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Abstract— We present a path planning method for au-
tonomous underwater vehicles in order to maximize mutual
information. We adapt a method previously used for surface
vehicles, and extend it to deal with the unique characteristics
of underwater vehicles. We show how to generate near-optimal
paths while ensuring that the vehicle stays out of high-traffic
areas during predesignated time intervals. In our objective
function we explicitly account for the fact that underwater
vehicles typically take measurements while moving, and that
they do not have the ability to communicate until they resurface.
We present field results from ocean trials on planning paths for
a specific AUV, an underwater glider.

I. INTRODUCTION

A. Informative Path Planning

We are interested in the problem of collecting data about a
scalar field, within a certain area. In particular, we care about
collecting data about coastal areas of the ocean e.g., temper-
ature, salinity, and chlorophyll content of the water. Ideally,
we would like to have high spatial resolution measurements
over the entire area that we care about.

One simple approach would be to deploy static sensors
through the area of interest, and use them to collect data.
Unfortunately, this would require a huge number of sensors
to achieve reasonable spatial resolution over a large area.
Instead, we can take advantage of one or several autonomous
underwater vehicles (AUVs), which can move throughout the
area, taking samples in many locations. In this way we can
trade some temporal resolution for higher spatial resolution
at a relatively low cost.

The mobility of an AUV requires us to make decisions
about where to sample. There are an endless number of
possible paths which we could choose for the AUV. Ignoring
depth for the moment, the simplest, and most often utilized
choice in ocean sampling would be a “lawnmower” pattern,
which would take the AUV back and forth across the
region of interest in parallel, evenly spaced legs. While this
would give us a large amount of information, the amount
of time and energy required to execute such a path is often
prohibitive.
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Often we have some data about the area of interest before
we deploy our AUV. This data may come from other AUVs
that have already traversed the region, from remote sensing
data, or from a small set of static sensors in the area. We
would like to use this data to choose a new path for the
AUV which gives us the most additional information. This
is called the informative path planning problem.

There has been a significant amount of work done recently
on the general problem of informative path planning for
mobile robots, including [1], [2], [3], and [4]. Each of
these approaches perform path planning by maximizing or
minimizing an objective function related to the quantity
being measured.

Using AUVs in coastal areas, however, creates addi-
tional issues which must be dealt with in order to plan
practical paths. First, there is the problem of boat traffic.
Our experimental AUVs surface periodically to check their
position using GPS, and to transmit data. While they are
at the surface, these expensive vehicles can be damaged in
collisions with boats. To minimize this danger we must keep
the AUVs out of high traffic areas during certain times of day.
Second, our AUVs take samples while moving underwater,
but typically do not change direction underwater. This means
that when choosing a path for the AUV, the set of possible
waypoints along the path is not the same as the set of sample
locations along that path.

The contribution of this work is to extend a known path
planning algorithm, recursive greedy [5], to work well with
an AUV. Specifically, we have modified the algorithm to
handle samples taken as the robot moves. We also explain
how to use the time-window concept from recursive greedy
to keep the AUV out of high traffic areas at certain times.

B. Gliders

The specific AUV which we use most often is the Slocum
Glider [6], which can be seen in Fig. 1. The underwater glider
is an extremely low power underwater vehicle. By modifying
its ballast, it alternately descends and ascends through the
water. Small wings on either side give it forward motion as
it does this, causing it to ”glide” through the water. Although
this method of locomotion is quite slow (on the order of 0.4
m/s), it allows the glider to operate at sea continuously for
weeks at a time.

The path of the glider is a sawtooth pattern, moving up
and down in the water as it travels horizontally between
two waypoints. Instead of parametrizing the actual path and
solving for the optimal trajectory in three dimensions, we
ignore depth and solve a two dimensional problem. We use
only the measurements from a specific slice of depths; for
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Fig. 1. The Slocum Glider, resting at the surface before diving.

example measurements taken between a depth of 10 meters
and a depth of 15 meters.

