goal1, T, BM1
({0, 1, · · · , M1 − 1})}, · · · ,

{GoalN , T, BMN
({0, 1, · · · , MN − 1})}] such that (2) is

satisfied (Note that π∗
i is readily obtained from the states in

the State-task Graph Ki by noting that π∗
i (t) corresponds

to s in the solution state {s, t, β} ∈ Ki)

As it will be described in the next sections, instead of

planning in the product space of K1 × K2 × · · · × KN , the

approach we take in the DPC algorithm is to plan in each of

Ki in an iterative fashion with the constraints in (2) modeled

as soft constraints, and then gradually increasing the penalty

weights on the constraint violations.

B. DPC Algorithm with multiple tasks

The original DPC Algorithm is explained in greater details

at [5]. We have theoretical proof of convergence, complete-

ness and optimality of the algorithm for the case of an empty

environment. The algorithm is an efficient way of comput-

ing optimal paths for multiple heterogeneous robots under

constraints. The constraints we have studied mostly consist

of time-parametrized distance constraints, but the constrains

between pairs of robots can be more varied and complex.

Optimal planning in the joint state-space of N robots with

complex constraints is computationally prohibitive. The DPC

algorithm was implemented on real robots platforms called

Scarabs. Figure 2 shows the trajectories produced by DPC

on a particular problem (more details in [5]) being executed

on scarab robots. In the following section we extend the

algorithm to incorporate the tasks into the search graph. We

call this algorithm DPCT (DPC with tasks).

1) DPCT Algorithm: The basic idea behind the DPCT

algorithm, very similar to the original DPC algorithm, is to

run a series of graph searches on graphs Ki, 1 ≤ i ≤ N .

At each iteration iter, the search processes some graph Kr

and computes a path that minimizes the weighted sum of

the path-cost plus the amount to which the path violates

the constraints with respect to the paths computed for other

robots previously. This makes the robots to increase their

path-costs slowly and converge to a good, often optimal,

solution. We have theoretical proof of completeness, con-

vergence and optimality for environments without obstacles

[5]. In an environment with obstacles the optimality is not

theoretically guaranteed, but as we will discuss later, we can
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(b) Solution satisfying con-
straints
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(c) Plan execution on Scarab robot platforms

Fig. 2. Screenshots of execution of the plan obtained from the DPC
algorithm on Scarab robot platforms

1 procedure BasicDPCT()

2 compute π0
i = argminπi

c(πi) for all 1 ≤ i ≤ N by performing

search through Ki;

3 set w0
i,j(t) = 0 for all i, j, t;

4 r = 1, iter = 0;

5 while (
P

i=1...N

P

j=i+1...N
Ω(πiter

i , πiter
j ) 6= 0 AND

mini,jwiter
i,j · Ω(πiter

i , πiter
j ) ≤ 2 ∗ maxpathcost)

6 →֒ set w
iter+1

i,j
(t) = witer

i,j (t) for all i, j, t;

7 →֒ w
iter+1

r,j
= w

iter+1

j,r
= witer

j,r + ǫ for all j, t;

8 →֒ compute πiter+1
r = argminπr

{c(πr)+
P

j=1...N,j 6=r
w

iter+1

r,j
· Ω(πr, πiter

j )}
by performing search through Ki

9 →֒ set π
iter+1

j
= πiter

j for all other j 6= r;

10 →֒ iter = iter + 1;

11 →֒ r = r + 1;

12 →֒ if r > N

13 →֒ r = 1;

Fig. 3. Basic DPCT

explore the various homotopy classes using a Blacklist, with

optimality being guaranteed within each homotopy class, and

hence obtain an optimal solution most of the time.

To penalize for the violation of constraints, the algorithm

introduces the penalty function Ω(πi, πj), i 6= j as follows:

Ω(πi, πj) =
P

t=0,1,··· ,T
̟(πi(t), πj(t), φi,j(t))

where, ̟(s, s′, p) = max(0, d(s, s′) − p)
(3)

Note that Ω depends on φi,j as well. However since typically

φi,j is a constant throughout the problem (i.e. does not

change with the iterations), for notational simplicity we use

Ω(πi, πj , φi,j) ≡ Ωij(πi, πj) ≡ Ω(πi, πj). The convention is

that we look at the indices of the π’s to identify which φ to

use for defining Ω.

The penalty function is a way of transforming the hard dis-

tance constraints into soft constraints. To gradually increase

the weight of each constraint violation, each constraint φi,j

is associated with a dynamically adjusted weight wij (the

weights have to be symmetric, so wij = wji).

The pseudocode of the algorithm is shown in Figure 3.