We work with the gliders as part of USC CINAPS [7].
Other researchers in CINAPS are working on related prob-
lems, such as tracking Harmful Algal Blooms (HABs) [8],
and improving trajectory design using ocean models [9].

II. PROBLEM DESCRIPTION

We describe the possible mission plans for the glider as
a graph G = E, V , where each node v ∈ V is a possible
waypoint for the glider, and each edge e ∈ E is one possible
leg of the glider’s path. A possible path for the glider is
then described as a list P = [v1, v2, ..., vk] of nodes, in the
order in which they would be visited. We wish to choose the
glider’s path such that it maximizes a function f(P ) of the
path.

The goal of the path planning is to model a scalar field
such as temperature or salinity, represented by a random
variable X at each location in the graph. Following [10],
for f(P ) we use the mutual information, I(·), between the
sampled and unsampled locations. This can be defined in
terms of the reduction in entropy, H(·), of the unsampled
locations after taking the new samples into account,

I(XVp ;XV−VP
) = H(XV−VP

)−H(XV−VP
|XVP

). (1)

Here XVP
are the random variables for the locations at

which we collect samples along the path, and XV−VP
are

the variables for locations where we do not collect samples.
In order to calculate the entropy, we model the underlying

scalar field using a Gaussian process [11]. In a Gaussian pro-
cess, given samples at a set of points XVP

we can calculate
the covariance and mean at another set of points XV−VP

.
The entropy can then be calculated using the covariance.

In a Gaussian process, the kernel function used to create
the kernel matrices is parametrized by hyper-parameters,
which are typically learned from the data. Because of this, it
is useful to have some pilot data that can be used to make an
initial estimate of the hyper-parameters. In the simple kernel
function which we use, the hyper parameters describe how
quickly the function varies spatially.

A. Submodularity

In order to allow an efficient solution, in this work we
assume that the function f(P ) is submodular. Submodularity

expresses the idea of diminishing returns: a new sample pro-
vides less information once a large number of samples have
been taken. Mutual information is shown to be submodular
in [12]. For a set function to be submodular, it must satisfy

f(A ∪ {s})− f(A) ≥ f(B ∪ {s})− f(B), (2)

for all sets A ⊆ B ⊆ V and elements s ∈ V − B
[10]. We do not give more detail here, but [13] has a good
explanation of why to use mutual information in sensor
placement problems.

III. ALGORITHM

A. Recursive Greedy

We make use of the recursive-greedy algorithm for the
submodular orienteering problem presented in [5]. It provides
a logarithmic approximation guarantee with much better
running time than brute force methods. The running time is
O((2nB)i ·Tf ) where n is the number of possible waypoints,
B is the maximum length for the path, i is the number of
recursions which increases logarithmically with the length
of the optimal path, and Tf is the maximum time required
to evaluate the objective function (mutual information in our
case).

The algorithm works recursively. When looking for a path
from node s to node t, it splits the problem in half, and tries
all possible middle points on the path. For each possible
middle point, it tries all possible lengths b for the first half
(thereby leaving B − b for the second half.) The algorithm
commits to the best solution it can find for the first half of
the path before starting the second half, which is why it is
only an approximation. Still, it provides a solution with a
reward of at least fx(P ∗)/d1 + logke, where fx(P ∗) is the
reward obtained by the optimal solution and k is the length
of the optimal path, as shown in [5].

Because the algorithm works by enumerating all possible
values for the length allocated to the first half of the path,
it requires B to be an integer value. The quantities which
make sense to use for path length, distance and time, are
actually continuous. This turns out to be only a small issue
however. If we want to be able to represent path lengths
from 0.0 to 10.0 with a resolution of 0.1, for instance, we
can simple multiply all lengths by 10 and use a value of 100
for B. This illustrates the trade off that we face: increasing
B allows better resolution, but increases running time.

To handle this problem, [5] also presents a way to use
bounds on the reward function to make the running time
depend only logarithmically on B. Although we did not need
to do this for the results in this paper, it may be useful when
looking at much longer paths.

B. Avoiding High Traffic Areas Using Time Windows

Because we operate our AUVs in a coastal area, we must
take care to avoid boat traffic. Specifically, we need to keep
the AUV out of busy areas during times of day when boat
traffic is high, because otherwise it could be run over while
at the surface. This includes areas near marinas where boats
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Fig. 2. Shipping lanes between Santa Catalina island and Los Angeles.

often go in and out during the day, as well as shipping lanes.
Fig. 2 shows the two major shipping lanes between Santa
Catalina island and Los Angeles in the Southern California
Bight (SCB)1, the area in which we typically operate.

In [5], a time-window variant of the recursive greedy
algorithm is also discussed. Adding time windows requires
checking to make sure that each time the path is split, the
middle node is visited within some allowed time window. As
shown in [5], the same approximation guarantee and running
time hold for the time window variant. We use these time
windows to keep the glider out of dangerous areas during
high traffic times.

C. Edge based objective

Depth

Travel Distance

Fig. 3. An example of a glider trajectory through the water. It glides
forward and downward, then glides back up. The dotted line shows one
depth slice; the intersection of this line with the glider path gives the set of
points at that depth that the glider would obtain.

The glider is moving up and down in the water in a
sawtooth pattern as it moves between each waypoint, and
so takes samples at many different depths, as can be seen
in Fig. 3. If we restrict ourselves to only a thin slice of
depths, such as the ones in the shaded box, then the set

1The SCB is the oceanic region contained within 32◦ N to 34.5◦ N and
−117◦ E to −121◦ E

of samples are taken at approximately evenly spaced points
along a straight line. If we place candidate waypoints in a
regular grid over the area in which the glider is operating,
and add edges between nearby waypoints, then we get a
graph like the one in Fig. 4(a). We then place a set of evenly
spaced points on each edge, approximating the positions of
the samples that the glider would take as it moved between
those two waypoints, as shown in Fig. 4(b).

In order to ensure that the original proof of the approx-
imation guarantee in [5] still holds when using these edge
points, we construct a new graph G′. Graph G′ has all the
nodes of G, plus one node for each point that we added
along the edges. The graph G′ in Fig. 4(c) corresponds to
the graph G shown in Fig. 4(a) and 4(b).

Normally, adding so many extra nodes to the graph would
greatly increase the running time of the recursive-greedy
algorithm. In this case, however, we note that since the glider
cannot actually change course at any of these points along
each edge, they do not increase the number of possible paths.
Because of this we are able to run the recursive greedy
algorithm using only the nodes from the original graph G,
but using G′ to determine the sample points that need to be
used to evaluate the objective function for each path.

When we calculate the objective function f(P ) during
recursive-greedy, instead of using the reward that would be
obtained from sampling at each node on the path, we use
the reward that would be obtained by sampling at the points
along each edge traveled in the path. Because this does not
change the number of times which f(P ) is evaluated, the
only term that is affected in the running time is Tf , the
maximum time to evaluate the objective function for a path.

Algorithm 1 Algorithm: RG-EB(s, t, σ, τ,X, i)
if τ < R(t) or l(s, t) + σ > D(t) then return Infeasible
m⇐ 0
P ⇐ s, t
if i = 0 then return P
for v ∈ V do

for σ < b < τ do
P1 ⇐ RG-EB(s, v, σ, σ + b,X, i− 1)
V1 ⇐ expand-edges(P1, G,G

′)
P2 ⇐ RG-EB(v, t, σ + b, τ,X ∪ V1, i− 1)
V2 ⇐ expand-edges(P2, G,G

′)
if fX(V1 ∪ V2) > m then
P ⇐ P1 · P2

m⇐ fX(V1 · V2)
end if

end for
end for
return P

The pseudocode for our algorithm is given in algorithm
1. The algorithm is based on the recursive-greedy algorithm
with time windows, but has been modified to use an objective
function that is based on the edges, instead of the vertices.
To plan a path, the function RG−EB is called, with s as the
intial waypoint of the AUV, t as the desired end waypoint,
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(a) A simple waypoint graph G with 4 nodes. (b) Sample points overlaid on each edge.
These are the places where the glider would
collect samples, were it to travel along that
edge. The spatial resolution of the samples is
a parameter of the algorithm.