It first computes unconstrained least-cost paths for each of

the robot (line 2). The computation of the paths can be done
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with any graph search such as A* search [12]. After that, the

algorithm iterates over the robots repeatedly (robot index is

incremented on lines 11-13). Within each iteration iter, the

algorithm increases the penalty weights for the selected robot

Rr by a small increment ǫ (line 7), and computes a path for

the robot Rr from its start state {Startr, 0, 00 · · · 0} to its

goal state {Goalr, T, 11 · · · 1} in graph Kr that minimizes

the summation of all the transition costs and all the weighted

penalties (line 8). To compute this path, one can once again

use any graph search for a least-cost path, but the costs of all

the edges, however, need to be modified. In particular, the

cost of any transition {s, t − 1, β} → {s′, t, β′} becomes:

c(s, s′) +
P

j=1...N,j 6=r
witer+1

rj ̟(s′, πiter
j (t), φr,j(t))

2) DPCT with Superiterations: In cluttered environments,

DPCT needs to eleminate infeasible homotopy classes of

trajectories in an efficient fashion so that we are able to

arrive at the optimal solution without needing to increase the

penalty weights arbitrarily for switching from one homotopy

class of trajectories to another. This is done by maintaining

and populating a blacklist of pairwise configurations that

violate the constraints. DPCT with Superiterations is in

essence the very same as the DPC with Superiterations in

[5]. The DPCT algorithm maintains the blacklist, adding 4-

D blocked balls to it after every superiteration that fails to

return a solution, and avoiding the blocked regions in the

searches of the following superiterations. For more details

see [5].

3) Heuristic: The choice of the heuristic function, h, is

extremely crucial in any A* search. A heuristic function is a

positive scalar function of the states in the search graph. For

A* to return an optimal solution, the heuristic function needs

to be such that it never overestimates the actual minimum

cost for reaching the goal. However to make the search more

efficient and minimize the number of states expanded, the

heuristic must be as close as possible to the actual minimum

cost to the goal. One obvious and commonly used heuristic

for planning in Gi is the Euclidean distance to the goal,

i.e. hE(s) = ‖s− Goal‖. But for an 8-connected grid, with

costs defined by Euclidean distances between centers of cells,

which Gi is, one can use a more efficient heuristic given

by h8(s) =
√

2 min(∆x,∆y) + |∆x − ∆y|, where ∆x =
|sx − Goalx| and ∆y = |sy − Goaly|.

However in a highly cluttered environment even h8 turns

can be highly inefficient. In such a case, before executing

the actual planning, we perform a Dijkstra’s search in Gi

starting from the goal coordinate Goal till we expand all

the reachable states in Gi. Let DGoal(s) be cost-to-goal

computed by Dijkstra’s for each state s ∈ Gi. Although the

process of Dijkstra search is itself more expensive than A*

search in Gi, the advantage of this pre-computation becomes

clear when we attempt to plan in higher dimensional graphs

Hi or Ki. Once D is precomputed for all the states in Gi,

while planning in Hi we can simply use the more efficient

heuristic function, hH({s, t}) = DGoal(s).

But when we have tasks to execute before reaching the

final goal, we can design even a more informative heuristic.

Since we know that the robot will be visiting all the task

locations, the heuristic associated with a particular state

{s, t, β} can be defined as follows (note that the index

of the robot, i, is dropped all throughout for notational

convenience),

hK({s, t, β}) = min
〈j1,j2,··· ,jl〉∈Perm(B−1(∼β))

[Dτj1 (s)+ (4)

Dτj2 (τ j1) + Dτj3 (τ j2) + · · · + Dsgoal
(τ jl)

i

where ∼β is the binary number obtained by flipping all

the bits of β (i.e. B−1(∼ β) is the list of indices of the

remaining tasks), l is the number of remaining tasks, i.e.

l = n(B−1(∼β)), Perm(·) returns a list of ordered sets

with all the possible permutation of elements passed to it,

and 〈·〉 represents an ordered set.

The above heuristic function basically looks for all the

possible orders in which the tasks can be visited, and choses

the one with the minimum cost. Note that computing Dτja (s)
requires that we run Dijkstra’s search for each of the states

τ1, τ2, · · · , τM . However we note that even without the

knowledge of s we can precompute

L(β, j1) = min
〈j2,··· ,jl〉∈Perm(B−1(∼β\j1))

h

Dτj2 (τ j1)+ (5)

Dτj3 (τ j2) + · · · + Dsgoal
(τ jl)

i

Then during run-time we have a quick way of computing

the heuristic for the vertices in the State-task graph,

hK({s, t, β}) = min
j∈B−1(∼β)

[Dτj (s) + L(β, j)] (6)

IV. RESULTS

Although the core essence of our algorithm lies in the fact

that it can be implemented in a decentralized fashion, in all

the following simulations the implementation was done on

a single computer with a 2GHz processor and 4MB RAM.