(c) Graph G′ created from G, with extra
edges between the sample points.

Fig. 4.

σ as the start time, τ as the end time, X as the set of pilot
measurements, and i as the maximum level of recursion.

The algorithm searches for a path on the graph G, but each
time it needs to evaluate the objective function on a path P , it
first calls the function expand edges(P,G,G′), which takes
a path on G and returns all of the corresponding vertices
which would be visited in the graph G′.

IV. RESULTS

To see whether this algorithm can realistically be used
with the glider, we tested it on field data from an ocean
deployment in the SCB. We start by giving the glider several
static waypoints to visit. We then model the sensed variable
in a rectangular area of interest using a Gaussian process,
incorporating the samples already taken. The data points
collected for pilot data are plotted in Fig. 5(a).

In a typical usage scenario, we might deploy the glider
during the day and let it run for 24 hours to collect pilot data.
The following day, we can run the path planning algorithm,
and send the new set of waypoints to the glider. The glider
can then follow the new set of waypoints for the next 24
hours.

For the results discussed here, we model the water con-
ductivity. Normally this quantity is used to calculate the
salinity of the water, but because conductivity is what we
actually get from the sensor, we model it directly using the
Gaussian process. We note that for oceanographic purposes,
conductivity (and salinity) may not vary in interesting ways
in the area which we have chosen. For testing purposes, we
care only that it is a quantity for which the variations are
greater than the sensor noise. In the future, we would like
the path planning technique to be used in conjunction with
oceanographers. In that usage scenario, the path planning
would be combined with a user interface, so that a scientist
could specify a sensed variable and an area of interest,
along with high-traffic areas, and paths could be generated
automatically.

Because this work is about our path planning algorithm,
we do not provide an analysis of how well a Gaussian
process models water conductivity in the ocean. We treat
the objective function as a black box, and use Gaussian

processes because they are simple and fairly well understood.
Any other submodular objective function could be used; for
example the mutual information between variables in some
more complicated model.

We give the path planning algorithm a regular grid of
possible waypoints, with possible edges between neighboring
waypoints. Then we use our modified recursive greedy
algorithm to find the best path from the glider’s current
position to one of the corners of the area of interest. We
give it a budget B to work with, which is a limit on the
length of the path. This budget can be interpreted as the
amount of time that we want the path to take. We could also
choose the start and end points to be the same, so that the
glider returns to its original position.

The resulting path can be seen in Fig. 5(b). Intuitively,
the glider tries to choose a path that visits regions which
have not yet been sampled, since these areas will give the
most information. After reaching the desired end node, we
have a number of choices. We could move on to another
area, or we could add the measurements taken to the original
pilot measurements, and use these as the pilot measurements
to plan a new path for the region, reducing the uncertainty
further.

In order to get a better idea of the effect that the path
planning has on the uncertainty in the field being measured,
we plot the variance. Fig. 5(c) shows the variance of the
field when only the pilot measurements are used. Dark areas
represent higher variance, and light areas represent lower
variance. As expected, the variance is much lower near places
where samples have been taken. It increases fairly quickly
in areas farther from samples. The hyper-parameters of the
kernel of the Gaussian process determine how quickly it
increases.

In Fig. 5(d) we can see the effect of adding samples from
the planned path. Many of the areas for which the covariance
was high after incorporating the pilot measurements were
sampled by the chosen path. Because the maximum path
length is limited, some areas are still missed. This could be
improved by extending the path length, or by incorporating
the path measurements into the pilot data, planning a new
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(a) The pilot data collected before path planning. Each ’x’ represents
one sample. Here the pilot data was collected using an initial run of the
glider, but we could also use data from static buoys or remote sensing
data.

(b) Recursive-greedy solution
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(d) Covariance after samples from chosen path are incor-
porated

Fig. 5.

path, and taking more samples.
Next we show the results for the case where we create a

hypothetical “high-traffic” area for the glider to avoid during
peak traffic hours. The shaded region in Fig. 6 is the area
that the glider must avoid. In the case where we give the
glider a new path to follow each day, we often do not want
it to visit waypoints in high traffic areas until nighttime.

In the resulting path in Fig. 6 the glider waits to enter the
high-traffic area, continuing to sample in the safe area. Then
it enters the high traffic area, collects data there “at night”,
and exits the area before the end of the safe time window.

V. CONCLUSIONS AND FUTURE WORK

We have presented a algorithm for path planning for
underwater gliders which maximizes mutual information.
Our algorithm adapts and extends a previous method based
on the recursive greedy algorithm. In addition to generating
near-optimal paths, the algorithm ensures that the vehicle
stays out of high-traffic areas during predesignated time

intervals. Results from trials with a single glider at sea are
encouraging.

While the recursive greedy algorithm is considerably more
efficient than exhaustive search, it still takes a long time to
get results on medium or large sized datasets. Because the
glider typically goes long distances between waypoints, we
are able to use a rough discretization of the space of possible
waypoints, but computational time still limits the scalability
of our approach. In order to scale up further, we could take
advantage of the fact that the values at locations separated
by large distances are almost entirely uncorrelated, as was
done in [4]

In this work we assume that the quantity which we are
measuring is time-invariant; this is only reasonable over short
periods of time. The recursive greedy technique could be
extended to work with time-varying quantities by adding
many copies of each node in the graph, one for each possible
time that it could be visited. This would greatly increase the
running time of the algorithm however, so another approach
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Fig. 6. Recursive-greedy solution with time windows.

is needed.
We reported on path planning for one glider here, but a

technique that builds on the recursive greedy algorithm to
iteratively do path planning for multiple robots can still have
good approximation guarantees, as shown in [4]

A. Distance metric

One other assumption that we make is that the cost of trav-
eling between nodes is proportional to the distance between
them. In reality, because the glider moves so slowly, ocean
currents can play a large role in how long it takes to travel
between two points. Fortunately, there is a computational
model of the currents in the Southern California area called
the Regional Ocean Modeling System (ROMS) which gives
estimated currents for the areas in which we are working
[14], [15].

ROMS gives us the ability to get an estimated current
velocity for each location in a grid. In the future we would
like to use these values to calculate the expected cost (in
time) of traveling between two waypoints, and use these costs
as edge lengths when constructing the waypoint graph.

B. Communication

When it surfaces at each waypoint, the glider can send
sensor data back to shore using either its satellite phone or
using its Freewave radio. The satellite phone works from
almost everywhere, but is slow and very expensive. The
Freewave radio communicates directly with base stations on
shore, and so is relatively cheap and fast, but has limited
range.

Ideally, we would like to get data from the glider every
time that it surfaces. Unfortunately, since sending so much
data using the satellite phone would be prohibitively expen-
sive, and the glider must sometimes take readings in areas
which have limited radio connectivity with the shore, we
must find a compromise. In the future, we would like to
be able to incorporate communication constraints into the
path planning algorithm; for example by requiring that data
be transmitted back to a base station within 24 hours of it

being taken. This would force the glider to periodically seek
out areas with good radio connectivity.

C. Implementation

All of the source code for this work is available online
at [16]. The implementation is written in Python using the
Numpy library, except for the creation of the Gaussian
process kernel function, which is written in C for efficiency
reasons.
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