The decentralized implementation of the DCPT algorithm on

real hardware is in progress and will make the computation

much faster, reducing the computation time N folds. All

implementation is done in C++, and MATLAB is used for

visualization of output data. 1

All the environments in the examples are two dimensional

and are 8-connected grids. The algorithm can be easily

generalized for three dimensional environments with more

complex discretization. The robots can be heterogeneous

(e.g. ground veichles as well as areal vehicles, and with

different speed limits) and hence have different environment

maps and different graph connectivities.

We also performed experiments on real robot platform

called Scarab (Figure 2(c)). In order to account for the

1The output files corresponding to the examples/results in the paper can be
found at http://www.seas.upenn.edu/∼subhrabh/nonWebsite/IterPlanning/index.html.
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(a) Unconstrained trajectories
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(b) Solution satisfying constraints

Fig. 4. Planning for two robots each with two tasks and a constraint to
meet during their travel. It is interesting to note how in the final converged
solution the robot on the right switches the order of execution of its tasks
in order to satisfy the imposed constraint.

non-zero radii of the robots, we performed a greedy col-

lision avoidance during run-time. For controlling the non-

holonomic robots along the planned trajectories, a feedback

linearization technique was adopted.

A. Example of reordering of tasks to satisfy constraints

In the simple example in Figure 4 we have two robots

having to plan their paths from a start to a goal location.

The environment contains one central large obstacle. Each

of the robots has been assigned two tasks (marked by the

empty boxes in color). The first figure shows the case where

there is no constraint between the robots. Now we impose

a constraint that the robots need to be within a distance of

0.08m at t = 17.5s during their journey. It is interesting to

note how in the final converged solution the second robot

(the one in blue) switches the order of execution of its tasks

in order to satisfy the imposed constraint. The environment

consisted of 50 discretizations along each spatial direction

and 40 discretizations in time. The joint state-space of the

robots would hence have 40 × (50 × 50 × 22)2 = 4 billion

states. Even in this simple environment the constrained

optimal planning in joint state-space would become very

difficult. However our algorithm converges to a solution in

about 10 iterations and in less than a minute time. The

converged solution is optimal with respect to an 8-connected

grid.

B. Exploration

Consider the example in Figure 5 where each robot needs

to explore the inside of certain rooms in the 4th floor of

Levine hall (University of Pennsylvania) assigned to them

in the environment, and possibly create a map of the envi-

ronment. They need to meet intermediately at t = 120s to

exchange information about each other’s explorations so as to

build a global map in a decentralized fashion. This problem

perfectly fits our paradigm. We see how the robots explore

the assigned rooms and also meet to exchange information.

Each robot has been assigned 4 tasks. The environment

consisted of 100 discretizations along each spatial direction

and 250 discretizations in time. This makes a total of

250 × (100 × 100 × 24)2 = 6.4 × 1012 = 6.4 trillion states
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Fig. 5. Two robots exploring certain rooms and rendezvousing to exchange
information.
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Fig. 6. Three robots exploring certain rooms and rendezvousing to
exchange information.

in the joint state-space! Our algorithm finds the solution in

1311 seconds in 17 iterations. The solution is optimal with

respect to an 8-connected grid.

C. Exploration with three robots

We once again do the exploration of the Levine 4th

floor, but now with 3 robots. Figure 6 shows the result.

The constraints are between pairs of robots. Thus we used

two constraints: The first one between robots 1 and 2 is

to meet at t = 120s, and second one between robots 2

and 3 is to meet at t = 120s. The joint state-space had

250×(100×100×24)3 = 1.024×1018 states. Our algorithm

finds a solution to the problem in 3003 seconds and 40
iterations.

D. Computation time statistics

We chose a relatively simple scenario with two robots

navigating from start to goal configuration, one task assigned

to each robot, and one rendezvous constraint (Figure 7). The

environment was same as before (Levine hall 4th floor), with

100×100 spatial discretization and 150 temporal discretiza-

tion. We ran our algorithm several time by randomizing the

initial positions, goal position and the constraint. The table

below gives a summary of the run-time from 10 runs with

randomized values.
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Fig. 7. Two robots with one task each. This is the solution from one of
the randomized runs.

Min Max Average

11 s 66 s 33.9 s

V. CONCLUSION

In this paper we have extended the DPC algorithm to

support an unordered set of tasks that the robots need

to execute, while obeying the time-parametrized distance

constraints. We integrated the task order into the search graph

of each robot and as a result obtained the order of execution

of the tasks as part of the natural solution to the problem. The

simulations demonstrate the efficiency of the algorithm in

solving very large problems. The algorithm has therefore the

potential of solving extremely complex planning problems

with complicated constraints in a relatively short period of

time. In addition the algorithm provides strong theoretical

guarantees on solution quality. Further optimization of the al-

gorithm and its hardware implementation for true distributed

execution is in progress.
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